0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UMZ8N

UMZ8N

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    UMZ8N - Power management (dual transistors) - Rohm

  • 数据手册
  • 价格&库存
UMZ8N 数据手册
EMZ8 / UMZ8N Transistors Power management (dual transistors) EMZ8 / UMZ8N Feature 1) Both a 2SA2018 chip and 2SC2412K chip in a EMT or UMT package. Dimensions(Unit : mm) EMZ8 (6) (5) (4) Equivalent circuits (1) (2) (3) ROHM : EMT6 EIAJ : (3) (2) (1) Each lead has same dimensions UMZ8N Tr2 Tr1 (6) (5) (4) (4) (5) (6) (1) (2) (3) ROHM : UMT6 EIAJ : SC-88 Each lead has same dimensions Absolute maximum ratings (Ta=25°C) Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Collector power dissipation Junction temperature Storage temperature Symbol VCBO VCEO VEBO IC ICP PC Tj Tstg Limits Tr1 −15 −12 −6 −500 −1 150 −55 to +150 Tr2 60 50 7 150 − Unit V V V mA A mW °C °C 150 (TOTAL) ∗ ∗ 120mW per element must not be exceeded. Package, marking, and packaging specifications Part No. Package Marking Code Basic ordering unit (pieces) EMZ8 EMT6 Z8 T2R 8000 UMZ8N UMT6 Z8 TR 3000 Rev.C 1/4 EMZ8 / UMZ8N Transistors Electrical characteristics (Ta=25°C) Tr1 Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance Symbol BVCBO BVCEO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. −15 −12 −6 − − − 270 − − Typ. − − − − − −0.1 − 260 6.5 Max. − − − −0.1 −0.1 −0.25 680 − − Unit V V V µA µA V − MHz pF IC = −10µA IC = −1mA IE = −10µA VCB = −15V VEB = −6V IC/IB = −200mA/−10mA VCE = −2V , IC = −10mA VCE = −2V , IE = 10mA , f = 100MHz VCB = −10V , IE = 0A , f = 1MHz Conditions Tr2 Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance Symbol BVCBO BVCEO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. 60 50 7 − − − 120 − − Typ. − − − − − − − 180 2 Max. − − − 0.1 0.1 0.4 560 − 3.5 Unit V V V µA µA V − MHz pF IC = 50µA IC = 1mA IE = 50µA VCB = 60V VEB = 7V IC/IB = 50mA/5mA VCE = 6V , IC = 1mA VCE = 12V , IE = −2mA , f = 100MHz VCB = 12V , IE = 0A , f = 1MHz Conditions Electrical characteristic curves 1000 VCE=2V 200 I B =700µA 1000 IB =600µA I B =500µA IB =400µA IB =300µA IB =200µA VCE=2V COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) 500 200 100 50 20 10 5 2 1 0 0.5 1.0 1.5 Ta=125°C Ta=25°C Ta= −40°C 180 160 140 120 100 80 60 40 20 0 IB =100µA IB =0µA 500 DC CURRENT GAIN : hFE 200 100 50 20 10 5 2 1 1 2 5 10 20 50 100 200 500 1000 Ta=125°C Ta=25°C Ta= −40°C Ta=25°C pulsed BASE TO EMITTER VOLTAGE : VBE (V) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 COLLECTOR TO EMITTER VOLTAGE : VCE (V) COLLECTOR CURRENT : IC (mA) Fig.1 Grounded Emitter Propagation Characteristics 1000 500 IC / IB=20 Fig.2 Typical Output Characteristics BASER SATURATION VOLTAGE : VBE (sat) (mV) 1000 500 10000 5000 2000 1000 500 200 100 50 20 10 1 2 Fig.3 DC Current Gain vs. Collector Current IC / IB=20 Ta= −40°C Ta=25°C Ta=125°C Ta=25°C COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) 200 100 50 20 10 5 2 1 1 2 5 10 20 50 100 200 500 1000 Ta=125°C Ta=25°C Ta= −40°C COLLECTOR SATURATION VOLTAGE : VCE (sat) (mV) 200 100 50 20 10 5 2 1 1 2 5 10 20 50 100 200 500 1000 IC / IB=50 IC / IB=20 IC / IB=10 5 10 20 50 100 200 500 1000 COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) Fig.4 Collector-Emitter Saturation Voltage vs. Collector Current (Ι) Fig.5 Collector-Emitter Saturation Voltage vs. Collector Current (ΙΙ) Fig.6 Base-Emitter Saturation Voltage vs.Collecter Current Rev.C 2/4 EMZ8 / UMZ8N Transistors EMITTER INPUT CAPACITANCE : Cib (pF) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) 1000 TRANSITION FREQUENCY : fT (MHz) 500 200 100 50 20 10 5 2 1 1 2 5 10 20 VCE=2V Ta=25°C 1000 500 200 100 50 20 10 5 2 1 0.1 0.2 0.5 1 2 5 Cob Cib IE=0A f=1MHz Ta=25°C 50 100 200 500 1000 10 20 50 100 EMITTER CURRENT : IC (mA) EMITTER TO BASE VOLTAGE : VEB (V) Fig.7 Gain Bandwidth Product vs. Emitter Current Fig.8 Collector Output Capacitance vs. Collector-Base Voltage Emitter Input Capacitance vs. Emitter-Base Voltage 50 VCE=6V COLLECTOR CURRENT : IC (mA) 100 0.50mA mA 0.45 A 0.40m 0.35mA 0.30mA 0.25mA 0.20mA 40 0.15mA 0.10mA 20 0.05mA IB=0A 0 0.4 0.8 1.2 1.6 2.0 COLLECTOR CURRENT : IC (mA) Ta=25°C 10 Ta=25°C 30µA 27µA 24µA 21µA COLLECTOR CURRENT : IC (mA) 20 10 5 Ta=100°C 25°C −55°C 80 8 60 6 18µA 15µA 12µA 9µA 6µA 3µA 2 1 0.5 0.2 0.1 0 4 2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 BASE TO EMITTER VOLTAGE : VBE (V) 0 0 0 4 8 IB=0A 12 16 20 COLLECTOR TO EMITTER VOLTAGE : VCE (V) COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.1 Grounded emitter propagation characteristics Ta=25°C Fig.2 Grounded emitter output characteristics ( Ι ) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Ta=100°C VCE=5V Fig.3 Grounded emitter output characteristics ( ΙΙ ) Ta=25°C 500 500 0.5 DC CURRENT GAIN : hFE 200 VCE=5V 3V 1V DC CURRENT GAIN : hFE 200 25°C −55°C 0.2 IC/IB=50 20 10 100 100 0.1 0.05 50 50 0.02 20 10 0.2 20 10 0.2 0.5 1 2 5 10 20 50 100 200 0.5 1 2 5 10 20 50 100 200 0.01 0.2 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) Fig.4 DC current gain vs. collector current ( Ι ) Fig.5 DC current gain vs. collector current ( ΙΙ ) Fig. 6 Collector-emitter saturation voltage vs. collector current Rev.C 3/4 EMZ8 / UMZ8N Transistors COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) IC/IB=50 Ta=100°C 25°C −55°C TRANSITION FREQUENCY : fT (MHz) 0.5 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) IC/IB=10 0.5 500 Ta=25°C VCE=6V 0.2 Ta=100°C 25°C −55°C 0.2 0.1 0.05 0.1 0.05 200 0.02 100 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 0.01 0.2 0.5 1 2 5 10 20 50 100 200 50 −0.5 −1 −2 −5 −10 −20 −50 −100 COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) EMITTER CURRENT : IE (mA) Fig.7 Collector-emitter saturation voltage vs. collector current ( Ι ) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) Fig.8 Collector-emitter saturation voltage vs. collector current (ΙΙ) BASE COLLECTOR TIME CONSTANT : Cc·rbb' (ps) Fig.9 Gain bandwidth product vs. emitter current 20 10 Cib Ta=25°C f=1MHz IE=0A IC=0A 200 Ta=25°C f=32MHZ VCB=6V 100 5 50 2 Co 20 b 1 0.2 0.5 1 2 5 10 20 50 10 −0.2 −0.5 −1 −2 −5 −10 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) EMITTER CURRENT : IE (mA) Fig.10 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage Fig.11 Base-collector time constant vs. emitter current Rev.C 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0
UMZ8N 价格&库存

很抱歉,暂时无法提供与“UMZ8N”相匹配的价格&库存,您可以联系我们找货

免费人工找货