0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
F272-BAG-T

F272-BAG-T

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP144_20X20MM

  • 描述:

    IC MCU 16BIT 256KB FLASH 144TQFP

  • 数据手册
  • 价格&库存
F272-BAG-T 数据手册
ST10F272B ST10F272E 16-bit MCU with 256 Kbyte Flash memory and 12/20 Kbyte RAM Datasheet − production data Features ■ ■ ■ 16-bit CPU with DSP functions – 31.25ns instruction cycle time at 64MHz max CPU clock – Multiply/accumulate unit (MAC) 16 x 16-bit multiplication, 40-bit accumulator – Enhanced boolean bit manipulations – Single-cycle context switching support On-chip memories – 256 Kbyte Flash memory (32-bit fetch) – Single voltage Flash memories with erase/program controller and 100K erasing/programming cycles. – Up to 16 Mbyte linear address space for code and data (5 Mbytes with CAN or I2C) – 2 Kbyte internal RAM (IRAM) – 10/18 Kbyte extension RAM (XRAM) – Programmable external bus configuration & characteristics for different address ranges – Five programmable chip-select signals – Hold-acknowledge bus arbitration support Interrupt – 8-channel peripheral event controller for single cycle interrupt driven data transfer – 16-priority-level interrupt system with 56 sources, sampling rate down to 15.6ns ■ Timers – Two multi-functional general purpose timer units with 5 timers ■ Two 16-channel capture / compare units ■ 4-channel PWM unit + 4-channel XPWM September 2013 This is information on a product in full production. *$3*5, PQFP144 (28 x 28 x 3.4mm) (Plastic Quad Flat Package) LQFP144 (20 x 20 x 1.4mm) (Thin Quad Flat Package) ■ A/D converter – 24-channel 10-bit – 3 μs minimum conversion time ■ Serial channels – Two synch. / asynch. serial channels – Two high-speed synchronous channels – One I2C standard interface ■ 2 CAN 2.0B interfaces operating on 1 or 2 CAN busses (64 or 2x32 message, C-CAN version) ■ Fail-safe protection – Programmable watchdog timer – Oscillator watchdog ■ On-chip bootstrap loader ■ Clock generation – On-chip PLL with 4 to 8 MHz oscillator – Direct or prescaled clock input ■ Real time clock and 32 kHz on-chip oscillator ■ Up to 111 general purpose I/O lines – Individually programmable as input, output or special function – Programmable threshold (hysteresis) ■ Idle, power down and stand-by modes ■ Single voltage supply: 5V ±10% Doc ID 11917 Rev 5 1/188 www.st.com 1 Contents ST10F272B/ST10F272E Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.2 Special characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2 Pin data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Internal Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.2 Modules structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.3 Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4 Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.5 2/188 5.2.1 5.4.1 Flash control register 0 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4.2 Flash control register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4.3 Flash control register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.4 Flash control register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.5 Flash data register 0 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.6 Flash data register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4.7 Flash data register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4.8 Flash data register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4.9 Flash address register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.10 Flash address register high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.11 Flash error register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.5.1 Protection registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.5.2 Flash non volatile write protection I register . . . . . . . . . . . . . . . . . . . . . 39 5.5.3 Flash non volatile access protection register 0 . . . . . . . . . . . . . . . . . . . 40 5.5.4 Flash non volatile access protection register 1 low . . . . . . . . . . . . . . . . 40 Doc ID 11917 Rev 5 ST10F272B/ST10F272E 6 7 Contents 5.5.5 Flash non volatile access protection register 1 high . . . . . . . . . . . . . . . 41 5.5.6 XBus flash volatile temporary access unprotection register (XFVTAUR0) 41 5.5.7 Access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.5.8 Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.5.9 Temporary unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.6 Write operation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.7 Write operation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1 Selection among user-code, standard or selective bootstrap . . . . . . . . . 48 6.2 Standard bootstrap loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3 Alternate and selective boot mode (ABM and SBM) . . . . . . . . . . . . . . . . 49 6.3.1 Activation of the ABM and SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3.2 User mode signature integrity check . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3.3 Selective boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.1 Multiplier-accumulator unit (MAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.2 Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.3 MAC co-processor specific instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8 External bus controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9 Interrupt system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9.1 X-Peripheral interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.2 Exception and error traps list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10 Capture / compare (CAPCOM) units . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11 General purpose timer unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.1 GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.2 GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 12 PWM modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 13 Parallel ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Doc ID 11917 Rev 5 3/188 Contents ST10F272B/ST10F272E 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 13.2 I/O’s special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 13.3 13.2.1 Open drain mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 13.2.2 Input threshold control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Alternate port functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 14 A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 15 Serial channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 15.1 Asynchronous / synchronous serial interfaces . . . . . . . . . . . . . . . . . . . . . 74 15.2 ASCx in asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 15.3 ASCx in synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 15.4 High speed synchronous serial interfaces . . . . . . . . . . . . . . . . . . . . . . . . 76 16 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 17 CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 17.1 Configuration support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 17.2 CAN bus configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 18 Real time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 19 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 20 System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 21 4/188 20.1 Input filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 20.2 Asynchronous reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 20.3 Synchronous reset (warm reset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 20.4 Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 20.5 Watchdog timer reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 20.6 Bidirectional reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 20.7 Reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 20.8 Reset application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 20.9 Reset summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Power reduction modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Contents 21.1 Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 21.2 Power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 21.3 21.2.1 Protected power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 21.2.2 Interruptible power down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 21.3.1 Entering stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 21.3.2 Exiting stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 21.3.3 Real time clock and stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 21.3.4 Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 22 Programmable output clock divider . . . . . . . . . . . . . . . . . . . . . . . . . . 115 23 Register set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 24 23.1 Special function registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 23.2 X-registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 23.3 Flash registers ordered by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 23.4 Identification registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 24.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 24.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 24.3 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 24.4 Parameter interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 24.5 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 24.6 Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 24.7 A/D converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 24.8 24.7.1 Conversion timing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 24.7.2 A/D conversion accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 24.7.3 Total unadjusted error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 24.7.4 Analog reference pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 24.8.1 Test waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 24.8.2 Definition of internal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 24.8.3 Clock generation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 24.8.4 Prescaler operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 24.8.5 Direct drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Doc ID 11917 Rev 5 5/188 Contents ST10F272B/ST10F272E 24.8.6 Oscillator watchdog (OWD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 24.8.7 Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 24.8.8 Voltage Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 24.8.9 PLL Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 24.8.10 PLL lock / unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 24.8.11 Main oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 24.8.12 32 kHz oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 24.8.13 External clock drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 24.8.14 Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 24.8.15 External memory bus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 24.8.16 Multiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 24.8.17 Demultiplexed bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 24.8.18 CLKOUT and READY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 24.8.19 External bus arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 24.8.20 High-speed synchronous serial interface (SSC) timing . . . . . . . . . . . . 180 25 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 26 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 27 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Summary of IFLASH address range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Address space reserved to the Flash module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Flash modules sectorization (Read operations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Flash modules sectorization (Write operations or with ROMS1=’1’ or BootStrap mode) . . 29 Control register interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Flash control register 0 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Flash control register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Flash control register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Flash control register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Banks (BxS) and sectors (BxFy) status bits meaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Flash data register 0 low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Flash data register 0 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Flash data register 1 low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Flash data register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Flash address register low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Flash address register high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Flash error register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Flash non volatile write protection I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Flash non volatile access protection register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Flash non volatile access protection register 1 low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Flash non volatile access protection register 1 high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 XBus flash volatile temporary access unprotection register . . . . . . . . . . . . . . . . . . . . . . . . 41 Summary of access protection level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Flash write operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ST10F272 boot mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Standard instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 MAC instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 X-Interrupt detailed mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Trap priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Compare modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 CAPCOM timer input frequencies, resolutions and periods at 40 MHz . . . . . . . . . . . . . . . 62 CAPCOM timer input frequencies, resolutions and periods at 64 MHz . . . . . . . . . . . . . . . 62 GPT1 timer input frequencies, resolutions and periods at 40 MHz. . . . . . . . . . . . . . . . . . . 63 GPT1 timer input frequencies, resolutions and periods at 64 MHz. . . . . . . . . . . . . . . . . . . 64 GPT2 timer input frequencies, resolutions and periods at 40 MHz. . . . . . . . . . . . . . . . . . . 65 GPT2 timer input frequencies, resolutions and periods at 64 MHz. . . . . . . . . . . . . . . . . . . 65 PWM unit frequencies and resolutions at 40 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 67 PWM unit frequencies and resolutions at 64 MHz CPU clock . . . . . . . . . . . . . . . . . . . . . . 68 ASC asynchronous baud rates by reload value and deviation errors (fCPU = 40 MHz) . . 74 ASC asynchronous baud rates by reload value and deviation errors (fCPU = 64 MHz) . . 75 ASC synchronous baud rates by reload value and deviation errors (fCPU = 40 MHz) . . . 75 ASC synchronous baud rates by reload value and deviation errors (fCPU = 64 MHz) . . . 76 Synchronous baud rate and reload values (fCPU = 40 MHz). . . . . . . . . . . . . . . . . . . . . . . 77 Synchronous baud rate and reload values (fCPU = 64 MHz). . . . . . . . . . . . . . . . . . . . . . . 77 WDTREL reload value (fCPU = 40 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 WDTREL reload value (fCPU = 64 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Doc ID 11917 Rev 5 7/188 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. 8/188 ST10F272B/ST10F272E Reset event definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Reset event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 PORT0 latched configuration for the different reset events . . . . . . . . . . . . . . . . . . . . . . . 108 Power reduction modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 List of special function registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 List of XBus registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 List of flash registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 IDMANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 IDCHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 IDMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 IDPROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Flash data retention characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 A/D converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 A/D converter programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 On-chip clock generator selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Internal PLL divider mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 PLL characteristics (VDD = 5V ± 10%, VSS = 0V, TA = –40 to +125°C) . . . . . . . . . . . . . . 159 Main oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Main oscillator negative resistance (module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 32kHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Minimum values of negative resistance (module) for 32kHz oscillator . . . . . . . . . . . . . . . 161 External clock drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Memory cycle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Multiplexed bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Demultiplexed bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 CLKOUT and READY timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 External bus arbitration timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 SSC master mode timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 SSC slave mode timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Doc ID 11917 Rev 5 ST10F272B/ST10F272E List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Logic symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 ST10F272 on-chip memory mapping (ROMEN=1 / XADRS = 800Bh - Reset value). . . . . 27 Flash structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CPU block diagram (MAC Unit not included) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 MAC unit architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 X-Interrupt basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Block diagram of GPT1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Block diagram of GPT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Block diagram of PWM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Connection to single CAN bus via separate CAN transceivers . . . . . . . . . . . . . . . . . . . . . 80 Connection to single CAN bus via common CAN transceivers. . . . . . . . . . . . . . . . . . . . . . 80 Connection to two different CAN buses (e.g. for gateway application). . . . . . . . . . . . . . . . 81 Connection to one CAN bus with internal Parallel Mode enabled . . . . . . . . . . . . . . . . . . . 81 Asynchronous power-on RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Asynchronous power-on RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Asynchronous hardware RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Asynchronous hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Synchronous short / long hardware RESET (EA = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Synchronous short / long hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Synchronous long hardware RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Synchronous long hardware RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SW / WDT unidirectional RESET (EA = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 SW / WDT unidirectional RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SW / WDT bidirectional RESET (EA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 SW / WDT bidirectional RESET (EA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 SW / WDT bidirectional RESET (EA=0) followed by a HW RESET . . . . . . . . . . . . . . . . . 102 Minimum external reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 System reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Internal (simplified) reset circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Example of software or watchdog bidirectional reset (EA = 1) . . . . . . . . . . . . . . . . . . . . . 105 Example of software or watchdog bidirectional reset (EA = 0) . . . . . . . . . . . . . . . . . . . . . 106 PORT0 bits latched into the different registers after reset . . . . . . . . . . . . . . . . . . . . . . . . 109 External RC circuitry on RPD pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Port2 test mode structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Supply current versus the operating frequency (RUN and IDLE modes) . . . . . . . . . . . . . 138 A/D conversion characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 A/D converter input pins scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Charge sharing timing diagram during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Anti-aliasing filter and conversion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Input / output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Float waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Generation mechanisms for the CPU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 ST10F272 PLL jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Crystal oscillator and resonator connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 32kHz crystal oscillator connection diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 External clock drive XTAL1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Doc ID 11917 Rev 5 9/188 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. 10/188 ST10F272B/ST10F272E External memory cycle: Multiplexed bus, with/without read/write delay, normal ALE. . . . 166 External memory cycle: Multiplexed bus, with/without read/write delay, extended ALE. . 167 External memory cycle: Multiplexed bus, with/without r/w delay, normal ALE, r/w CS. . . 168 External memory cycle: Multiplexed bus, with/without r/w delay, extended ALE, r/w CS . 169 External memory cycle: Demultiplexed bus, with/without r/w delay, normal ALE . . . . . . . 172 Exteral memory cycle: Demultiplexed bus, with/without r/w delay, extended ALE . . . . . . 173 External memory cycle: Demultipl. bus, with/without r/w delay, normal ALE, r/w CS . . . . 174 External memory cycle: Demultiplexed bus, without r/w delay, extended ALE, r/w CS . . 175 CLKOUT and READY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 External bus arbitration (releasing the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 External bus arbitration (regaining the bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 SSC master timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 SSC slave timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 PQFP144 mechanical data and package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 LQFP144 mechanical data and package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Doc ID 11917 Rev 5 ST10F272B/ST10F272E 1 Introduction 1.1 Description Introduction The ST10F272B / E device is a STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers. The ST10F272B / E combines high CPU performance (up to 20 million instructions per second) with high peripheral functionality and enhanced I/O capabilities. It also provides onchip high-speed single voltage Flash memory, on-chip high-speed RAM, and clock generation via PLL. The ST10F272B / E is processed in 0.18mm CMOS technology.The part is supplied with a single 5 V supply and I/Os work at 5 V. 1.2 Special characteristics The ST10F272B and ST10F272E devices are derivatives of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers. These two derivatives slightly differ on the available RAM size and Analog Channel Input number. These points will be highlighted in the corresponding chapters. For all information that is common to the 2 derivatives, the generic ST10F272 name is used. The ST10F272 combines high CPU performance (up to 32 million instructions per second) with high peripheral functionality and enhanced I/O-capabilities. It also provides on-chip high-speed single voltage Flash memory, on-chip high-speed RAM, and clock generation via PLL. ST10F272 is processed in 0.18mm CMOS technology. The MCU core and the logic is supplied with a 5V to 1.8V on-chip voltage regulator. The part is supplied with a single 5V supply and I/Os work at 5V. The device is upward compatible with the ST10F269 device, with the following set of differences: Flash control interface is now based on STMicroelectronics third generation of stand-alone Flash memories (M29F400 series), with an embedded Program/Erase Controller. This completely frees up the CPU during programming or erasing the Flash. Only one supply pin (ex DC1 in ST10F269, renamed into V18) on the QFP144 package is used for decoupling the internally generated 1.8V core logic supply. Do not connect this pin to 5.0V external supply. Instead, this pin should be connected to a decoupling capacitor (ceramic type, typical value 10nF, maximum value 100nF). The AC and DC parameters are modified due to a difference in the maximum CPU frequency. A new VDD pin replaces DC2 of ST10F269. EA pin assumes a new alternate functionality: it is also used to provide a dedicated power supply (see VSTBY) to maintain biased a portion of the XRAM (16Kbytes) when the main Power Supply of the device (VDD and consequently the internally generated V18) is turned off for low power mode, allowing data retention. VSTBY voltage shall be in the range 4.5-5.5 Volt, and a dedicated embedded low power voltage regulator is in charge to provide the Doc ID 11917 Rev 5 11/188 Introduction ST10F272B/ST10F272E 1.8V for the RAM, the low-voltage section of the 32kHz oscillator and the Real Time Clock module when not disabled. It is allowed to exceed the upper limit up to 6V for a very short period of time during the global life of the device, and exceed the lower limit down to 4V when RTC and 32kHz on-chip oscillator are not used. A second SSC mapped on the XBUS is added (SSC of ST10F269 becomes here SSC0, while the new one is referred as XSSC or simply SSC1). Note that some restrictions and functional differences due to the XBUS peculiarities are present between the classic SSC, and the new XSSC. A second ASC mapped on the XBUS is added (ASC0 of ST10F269 remains ASC0, while the new one is referred as XASC or simply as ASC1). Note that some restrictions and functional differences due to the XBUS peculiarities are present between the classic ASC, and the new XASC. A second PWM mapped on the XBUS is added (PWM of ST10F269 becomes here PWM0, while the new one is referred as XPWM or simply as PWM1). Note that some restrictions and functional differences due to the XBUS peculiarities are present between the classic PWM, and the new XPWM. An I2C interface on the XBUS is added (see X-I2C or simply I2C interface). CLKOUT function can output either the CPU clock (like in ST10F269) or a software programmable prescaled value of the CPU clock. On-chip RAM memory has been increased (Flash size remained the same). PLL multiplication factors have been adapted to new frequency range. A/D Converter is not fully compatible versus ST10F269 (timing and programming model). Formula for the convertion time is still valid, while the sampling phase programming model is different. Besides, additional 8 channels are available on P1L pins as alternate function: the accuracy reachable with these extra channels is reduced with respect to the standard Port5 channels. External Memory bus is affected by limitations on maximum speed and maximum capacitance load: ST10F272 is not able to address an external memory at 64MHz with 0 wait states. XPERCON register bit mapping modified according to new peripherals implementation (not fully compatible with ST10F269). Bondout chip for emulation (ST10R201) cannot achieve more than 50MHz at room temperature (so no real time emulation possible at maximum speed). Input section characteristics are different. The threshold programmability is extended to all port pins (additional XPICON register); it is possible to select standard TTL (with up to 400mV of hysteresis) and standard CMOS (with up to 750mV of hysteresis). Output transition is not programmable. CAN module is enhanced: ST10F272 implements two C-CAN modules, so the programming model is slightly different. Besides, the possibility to map in parallel the two CAN modules is added (on P4.5/P4.6). On-chip main oscillator input frequency range has been reshaped, reducing it from 1-25MHz down to 4-8MHz. This is a low power oscillator amplifier, that allows a power consumption reduction when Real Time Clock is running in Power Down mode, using as reference the on-chip main oscillator clock. When this on-chip amplifier is used as reference for Real Time 12/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Introduction Clock module, the Power-down consumption is dominated by the consumption of the oscillator amplifier itself. A second on-chip oscillator amplifier circuit (32kHz) is implemented for low power modes: it can be used to provide the reference to the Real Time Clock counter (either in Power Down or Stand-by mode). Pin XTAL3 and XTAL4 replace a couple of VDD/VSS pins of ST10F269. Possibility to re-program internal XBUS chip select window characteristics (XRAM2 window) is added. Doc ID 11917 Rev 5 13/188 Introduction Figure 1. ST10F272B/ST10F272E Logic symbol 9 9''966 ;7$/ ;7$/ ;7$/ ;7$/ 567,1 567287 9$5() 9$*1' 10, ($967%< 5($'< $/( 5' :5:5/ 3RUW ELW 67) 3RUW ELW 3RUW ELW 3RUW ELW 3RUW ELW 3RUW ELW 3RUW ELW 3RUW ELW 3RUW ELW 53' *$3*5, 14/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Pin data Pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ST10F272 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P0H.0 / AD8 P0L.7 / AD7 P0L.6 / AD6 P0L.5 / AD5 P0L.4 / AD4 P0L.3 / AD3 P0L.2 / AD2 P0L.1 / AD1 P0L.0 / AD0 EA / VSTBY ALE READY WR/WRL RD VSS VDD P4.7 / A23 / CAN2_TxD / SDA P4.6 / A22 / CAN1_TxD / CAN2_TxD P4.5 / A21 / CAN1_RxD / CAN2_RxD P4.4 / A20 / CAN2_RxD / SCL P4.3 / A19 P4.2 / A18 P4.1 / A17 P4.0 / A16 RPD VSS VDD P3.15 / CLKOUT P3.13 / SCLK0 P3.12 / BHE / WRH P3.11 / RxD0 P3.10 / TxD0 P3.9 / MTSR0 P3.8 / MRST0 P3.7 / T2IN P3.6 / T3IN 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 P6.0 / CS0 P6.1 / CS1 P6.2 / CS2 P6.3 / CS3 P6.4 / CS4 P6.5 / HOLD / SCLK1 P6.6 / HLDA / MTSR1 P6.7 / BREQ / MRST1 P8.0 / XPOUT0 / CC16IO P8.1 / XPOUT1 / CC17IO P8.2 / XPOUT2 / CC18IO P8.3 / XPOUT3 / CC19IO P8.4 / CC20IO P8.5 / CC21IO P8.6 / RxD1 / CC22IO P8.7 / TxD1 / CC23IO VDD VSS P7.0 / POUT0 P7.1 / POUT1 P7.2 / POUT2 P7.3 / POUT3 P7.4 / CC28IO P7.5 / CC29IO P7.6 / CC30IO P7.7 / CC31IO P5.0 / AN0 P5.1 / AN1 P5.2 / AN2 P5.3 / AN3 P5.4 / AN4 P5.5 / AN5 P5.6 / AN6 P5.7 / AN7 P5.8 / AN8 P5.9 / AN9 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 XTAL4 XTAL3 NMI RSTOUT RSTIN VSS XTAL1 XTAL2 VDD P1H.7 / A15 / CC27I P1H.6 / A14 / CC26I P1H.5 / A13 / CC25I P1H.4 / A12 / CC24I P1H.3 / A11 P1H.2 / A10 P1H.1 / A9 P1H.0 / A8 VSS VDD P1L.7 / A7 / AN23* (*) P1L.6 / A6 / AN22* *(*) P1L.5 / A5 / AN21* (*) P1L.4 / A4 / AN20* (*) P1L.3 / A3 / AN19* *(*) P1L.2 / A2 / AN18* *(*) P1L.1 / A1 / AN17* (*) P1L.0 / A0 / AN16* (*) P0H.7 / AD15 P0H.6 / AD14 P0H.5 / AD13 P0H.4 / AD12 P0H.3 / AD11 P0H.2 / AD10 P0H.1 / AD9 VSS VDD Figure 2. VAREF VAGND P5.10 / AN10 / T6EUD P5.11 / AN11 / T5EUD P5.12 / AN12 / T6IN P5.13 / AN13 / T5IN P5.14 / AN14 / T4EUD P5.15 / AN15 / T2EUD VSS VDD P2.0 / CC0IO P2.1 / CC1IO P2.2 / CC2IO P2.3 / CC3IO P2.4 / CC4IO P2.5 / CC5IO P2.6 / CC6IO P2.7 / CC7IO VSS V18 P2.8 / CC8IO / EX0IN P2.9 / CC9IO / EX1IN P2.10 / CC10IO / EX2IN P2.11 / CC11IO / EX3IN P2.12 / CC12IO / EX4IN P2.13 / CC13IO / EX5IN P2.14 / CC14IO / EX6IN P2.15 / CC15IO / EX7IN / T7IN P3.0 / T0IN P3.1 / T6OUT P3.2 / CAPIN P3.3 / T3OUT P3.4 / T3EUD P3.5 / T4IN VSS VDD 2 Pin data *: AN16 to AN23 are only available for the ST10F272E Doc ID 11917 Rev 5 15/188 Pin data Table 1. Symbol ST10F272B/ST10F272E Pin description Pin 1-8 P6.0 - P6.7 Type I/O Function 8-bit bidirectional I/O port, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 6 outputs can be configured as push-pull or open drain drivers. The input threshold of Port 6 is selectable (TTL or CMOS). The following Port 6 pins have alternate functions: 1 O P6.0 CS0 Chip select 0 output ... ... ... ... ... 5 O P6.4 CS4 Chip select 4 output I P6.5 HOLD External master hold request input SCLK1 SSC1: master clock output / slave clock input HLDA Hold acknowledge output MTSR1 SSC1: master-transmitter / slave-receiver O/I BREQ Bus request output MRST1 SSC1: master-receiver / slave-transmitter I/O 6 I/O O P6.6 7 I/O O P6.7 8 I/O 9-16 I/O 8-bit bidirectional I/O port, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 8 outputs can be configured as push-pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or CMOS). The following Port 8 pins have alternate functions: I/O P8.0 CC16IO CAPCOM2: CC16 capture input / compare output XPWM0 PWM1: channel 0 output 9 O ... P8.0 - P8.7 ... ... ... ... I/O P8.3 CC19IO CAPCOM2: CC19 capture input / compare output XPWM0 PWM1: channel 3 output 12 O 13 I/O P8.4 CC20IO CAPCOM2: CC20 capture input / compare output 14 I/O P8.5 CC21IO CAPCOM2: CC21 capture input / compare output I/O P8.6 CC22IO CAPCOM2: CC22 capture input / compare output RxD1 ASC1: Data input (Asynchronous) or I/O (Synchronous) CC23IO CAPCOM2: CC23 capture input / compare output TxD1 ASC1: Clock / Data output (Asynchronous/Synchronous) 15 I/O I/O P8.7 16 O 16/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 1. Pin description (continued) Symbol P7.0 - P7.7 P5.0 - P5.9 P5.10 - P5.15 P2.0 - P2.7 P2.8 - P2.15 Pin data Pin Type Function 19-26 I/O 8-bit bidirectional I/O port, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 7 outputs can be configured as push-pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or CMOS). The following Port 7 pins have alternate functions: 19 O P7.0 POUT0 PWM0: channel 0 output ... ... ... ... ... 22 O P7.3 POUT3 PWM0: channel 3 output 23 I/O P7.4 CC28IO CAPCOM2: CC28 capture input / compare output ... ... ... ... ... 26 I/O P7.7 CC31IO CAPCOM2: CC31 capture input / compare output 27-36 39-44 I I 16-bit input-only port with Schmitt-Trigger characteristics. The pins of Port 5 can be the analog input channels (up to 16) for the A/D converter, where P5.x equals ANx (Analog input channel x), or they are timer inputs. The input threshold of Port 5 is selectable (TTL or CMOS). The following Port 5 pins have alternate functions: 39 I P5.10 T6EUD GPT2: timer T6 external up/down control input 40 I P5.11 T5EUD GPT2: timer T5 external up/down control input 41 I P5.12 T6IN GPT2: timer T6 count input 42 I P5.13 T5IN GPT2: timer T5 count input 43 I P5.14 T4EUD GPT1: timer T4 external up/down control input 44 I P5.15 T2EUD GPT1: timer T2 external up/down control input 47-54 57-64 I/O 16-bit bidirectional I/O port, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 2 outputs can be configured as push-pull or open drain drivers. The input threshold of Port 2 is selectable (TTL or CMOS). The following Port 2 pins have alternate functions: 47 I/O P2.0 CC0IO CAPCOM: CC0 capture input/compare output ... ... ... ... ... 54 I/O P2.7 CC7IO CAPCOM: CC7 capture input/compare output 57 I/O P2.8 CC8IO CAPCOM: CC8 capture input/compare output EX0IN Fast external interrupt 0 input I ... ... ... ... ... 64 I/O P2.15 CC15IO CAPCOM: CC15 capture input/compare output I EX7IN Fast external interrupt 7 input I T7IN CAPCOM2: timer T7 count input Doc ID 11917 Rev 5 17/188 Pin data Table 1. ST10F272B/ST10F272E Pin description (continued) Symbol P3.0 - P3.5 P3.6 - P3.13, P3.15 18/188 Pin Type Function 65-70, 73-80, 81 I/O I/O I/O 15-bit (P3.14 is missing) bidirectional I/O port, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 3 outputs can be configured as pushpull or open drain drivers. The input threshold of Port 3 is selectable (TTL or CMOS). The following Port 3 pins have alternate functions: 65 I P3.0 T0IN CAPCOM1: timer T0 count input 66 O P3.1 T6OUT GPT2: timer T6 toggle latch output 67 I P3.2 CAPIN GPT2: register CAPREL capture input 68 O P3.3 T3OUT GPT1: timer T3 toggle latch output 69 I P3.4 T3EUD GPT1: timer T3 external up/down control input 70 I P3.5 T4IN GPT1; timer T4 input for count/gate/reload/capture 73 I P3.6 T3IN GPT1: timer T3 count/gate input 74 I P3.7 T2IN GPT1: timer T2 input for count/gate/reload / capture 75 I/O P3.8 MRST0 SSC0: master-receiver/slave-transmitter I/O 76 I/O P3.9 MTSR0 SSC0: master-transmitter/slave-receiver O/I 77 O P3.10 TxD0 ASC0: clock / data output (asynchronous/synchronous) 78 I/O P3.11 RxD0 ASC0: data input (asynchronous) or I/O (synchronous) 79 O P3.12 BHE External memory high byte enable signal WRH External memory high byte write strobe 80 I/O P3.13 SCLK0 SSC0: master clock output / slave clock input 81 O P3.15 CLKOUT System clock output (programmable divider on CPU clock) Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 1. Symbol Pin data Pin description (continued) Pin Type Function 85-92 I/O Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. The input threshold is selectable (TTL or CMOS). Port 4.4, 4.5, 4.6 and 4.7 outputs can be configured as push-pull or open drain drivers. In case of an external bus configuration, Port 4 can be used to output the segment address lines: 85 O P4.0 A16 Segment address line 86 O P4.1 A17 Segment address line 87 O P4.2 A18 Segment address line 88 O P4.3 A19 Segment address line A20 Segment address line CAN2_RxD CAN2: receive data input I/O SCL I2C Interface: serial clock O A21 Segment address line CAN1_RxD CAN1: receive data input I CAN2_RxD CAN2: receive data input O A22 Segment address line CAN1_TxD CAN1: transmit data output O CAN2_TxD CAN2: transmit data output O A23 Most significant segment address line CAN2_TxD CAN2: transmit data output SDA I2C Interface: serial data O P4.0 –P4.7 89 90 91 92 I I O O I/O RD WR/WRL 95 96 P4.4 P4.5 P4.6 P4.7 O External memory read strobe. RD is activated for every external instruction or data read access. O External memory write strobe. In WR-mode this pin is activated for every external data write access. In WRL mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in the SYSCON register for mode selection. READY/ READY 97 I Ready input. The active level is programmable. When the ready function is enabled, the selected inactive level at this pin, during an external memory access, will force the insertion of waitstate cycles until the pin returns to the selected active level. ALE 98 O Address latch enable output. In case of use of external addressing or of multiplexed mode, this signal is the latch command of the address lines. Doc ID 11917 Rev 5 19/188 Pin data Table 1. Symbol EA / VSTBY ST10F272B/ST10F272E Pin description (continued) Pin 99 Type Function I External access enable pin. A low level applied to this pin during and after Reset forces the ST10F272 to start the program from the external memory space. A high level forces ST10F272 to start in the internal memory space. This pin is also used (when Stand-by mode is entered, that is ST10F272 under reset and main VDD turned off) to bias the 32 kHz oscillator amplifier circuit and to provide a reference voltage for the lowpower embedded voltage regulator which generates the internal 1.8V supply for the RTC module (when not disabled) and to retain data inside the Stand-by portion of the XRAM (16Kbyte). It can range from 4.5 to 5.5V (6V for a reduced amount of time during the device life, 4.0V when RTC and 32 kHz on-chip oscillator amplifier are turned off). In running mode, this pin can be tied low during reset without affecting 32 kHz oscillator, RTC and XRAM activities, since the presence of a stable VDD guarantees the proper biasing of all those modules. Two 8-bit bidirectional I/O ports P0L and P0H, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. The input threshold of Port 0 is selectable (TTL or CMOS). In case of an external bus configuration, PORT0 serves as the address (A) and as the address / data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes P0L.0 -P0L.7, 100-107, P0H.0 108, P0H.1 111-117 P0H.7 I/O Data path width 8-bit 16-bi P0L.0 – P0L.7: D0 – D7 D0 - D7 P0H.0 – P0H.7: I/O D8 - D15 Multiplexed bus modes 20/188 Data path width 8-bit 16-bi P0L.0 – P0L.7: AD0 – AD7 AD0 - AD7 P0H.0 – P0H.7: A8 – A15 AD8 - AD15 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 1. Pin data Pin description (continued) Symbol Pin Type Function 118-125 128-135 I/O Two 8-bit bidirectional I/O ports P1L and P1H, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes: if at least BUSCONx is configured such the demultiplexed mode is selected, the pis of PORT1 are not available for general purpose I/O function. The input threshold of Port 1 is selectable (TTL or CMOS). Only for the ST10F272E – The pins of P1L also serve as the additional (up to 8) analog input channels for the A/D converter, where P1L.x equals ANy (Analog input channel y, where y = x + 16). This additional function have higher priority on demultiplexed bus function. The following PORT1 pins have alternate functions: 132 I P1H.4 CC24IO CAPCOM2: CC24 capture input 133 I P1H.5 CC25IO CAPCOM2: CC25 capture input 134 I P1H.6 CC26IO CAPCOM2: CC26 capture input 135 I P1H.7 CC27IO CAPCOM2: CC27 capture input XTAL1 138 I XTAL1 Main oscillator amplifier circuit and/or external clock input. XTAL2 137 O XTAL2 Main oscillator amplifier circuit output. P1L.0 - P1L.7 P1H.0 P1H.7 To clock the device from an external source, drive XTAL1 while leaving XTAL2 unconnected. Minimum and maximum high / low and rise / fall times specified in the AC Characteristics must be observed. XTAL3 143 I XTAL3 32 kHz oscillator amplifier circuit input XTAL4 144 O XTAL4 32 kHz oscillator amplifier circuit output When 32 kHz oscillator amplifier is not used, to avoid spurious consumption, XTAL3 shall be tied to ground while XTAL4 shall be left open. Besides, bit OFF32 in RTCCON register shall be set. 32 kHz oscillator can only be driven by an external crystal, and not by a different clock source. RSTIN 140 I Reset Input with CMOS Schmitt-Trigger characteristics. A low level at this pin for a specified duration while the oscillator is running resets the ST10F272. An internal pull-up resistor permits power-on reset using only a capacitor connected to VSS. In bidirectional reset mode (enabled by setting bit BDRSTEN in SYSCON register), the RSTIN line is pulled low for the duration of the internal reset sequence. RSTOUT 141 O Internal Reset Indication Output. This pin is driven to a low level during hardware, software or watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed. NMI 142 I Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. If bit PWDCFG = ‘0’ in SYSCON register, when the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the ST10F272 to go into power down mode. If NMI is high and PWDCFG =’0’, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally. VAREF 37 - A/D converter reference voltage and analog supply VAGND 38 - A/D converter reference and analog ground Doc ID 11917 Rev 5 21/188 Pin data Table 1. ST10F272B/ST10F272E Pin description (continued) Symbol Pin Type Function RPD 84 - Timing pin for the return from interruptible power down mode and synchronous / asynchronous reset selection. VDD 17, 46, 72,82,93 , 109, 126, 136 - Digital supply voltage = + 5V during normal operation, idle and power down modes. It can be turned off when Stand-by RAM mode is selected. VSS 18,45, 55,71, 83,94, 110, 127, 139 - Digital ground V18 56 - 1.8V decoupling pin: a decoupling capacitor (typical value of 10nF, max 100nF) must be connected between this pin and nearest VSS pin. 22/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Functional description The architecture of the ST10F272 combines advantages of both RISC and CISC processors and an advanced peripheral subsystem. The block diagram gives an overview of the different on-chip components and the high bandwidth internal bus structure of the ST10F272. Figure 3. Block diagram  ,)/$6+ . ;5$0  . 3(&      N+] 2VFLOODWRU ,QWHUUXSW&RQWUROOHU ;$6& 3// ;66& 99 9ROWDJH 5HJXODWRU 3RUW  &$3&20 %5* &$3&20 66& %5* 3:0 $6& ELW$'& 3RUW  *37*37 ;&$1 ([WHUQDO%XV &RQWUROOHU 3RUW 3RUW 3RUW  2VFLOODWRU ;3:0 ;,&  3(& 3RUW 3RUW   3RUW   ,5$0 .  ;57&   &38&RUHDQG0$&8QLW :DWFKGRJ  ;&$1   ;5$0  .. 67%< 3RUW 3 Functional description  *$3*5, Doc ID 11917 Rev 5 23/188 Memory organization 4 ST10F272B/ST10F272E Memory organization The memory space of the ST10F272 is configured in a unified memory architecture. Code memory, data memory, registers and I/O ports are organized within the same linear address space of 16M Bytes. The entire memory space can be accessed Byte wise or Word wise. Particular portions of the on-chip memory have additionally been made directly bit addressable. IFLASH: 256K Bytes of on-chip Flash memory. It is divided in 8 blocks (B0F0...B0F7) that constitute the Bank 0. When Bootstrap mode is selected, the Test-Flash Block B0TF (8Kbyte) appears at address 00’0000h: refer to Section 5: Internal Flash memory for more details on memory mapping in boot mode. The summary of address range for IFLASH is the following: Table 2. Summary of IFLASH address range Blocks User Mode Size B0TF Not visible 8K B0F0 00’0000h - 00’1FFFh 8K B0F1 00’2000h - 00’3FFFh 8K B0F2 00’4000h - 00’5FFFh 8K B0F3 00’6000h - 00’7FFFh 8K B0F4 01’8000h - 01’FFFFh 32K B0F5 02’0000h - 02’FFFFh 64K B0F6 03’0000h - 03’FFFFh 64K B0F7 04’0000h - 04’FFFFh 64K IRAM: 2K Bytes of on-chip internal RAM (dual-port) is provided as a storage for data, system stack, general purpose register banks and code. A register bank is 16 Wordwide (R0 to R15) and / or Bytewide (RL0, RH0, …, RL7, RH7) general purpose registers group. XRAM: 8K/16K+2K Bytes of on-chip extension RAM (single port XRAM) is provided as a storage for data, user stack and code. The XRAM is divided into 2 areas, the first 2K Bytes named XRAM1 and the second 8K/16K Bytes named XRAM2, connected to the internal XBUS and are accessed like an external memory in 16-bit demultiplexed bus-mode without wait state or read/write delay (31.25ns access at 64MHz CPU clock). Byte and Word accesses are allowed. The XRAM1 address range is 00’E000h - 00’E7FFh if XPEN (bit 2 of SYSCON register), and XRAM1EN (bit 2 of XPERCON register) are set. If XRAM1EN or XPEN is cleared, then any access in the address range 00’E000h - 00’E7FFh will be directed to external memory interface, using the BUSCONx register corresponding to address matching ADDRSELx register. The XRAM2 address range is the one selected programming XADRS3 register, if XPEN (bit 2 of SYSCON register), and XRAM2EN (bit 3 of XPERCON register) are set. If bit XPEN is cleared, then any access in the address range programmed for XRAM2 will be directed to 24/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Memory organization external memory interface, using the BUSCONx register corresponding to address matching ADDRSELx register. After reset the XRAM2 is mapped from address 09’0000h. XRAM2 represents also the Stand-by RAM, which can be maintained biased through EA / VSTBY pin when main supply VDD is turned off. As the XRAM appears like external memory, it cannot be used as system stack or as register banks. The XRAM is not provided for single bit storage and therefore is not bit addressable. ST10F272B XRAM: 8K+2K Bytes of XRAM. The XRAM1 (2K Bytes) address range is 00’E000h - 00’E7FFh if enabled. The XRAM2 (8K Bytes) address range is after reset 09’0000h - 09’1FFFh and is mirrored every 16KByte boundary. ST10F272E XRAM: 16K+2K Bytes of XRAM The XRAM1 (2K Bytes) address range is 00’E000h - 00’E7FFh if enabled. The XRAM2 (16K Bytes) address range is after reset 09’0000h - 09’3FFFh and is mirrored every 16KByte boundary. SFR/ESFR: 1024 Bytes (2 x 512 Bytes) of address space is reserved for the special function register areas. SFRs are Wordwide registers which are used to control and to monitor the function of the different on-chip units. CAN1: Address range 00’EF00h - 00’EFFFh is reserved for the CAN1 Module access. The CAN1 is enabled by setting XPEN bit 2 of the SYSCON register and by setting CAN1EN bit 0 of the XPERCON register. Accesses to the CAN Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two wait states give an access time of 62.5ns at 64MHz CPU clock. No tri-state wait states are used. CAN2: Address range 00’EE00h - 00’EEFFh is reserved for the CAN2 Module access. The CAN2 is enabled by setting XPEN bit 2 of the SYSCON register and by setting CAN2EN bit 1 of the new XPERCON register. Accesses to the CAN Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two wait states give an access time of 62.5ns at 64MHz CPU clock. No tri-state wait states are used. If one or the two CAN modules are used, Port 4 cannot be programmed to output all 8 segment address lines. Thus, only 4 segment address lines can be used, reducing the external memory space to 5M Bytes (1M Byte per CS line). RTC: Address range 00’ED00h - 00’EDFFh is reserved for the RTC Module access. The RTC is enabled by setting XPEN bit 2 of the SYSCON register and bit 4 of the XPERCON register. Accesses to the RTC Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 62.5ns at 64MHz CPU clock. No tristate waitstate is used. PWM1: Address range 00’EC00h - 00’ECFFh is reserved for the PWM1 Module access. The PWM1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 6 of the XPERCON register. Accesses to the PWM1 Module use demultiplexed addresses and a 16bit data bus (only word accesses are possible). Two waitstates give an access time of 62.5ns at 64MHz CPU clock. No tristate waitstate is used. Only word access is allowed. Doc ID 11917 Rev 5 25/188 Memory organization ST10F272B/ST10F272E ASC1: Address range 00’E900h - 00’E9FFh is reserved for the ASC1 Module access. The ASC1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 7 of the XPERCON register. Accesses to the ASC1 Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 62.5 ns at 64MHz CPU clock. No tristate waitstate is used. SSC1: Address range 00’E800h - 00’E8FFh is reserved for the SSC1 Module access. The SSC1 is enabled by setting XPEN bit 2 of the SYSCON register and bit 8 of the XPERCON register. Accesses to the SSC1 Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 62.5ns at 64MHz CPU clock. No tristate waitstate is used. I2C: Address range 00’EA00h - 00’EAFFh is reserved for the I2C Module access. The I2C is enabled by setting XPEN bit 2 of the SYSCON register and bit 9 of the XPERCON register. Accesses to the I2C Module use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 62.5ns at 64MHz CPU clock. No tristate waitstate is used. X-Miscellaneous: Address range 00’EB00h - 00’EBFFh is reserved for the access to a set of XBUS additional features. They are enabled by setting XPEN bit 2 of the SYSCON register and bit 10 of the XPERCON register. Accesses to this additional features use demultiplexed addresses and a 16-bit data bus (only word accesses are possible). Two waitstates give an access time of 62.5ns at 64MHz CPU clock. No tristate waitstate is used. The following set of features are provided: ● CLKOUT programmable divider ● XBUS interrupt management registers ● ADC multiplexing on P1L register (only for ST10F272E) ● Port1L digital disable register for extra ADC channels ● CAN2 multiplexing on P4.5/P4.6 ● CAN1-2 main clock prescaler ● Main Voltage Regulator disable for power-down mode ● TTL / CMOS threshold selection for Port0, Port1, and Port5. In order to meet the needs of designs where more memory is required than is provided on chip, up to 16M Bytes of external memory can be connected to the microcontroller. Visibility of XBUS peripherals In order to keep the ST10F272 compatible with the ST10F168 / ST10F269, the XBUS peripherals can be selected to be visible on the external address / data bus. Different bits for X-peripheral enabling in XPERCON register must be set. If these bits are cleared before the global enabling with XPEN bit in SYSCON register, the corresponding address space, port pins and interrupts are not occupied by the peripherals, thus the peripheral is not visible and not available. Refer to Chapter 23: Register set on page 116. 26/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E ST10F272 on-chip memory mapping (ROMEN=1 / XADRS = 800Bh - Reset value) 6HJPHQW 3DJH 6HJPHQW ))))))  ))))   3DJH ([W0HPRU\  )))))  ) ())))  ( '))))  ' &))))  & %))))  % $))))  $ ))))   ))))  ([W0HPRU\    ))))    0%    6)5  ,5$0 . 5HVHUYHG . (6)5  )( )')) . 5HVHUYHG .    ) )))              ) ())) ( ()) (6)5  ;&$1 ;&$1 ;57& ;3:0 ;0LVFHOODQHRXV ;, & ;$6&         ;66& ) ))) ) ))) ) ()))    ;5$0 . ([W0HPRU\ .    5HVHUYHG ,5$0 ) )))  ;5$0 ;5$0 ;5$0  ( ')))    5HVHUYHG     5HVHUYHG     5HVHUYHG      )/$6+    )/$6+     )/$6+    )/$6+     ))))  ))))    ))))    ;5$0 ;5$0 ;5$0 ;5$0 ;5$0  ))))  6)5   ))))  )( )'))  ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0 ;5$0  ))))  ))))  ;5$0  ))))     ))))     ))))  5$06)5 .E\WH  ;$'56 %K . Figure 4. Memory organization ([W0HPRU\ $GGUHVV$UHDZKHUH;5$0 LVPLUURUHGHYHU\.E\WHV ERXQGDU\DIWHUUHVHW    ([W0HPRU\ )/$6+    )/$6+;5$00E\WH %LWDGGUHVVDEOH0HPRU\ & 'DWD3DJH 6HJPHQW .E\WH 7KHILUVW.RI)/$6+PD\EHUHPDSSHGIURPVHJPHQWWRVHJPHQWE\VHWWLQJ6@ WUDQVSDUHQW 3>@ WUDQVSDUHQW QRWW 3>@ QRWWUDQVSDUHQW QRWW QRWW QRWW 7&/ ,%86&6 ,QWHUQDO dPV )/$567 567 /DWFKLQJSRLQWRI3RUWIRU V\VWHPVWDUWXSFRQILJXUDWLRQ *$3*5, Doc ID 11917 Rev 5 87/188 System reset ST10F272B/ST10F272E Figure 17. Asynchronous power-on RESET (EA = 0) tPV IRUUHVRQDWRURVFLOODWLRQ3//VWDELOL]DWLRQ tPV IRUFU\VWDORVFLOODWLRQ3//VWDELOL]DWLRQ tPV IRURQFKLS95(*VWDELOL]DWLRQ 9'' 7&/ 9  ;7$/ 53' 567,1 tQV dQV 567) $IWHU)LOWHU 7&/ 3>@ WUDQVSDUHQW QRWW 3>@ WUDQVSDUHQW QRWW 3>@ QRWWUDQVSDUHQW QRWW 7&/ $/( 567 /DWFKLQJSRLQWRI3RUWIRU V\VWHPVWDUWXSFRQILJXUDWLRQ *$3*5, 1. 3 to 8 TLC depending on clock source selection. Hardware reset The asynchronous reset must be used to recover from catastrophic situations of the application. It may be triggered by the hardware of the application. Internal hardware logic and application circuitry are described in Section 20.7: Reset circuitry and Figure 29, Figure 30 and Figure 31. It occurs when RSTIN is low and RPD is detected (or becomes) low as well. 88/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset Figure 18. Asynchronous hardware RESET (EA = 1)  d7&/ 53' tQV dQV 567,1 tQV dQV 567) $IWHU)LOWHU 7&/ 3>@ QRWWUDQVSDUHQW WUDQVSDUHQW 3>@ QRWWUDQVSDUHQW WUDQVSDUHQW QRWW QRWWUDQVSDUHQW QRWW 3>@ QRWW QRWW 7&/ ,%86&6 LQWHUQDO dPV )/$567 567 /DWFKLQJSRLQWRI3RUWIRU V\VWHPVWDUWXSFRQILJXUDWLRQ *$3*5, 1. Longer than Port0 settling time + PLL synchronization (if needed, that is P0 (15:13) changed). 2. Longer than 500ns to take into account of Input Filter on RSTIN pin. Doc ID 11917 Rev 5 89/188 System reset ST10F272B/ST10F272E Figure 19. Asynchronous hardware RESET (EA = 0)  53' 7&/   tQV dQV 567,1 tQV dQV 567) $IWHU)LOWHU 3>@ 3>@ 7&/ QRWWUDQVSDUHQW WUDQVSDUHQW QRWW QRWWUDQVSDUHQW WUDQVSDUHQW QRWW QRWWUDQVSDUHQW QRWW 3>@ 7&/ $/( 567 /DWFKLQJSRLQWRI3RUWIRU V\VWHPVWDUWXSFRQILJXUDWLRQ *$3*5, 1. Longer than Port0 settling time + PLL synchronization (if needed, that is P0(15:13) changed) Longer than 500ns to take into account of Input Filter on RSTIN pin 2. 3 to 8 TCL depending on clock source selection. Exit from asynchronous reset state When the RSTIN pin is pulled high, the device restarts: as already mentioned, if internal FLASH is used, the restarting occurs after the embedded FLASH initialization routine is completed. The system configuration is latched from Port0: ALE, RD and WR/WRL pins are driven to their inactive level. The ST10F272 starts program execution from memory location 00'0000h in code segment 0. This starting location will typically point to the general initialization routine. Timing of asynchronous Hardware Reset sequence are summarized in Figure 18 and Figure 19. 20.3 Synchronous reset (warm reset) A synchronous reset is triggered when RSTIN pin is pulled low while RPD pin is at high level. In order to properly activate the internal reset logic of the device, the RSTIN pin must be held low, at least, during 4 TCL (2 periods of CPU clock): refer also to Section 20.1 for details on minimum reset pulse duration. The I/O pins are set to high impedance and RSTOUT pin is driven low. After RSTIN level is detected, a short duration of a maximum of 12 TCL (six periods of CPU clock) elapses, during which pending internal hold states are cancelled and the current internal access cycle if any is completed. External bus cycle is aborted. The internal pull-down of RSTIN pin is activated if bit BDRSTEN of SYSCON register was previously set by software. Note that this bit is always cleared on power-on or after a reset sequence. 90/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset Short and long synchronous reset Once the first maximum 16 TCL are elapsed (4+12TCL), the internal reset sequence starts. It is 1024 TCL cycles long: at the end of it, and after other 8TCL the level of RSTIN is sampled (after the filter, see RSTF in the drawings): if it is already at high level, only Short Reset is flagged (Refer to Section 19 for details on reset flags); if it is recognized still low, the Long reset is flagged as well. The major difference between Long and Short reset is that during the Long reset, also P0(15:13) become transparent, so it is possible to change the clock options. Warning: In case of a short pulse on RSTIN pin, and when Bidirectional reset is enabled, the RSTIN pin is held low by the internal circuitry. At the end of the 1024 TCL cycles, the RTSIN pin is released, but due to the presence of the input analog filter the internal input reset signal (RSTF in the drawings) is released later (from 50 to 500ns). This delay is in parallel with the additional 8 TCL, at the end of which the internal input reset line (RSTF) is sampled, to decide if the reset event is Short or Long. In particular: ● If 8 TCL > 500ns (FCPU < 8 MHz), the reset event is always recognized as Short ● If 8 TCL < 500ns (FCPU > 8 MHz), the reset event could be recognized either as Short or Long, depending on the real filter delay (between 50 and 500ns) and the CPU frequency (RSTF sampled High means Short reset, RSTF sampled Low means Long reset). Note that in case a Long Reset is recognized, once the 8 TCL are elapsed, the P0 (15:13) pins becomes transparent, so the system clock can be re-configured. The port returns not transparent 3-4TCL after the internal RSTF signal becomes high. The same behavior just described, occurs also when unidirectional reset is selected and RSTIN pin is held low till the end of the internal sequence (exactly 1024TCL + max 16 TCL) and released exactly at that time. Note: When running with CPU frequency lower than 40 MHz, the minimum valid reset pulse to be recognized by the CPU (4 TCL) could be longer than the minimum analog filter delay (50ns); so it might happen that a short reset pulse is not filtered by the analog input filter, but on the other hand it is not long enough to trigger a CPU reset (shorter than 4 TCL): this would generate a FLASH reset but not a system reset. In this condition, the FLASH answers always with FFFFh, which leads to an illegal opcode and consequently a trap event is generated. Exit from synchronous reset state The reset sequence is extended until RSTIN level becomes high. Besides, it is internally prolonged by the FLASH initialization when EA=1 (internal memory selected). Then, the code execution restarts. The system configuration is latched from Port0, and ALE, RD and WR/WRL pins are driven to their inactive level. The ST10F272 starts program execution from memory location 00'0000h in code segment 0. This starting location will typically point to the general initialization routine. Timing of synchronous reset sequence are summarized in Figure 20 and Figure 21 where a Short Reset event is shown, with particular highlighting on the fact that it can degenerate into Long Reset: the two figures show the behavior when booting from internal or external memory respectively. Figure 22 and Figure 23 reports the Doc ID 11917 Rev 5 91/188 System reset ST10F272B/ST10F272E timing of a typical synchronous Long Reset, again when booting from internal or external memory. Synchronous reset and RPD pin Whenever the RSTIN pin is pulled low (by external hardware or as a consequence of a Bidirectional reset), the RPD internal weak pull-down is activated. The external capacitance (if any) on RPD pin is slowly discharged through the internal weak pull-down. If the voltage level on RPD pin reaches the input low threshold (around 2.5V), the reset event becomes immediately asynchronous. In case of hardware reset (short or long) the situation goes immediately to the one illustrated in Figure 18. There is no effect if RPD comes again above the input threshold: the asynchronous reset is completed coherently. To grant the normal completion of a synchronous reset, the value of the capacitance shall be big enough to maintain the voltage on RPD pin sufficient high along the duration of the internal reset sequence. For a Software or Watchdog reset events, an active synchronous reset is completed regardless of the RPD status. It is important to highlight that the signal that makes RPD status transparent under reset is the internal RSTF (after the noise filter). 92/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset Figure 20. Synchronous short / long hardware RESET (EA = 1) d7&/ d7&/ 7&/  567,1 tQV dQV  tQV dQV tQV dQV d7&/ 567) $IWHU)LOWHU 3>@ 3>@ QRWWUDQVSDUHQW QRWW 3>@ WUDQVSDUHQW QRWW QRWWUDQVSDUHQW QRWW 7&/ ,%86&6 ,QWHUQDO dPV )/$567 7&/ 7&/ 567 $WWKLVWLPH567)LVVDPSOHG+,*+RU/2: VRLWLV6+257RU/21*UHVHW 567287 53'  P$'LVFKDUJH 953'!9$V\QFKURQRXV5HVHWQRWHQWHUHG *$3*5, 1. RSTIN assertion can be released there. Refer also to Section 21.1 for details on minimum pulse duration. 2. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5 V for 5 V operation), the asynchronous reset is then immediately entered. 3. 3. RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software. Bit BDRSTEN is cleared after reset. 4. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the internal filter (refer to Section 21.1). Doc ID 11917 Rev 5 93/188 System reset ST10F272B/ST10F272E Figure 21. Synchronous short / long hardware RESET (EA = 0) d7&/ d7&/ 567,1 7&/  tQV dQV  tQV dQV tQV dQV 567) $IWHU)LOWHU 3>@ QRWWUDQVSDUHQW 3>@ QRWW 3>@ WUDQVSDUHQW QRWW QRWWUDQVSDUHQW QRWW 7&/  7&/ $/( 7&/ 7&/ 567 $WWKLVWLPH567)LVVDPSOHG+,*+RU/2: VRLWLV6+257RU/21*UHVHW 567287 53' P$'LVFKDUJH  953'!9$V\QFKURQRXV5HVHWQRWHQWHUHG *$3*5, 1. RSTIN assertion can be released there. Refer also to Section 21.1 for details on minimum pulse duration. 2. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5 V for 5 V operation), the asynchronous reset is then immediately entered. 3. 3 to 8 TCL depending on clock source selection. 4. RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software. Bit BDRSTEN is cleared after reset. 5. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the internal filter (refer to Section 21.1). 94/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset Figure 22. Synchronous long hardware RESET (EA = 1) d7&/  d 7&/  7&/ 567,1 tQV dQV tQV dQV tQV dQV 567) $IWHU)LOWHU 7&/ 3>@ 3>@ d7&/ QRWWUDQVSDUHQW QRWW 3>@ WUDQVSDUHQW QRWW WUDQVSDUHQW QRWW QRWWUDQVSDUHQW QRWW 7&/ ,%86&6 ,QWHUQDO dPV )/$567 7&/ 567 $WWKLVWLPH567)LVVDPSOHG/2: VRLWLVGHILQLWHO\/21*UHVHW 567287 53' P$'LVFKDUJH  9 53'!9$V\QFKURQRXV5HVHWQRWHQWHUHG *$3*5, 1. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation),the asynchronous reset is then immediately entered. Even if RPD returns above the threshold, the reset is defnitively taken as asynchronous. 2. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the nternal filter (refer to Section 21.1). Doc ID 11917 Rev 5 95/188 System reset ST10F272B/ST10F272E Figure 23. Synchronous long hardware RESET (EA = 0) 7&/  7&/ 7&/ 567,1 tQV dQV tQV dQV tQV dQV 567) $IWHU)LOWHU 7&/ 3>@ QRWWUDQVSDUHQW WUDQVSDUHQW 3>@ WUDQVSDUHQW 3>@ QRWWUDQVSDUHQW QRWW QRWW QRWW 7&/  7&/ $/( 7&/ 567 $WWKLVWLPH567)LVVDPSOHG/2: VRLWLV/21*UHVHW 567287 53' P$'LVFKDUJH  9 53'!9$V\QFKURQRXV5HVHWQRWHQWHUHG *$3*5, 1. If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation), the asynchronous reset is then immediately entered. 2. Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the internal filter (refer to Section 21.1). 3. 3 to 8 TCL depending on clock source selection. 20.4 Software reset A software reset sequence can be triggered at any time by the protected SRST (software reset) instruction. This instruction can be deliberately executed within a program, e.g. to leave bootstrap loader mode, or on a hardware trap that reveals system failure. On execution of the SRST instruction, the internal reset sequence is started. The microcontroller behavior is the same as for a synchronous short reset, except that only bits P0.12...P0.8 are latched at the end of the reset sequence, while previously latched, bits P0.7...P0.2 are cleared (that is written at ‘1’). A Software reset is always taken as synchronous: there is no influence on Software Reset behavior with RPD status. In case Bidirectional Reset is selected, a Software Reset event pulls RSTIN pin low: this occurs only if RPD is high; if RPD is low, RSTIN pin is not pulled low even though Bidirectional Reset is selected. Refer to Figure 24 and Figure 25 for unidirectional SW reset timing, and to Figure 26, Figure 27 and Figure 28 for bidirectional. 96/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E 20.5 System reset Watchdog timer reset When the watchdog timer is not disabled during the initialization, or serviced regularly during program execution, it overflows and trigger the reset sequence. Unlike hardware and software resets, the watchdog reset completes a running external bus cycle if this bus cycle either does not use READY, or if READY is sampled active (low) after the programmed wait states. When READY is sampled inactive (high) after the programmed wait states the running external bus cycle is aborted. Then the internal reset sequence is started. Bit P0.12...P0.8 are latched at the end of the reset sequence and bit P0.7...P0.2 are cleared (that is written at ‘1’). A Watchdog reset is always taken as synchronous: there is no influence on Watchdog Reset behavior with RPD status. In case Bidirectional Reset is selected, a Watchdog Reset event pulls RSTIN pin low: this occurs only if RPD is high; if RPD is low, RSTIN pin is not pulled low even though Bidirectional Reset is selected. Refer to Figure 24 and Figure 25 for unidirectional SW reset timing, and to Figure 26, Figure 27 and Figure 28 for bidirectional. Figure 24. SW / WDT unidirectional RESET (EA = 1) 567,1 d7&/ 3>@ QRWWUDQVSDUHQW 3>@ WUDQVSDUHQW 3>@ QRWWUDQVSDUHQW 3>@ QRWW QRWW QRWWUDQVSDUHQW 7&/ ,%86&6 ,QWHUQDO dPV )/$567 7&/ 567 567287 *$3*5, Doc ID 11917 Rev 5 97/188 System reset ST10F272B/ST10F272E Figure 25. SW / WDT unidirectional RESET (EA = 0) 567,1 3>@ QRWWUDQVSDUHQW 3>@ WUDQVSDUHQW 3>@ QRWWUDQVSDUHQW 3>@ QRWWUDQVSDUHQW QRWW QRWW 7&/ $/( 7&/ 567 567287 *$3*5, 20.6 Bidirectional reset As shown in the previous sections, the RSTOUT pin is driven active (low level) at the beginning of any reset sequence (synchronous/asynchronous hardware, software and watchdog timer resets). RSTOUT pin stays active low beyond the end of the initialization routine, until the protected EINIT instruction (End of Initialization) is completed. The Bidirectional Reset function is useful when external devices require a reset signal but cannot be connected to RSTOUT pin, because RSTOUT signal lasts during initialization. It is, for instance, the case of external memory running initialization routine before the execution of EINIT instruction. Bidirectional reset function is enabled by setting bit 3 (BDRSTEN) in SYSCON register. It only can be enabled during the initialization routine, before EINIT instruction is completed. When enabled, the open drain of the RSTIN pin is activated, pulling down the reset signal, for the duration of the internal reset sequence (synchronous/asynchronous hardware, synchronous software and synchronous watchdog timer resets). At the end of the internal reset sequence the pull down is released and: 98/188 ● After a Short Synchronous Bidirectional Hardware Reset, if RSTF is sampled low 8 TCL periods after the internal reset sequence completion (refer to Figure 20 and Figure 21), the Short Reset becomes a Long Reset. On the contrary, if RSTF is sampled high the device simply exits reset state. ● After a Software or Watchdog Bidirectional Reset, the device exits from reset. If RSTF remains still low for at least 4 TCL periods (minimum time to recognize a Short Hardware reset) after the reset exiting (refer to Figure 26 and Figure 27), the Software Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset or Watchdog Reset become a Short Hardware Reset. On the contrary, if RSTF remains low for less than 4 TCL, the device simply exits reset state. The Bidirectional reset is not effective in case RPD is held low, when a Software or Watchdog reset event occurs. On the contrary, if a Software or Watchdog Bidirectional reset event is active and RPD becomes low, the RSTIN pin is immediately released, while the internal reset sequence is completed regardless of RPD status change (1024 TCL). Note: The bidirectional reset function is disabled by any reset sequence (bit BDRSTEN of SYSCON is cleared). To be activated again it must be enabled during the initialization routine. WDTCON flags Similarly to what already highlighted in the previous section when discussing about Short reset and the degeneration into Long reset, similar situations may occur when Bidirectional reset is enabled. The presence of the internal filter on RSTIN pin introduces a delay: when RSTIN is released, the internal signal after the filter (see RSTF in the drawings) is delayed, so it remains still active (low) for a while. It means that depending on the internal clock speed, a short reset may be recognized as a long reset: the WDTCON flags are set accordingly. Besides, when either Software or Watchdog bidirectional reset events occur, again when the RSTIN pin is released (at the end of the internal reset sequence), the RSTF internal signal (after the filter) remains low for a while, and depending on the clock frequency it is recognized high or low: 8TCL after the completion of the internal sequence, the level of RSTF signal is sampled, and if recognized still low a Hardware reset sequence starts, and WDTCON will flag this last event, masking the previous one (Software or Watchdog reset). Typically, a Short Hardware reset is recognized, unless the RSTIN pin (and consequently internal signal RSTF) is sufficiently held low by the external hardware to inject a Long Hardware reset. After this occurrence, the initialization routine is not able to recognize a Software or Watchdog bidirectional reset event, since a different source is flagged inside WDTCON register. This phenomenon does not occur when internal FLASH is selected during reset (EA = 1), since the initialization of the FLASH itself extend the internal reset duration well beyond the filter delay. Figure 26, Figure 27 and Figure 28 summarize the timing for Software and Watchdog Timer Bidirectional reset events: in particular Figure 28 shows the degeneration into Hardware reset. Doc ID 11917 Rev 5 99/188 System reset ST10F272B/ST10F272E Figure 26. SW / WDT bidirectional RESET (EA=1) 567,1 tQV dQV tQV dQV 567) $IWHU)LOWHU 3>@ QRWWUDQVSDUHQW 3>@ WUDQVSDUHQW 3>@ QRWWUDQVSDUHQW QRWW QRWW QRWWUDQVSDUHQW 3>@ d7&/ 7&/ ,%86&6 ,QWHUQDO dPV )/$567 7&/ 567 567287 *$3*5, 100/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset Figure 27. SW / WDT bidirectional RESET (EA = 0) 567,1 tQV dQV tQV dQV 567) $IWHU)LOWHU 3>@ QRWWUDQVSDUHQW 3>@ WUDQVSDUHQW 3>@ QRWWUDQVSDUHQW 3>@ QRWWUDQVSDUHQW QRWW QRWW 7&/ $/( 7&/ 567 $WWKLVWLPH567)LVVDPSOHG+,*+ VR6:RU:'75HVHWLVIODJJHGLQ:'7&21 567287 *$3*5, Doc ID 11917 Rev 5 101/188 System reset ST10F272B/ST10F272E Figure 28. SW / WDT bidirectional RESET (EA=0) followed by a HW RESET 567,1 tQV dQV tQV dQV 567) $IWHU)LOWHU 3>@ 3>@ 3>@ 3>@ QRWWUDQVSDUHQW WUDQVSDUHQW QRWW QRWWUDQVSDUHQW QRWWUDQVSDUHQW QRWW 7&/ $/( 7&/ 567 $WWKLVWLPH567)LVVDPSOHG/2: VR+:5HVHWLVHQWHUHG 567287 *$3*5, 20.7 Reset circuitry Internal reset circuitry is described in Figure 31. The RSTIN pin provides an internal pull-up resistor of 50kΩ to 250kΩ (The minimum reset time must be calculated using the lowest value). It also provides a programmable (BDRSTEN bit of SYSCON register) pull-down to output internal reset state signal (synchronous reset, watchdog timer reset or software reset). This bidirectional reset function is useful in applications where external devices require a reset signal but cannot be connected to RSTOUT pin. This is the case of an external memory running codes before EINIT (end of initialization) instruction is executed. RSTOUT pin is pulled high only when EINIT is executed. The RPD pin provides an internal weak pull-down resistor which discharges external capacitor at a typical rate of 200μA. If bit PWDCFG of SYSCON register is set, an internal pull-up resistor is activated at the end of the reset sequence. This pull-up will charge any capacitor connected on RPD pin. The simplest way to reset the ST10F272 is to insert a capacitor C1 between RSTIN pin and VSS, and a capacitor between RPD pin and VSS (C0) with a pull-up resistor R0 between RPD pin and VDD. The input RSTIN provides an internal pull-up device equalling a resistor of 50kΩ to 250kΩ (the minimum reset time must be determined by the lowest value). Select C1 that produce a sufficient discharge time to permit the internal or external oscillator and / or internal PLL and the on-chip voltage regulator to stabilize. 102/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E System reset To ensure correct power-up reset with controlled supply current consumption, specially if clock signal requires a long period of time to stabilize, an asynchronous hardware reset is required during power-up. For this reason, it is recommended to connect the external R0-C0 circuit shown in Figure 29 to the RPD pin. On power-up, the logical low level on RPD pin forces an asynchronous hardware reset when RSTIN is asserted low. The external pull-up R0 will then charge the capacitor C0. Note that an internal pull-down device on RPD pin is turned on when RSTIN pin is low, and causes the external capacitor (C0) to begin discharging at a typical rate of 100-200μA. With this mechanism, after power-up reset, short low pulses applied on RSTIN produce synchronous hardware reset. If RSTIN is asserted longer than the time needed for C0 to be discharged by the internal pull-down device, then the device is forced in an asynchronous reset. This mechanism insures recovery from very catastrophic failure. Figure 29. Minimum external reset circuitry 567287 567,1 ([WHUQDO+DUGZDUH  D +DUGZDUH 5HVHW & 9&& 5 53'  E )RU3RZHUXS 5HVHW DQG,QWHUUXSWLEOH 3RZHU'RZQ PRGH & 67) *$3*5, The minimum reset circuit of Figure 29 is not adequate when the RSTIN pin is driven from the ST10F272 itself during software or watchdog triggered resets, because of the capacitor C1 that will keep the voltage on RSTIN pin above VIL after the end of the internal reset sequence, and thus will trigger an asynchronous reset sequence. Figure 30 shows an example of a reset circuit. In this example, R1-C1 external circuit is only used to generate power-up or manual reset, and R0-C0 circuit on RPD is used for power-up reset and to exit from Power Down mode. Diode D1 creates a wired-OR gate connection to the reset pin and may be replaced by open-collector Schmitt trigger buffer. Diode D2 provides a faster cycle time for repetitive power-on resets. R2 is an optional pull-up for faster recovery and correct biasing of TTL Open Collector drivers. Doc ID 11917 Rev 5 103/188 System reset ST10F272B/ST10F272E Figure 30. System reset circuit 9'' 9'' 5 ([WHUQDO+DUGZDUH 5 ' 567,1  9'' ' & RG ([WHUQDO 5HVHW6RXUFH 5 2SHQ'UDLQ,QYHUWHU 53'  & 67) *$3*5, Figure 31. Internal (simplified) reset circuitry (,1,7,QVWUXFWLRQ &OU 4 567287 6HW 5HVHW6WDWH 0DFKLQH &ORFN ,QWHUQDO 5HVHW 6LJQDO 9'' 6567LQVWUXFWLRQ ZDWFKGRJRYHUIORZ 7ULJJHU 567,1 &OU %'567(1 5HVHW6HTXHQFH &38&ORFN&\FOHV 9'' $V\QFKURQRXV 5HVHW 53' )URPWR([LW 3RZHUGRZQ &LUFXLW :HDN3XOOGRZQ aP$ *$3*5, 104/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Reset application examples Next two timing diagrams (Figure 32 and Figure 33) provides additional examples of bidirectional internal reset events (Software and Watchdog) including in particular the external capacitances charge and discharge transients (refer also to Figure 30 for the external circuit scheme). QRWWUDQVSDUHQW 3>@ QRWWUDQVSDUHQW 3>@ QRWWUDQVSDUHQW 3>@ 3>@ K :'7&21 >@ 567 9,/ 53' QRWWUDQVSDUHQW 7&/ 7ILOWHU567 QV 567) LGHDO 9,+ 9,/ 567,1 /DWFKLQJSRLQW WUDQVSDUHQW WUDQVSDUHQW WUDQVSDUHQW &K PV &FKDUJH 567287 QRWWUDQVSDUHQW /DWFKLQJSRLQW /DWFKLQJSRLQW QRWWUDQVSDUHQW QRWWUDQVSDUHQW 7&/ 7ILOWHU567 QV &K 7&/ /DWFKLQJSRLQW QRWWUDQVSDUHQW (,1,7 K Figure 32. Example of software or watchdog bidirectional reset (EA = 1) 7&/ XV 20.8 System reset *$3*5, Doc ID 11917 Rev 5 105/188 106/188 9,/ 9,/ 9,+ Doc ID 11917 Rev 5 3>@ 3>@ 3>@ 3>@ :'7&21 >@ 567 53' 567) LGHDO 567,1 567287 QRWWUDQVSDUHQW QRWWUDQVSDUHQW QRWWUDQVSDUHQW K 7ILOWHU567 QV 7&/ XV &K QRWWUDQVSDUHQW 7&/ 7ILOWHU567 QV WUDQVSDUHQW WUDQVSDUHQW WUDQVSDUHQW PV &FKDUJH 7&/ &K /DWFKLQJSRLQW /DWFKLQJSRLQW QRWWUDQVSDUHQW QRWWUDQVSDUHQW QRWWUDQVSDUHQW QRWWUDQVSDUHQW /DWFKLQJSRLQW /DWFKLQJSRLQW 7&/ K (,1,7 System reset ST10F272B/ST10F272E Figure 33. Example of software or watchdog bidirectional reset (EA = 0) *$3*5, ST10F272B/ST10F272E 20.9 System reset Reset summary A summary of the different reset events is reported in Table 50. Short Hardware Reset (Synchronous) (1) min max LHWR SHWR SWR WDTR WDTCON Flags - 1 1 1 1 0 - 1 1 1 1 0 0 0 N Asynch. 1 ms (VREG) 1.2 ms (Reson. + PLL) 10.2 ms (Crystal + PLL) 0 1 N Asynch. 1ms (VREG) 1 x x FORBIDDEN x x Y NOT APPLICABLE 0 0 N Asynch. 500ns - 0 1 1 1 0 0 1 N Asynch. 500ns - 0 1 1 1 0 0 0 Y Asynch. 500ns - 0 1 1 1 0 0 1 Y Asynch. 500ns - 0 1 1 1 0 1 0 N Synch. max (4 TCL, 500ns) 1032 + 12 TCL + max(4 TCL, 500ns) 0 0 1 1 0 1 1 N Synch. max (4 TCL, 500ns) 1032 + 12 TCL + max(4 TCL, 500ns) 0 0 1 1 0 max (4 TCL, 500ns) 1 0 Y 1032 + 12 TCL + max(4 TCL, 500ns) 0 0 1 1 0 0 0 1 1 0 Power-on Reset Hardware Reset (Asynchronous) RSTIN PONR Synch. Asynch. Bidir Event EA Reset event RPD Table 50. Synch. Activated by internal logic for 1024 TCL max (4 TCL, 500ns) 1 1 Y Synch. 1032 + 12 TCL + max(4 TCL, 500ns) Activated by internal logic for 1024 TCL Long Hardware Reset (Synchronous) 1 0 N Synch. 1032 + 12 TCL + max(4 TCL, 500ns) - 0 1 1 1 0 1 1 N Synch. 1032 + 12 TCL + max(4 TCL, 500ns) - 0 1 1 1 0 1032 + 12 TCL + max(4 TCL, 500ns) 0 1 1 1 0 0 1 1 1 0 1 0 Y Synch. Activated by internal logic only for 1024 TCL 1 1 Y Synch. 1032 + 12 TCL + max(4 TCL, 500ns) - Activated by internal logic only for 1024 TCL Doc ID 11917 Rev 5 107/188 System reset Reset event (continued) Synch. Asynch. SHWR SWR WDTR Bidir LHWR Watchdog Reset (2) PONR Software Reset (2) WDTCON Flags EA Event RSTIN RPD Table 50. ST10F272B/ST10F272E x 0 N Synch. Not activated 0 0 0 1 0 x 0 N Synch. Not activated 0 0 0 1 0 0 1 Y Synch. Not activated 0 0 0 1 0 1 1 Y Synch. Activated by internal logic for 1024 TCL 0 0 0 1 0 x 0 N Synch. Not activated 0 0 0 1 1 x 0 N Synch. Not activated 0 0 0 1 1 0 1 Y Synch. Not activated 0 0 0 1 1 1 1 Y Synch. Activated by internal logic for 1024 TCL 0 0 0 1 1 min max 1. It can degenerate into a Long Hardware Reset and consequently differently flagged (see Section 20.3 for details). 2. When Bidirectional is active (and with RPD=0), it can be followed by a Short Hardware Reset and consequently differently flagged (see Section 20.6 for details). The start-up configurations and some system features are selected on reset sequences as described in Table 51 and Figure 34. Table 51 describes what is the system configuration latched on PORT0 in the six different reset modes. Figure 34 summarizes the state of bits of PORT0 latched in RP0H, SYSCON, BUSCON0 registers. Table 51. PORT0 latched configuration for the different reset events Reserved BSL Reserved Reserved Adapt Mode Emu Mode P0H.5 P0H.4 P0H.3 P0H.2 P0H.1 P0H.0 P0L.7 P0L.6 P0L.5 P0L.4 P0L.3 P0L.2 P0L.1 P0L.0 Software Reset - - - X X X X X X X - - - - - - Watchdog Reset - - - X X X X X X X - - - - - - Synchronous Short Hardware Reset - - - X X X X X X X X X X X X X Synchronous Long Hardware Reset X X X X X X X X X X X X X X X X Asynchronous Hardware Reset X X X X X X X X X X X X X X X X Asynchronous Power-On Reset X X X X X X X X X X X X X X X X Sample event 108/188 Doc ID 11917 Rev 5 Bus Type X: Pin is sampled -: Pin is not sampled WR config. P0H.6 Chip Selects P0H.7 Clock Options Segm. Addr. Lines PORT0 ST10F272B/ST10F272E System reset Figure 34. PORT0 bits latched into the different registers after reset PORT0 H.7 H.6 H.5 H.4 CLKCFG H.3 H.2 H.1 H.0 SALSEL CSSEL WRC CLKCFG SALSEL CSSEL WRC Clock Generator Port 4 Logic Port 6 Logic L.7 L.6 L.5 BUSTYP L.4 L.3 BSL L.2 Res. L.1 L.0 ADP EMU RP0H Bootstrap Loader Internal Control Logic 2 EA / VSTBY P0L.7 P0L.7 SYSCON ROMEN BYTDIS 10 9 8 BUSCON0 BUS ALE ACT0 CTL0 WRCFG 7 10 Doc ID 11917 Rev 5 9 BTYP 7 6 109/188 Power reduction modes 21 ST10F272B/ST10F272E Power reduction modes Three different power reduction modes with different levels of power reduction have been implemented in the ST10F272. In Idle mode only CPU is stopped, while peripheral still operate. In Power Down mode both CPU and peripherals are stopped. In Stand-by mode the main power supply (VDD) can be turned off while a portion of the internal RAM remains powered via VSTBY dedicated power pin. Idle and Power Down modes are software activated by a protected instruction and are terminated in different ways as described in the following sections. Stand-by mode is entered simply removing VDD, holding the MCU under reset state. Note: All external bus actions are completed before Idle or Power Down mode is entered. However, Idle or Power Down mode is not entered if READY is enabled, but has not been activated (driven low for negative polarity, or driven high for positive polarity) during the last bus access. 21.1 Idle mode Idle mode is entered by running IDLE protected instruction. The CPU operation is stopped and the peripherals still run. Idle mode is terminate by any interrupt request. Whatever the interrupt is serviced or not, the instruction following the IDLE instruction will be executed after return from interrupt (RETI) instruction, then the CPU resumes the normal program. 21.2 Power down mode Power Down mode starts by running PWRDN protected instruction. Internal clock is stopped, all MCU parts are on hold including the watchdog timer. The only exception could be the Real Time Clock if opportunely programmed and one of the two oscillator circuits as a consequence (either the main or the 32 kHz on-chip oscillator). When Real Time Clock module is used, when the device is in Power Down mode a reference clock is needed. In this case, two possible configurations may be selected by the user application according to the desired level of power reduction: ● A 32 kHz crystal is connected to the on-chip low-power oscillator (pins XTAL3 / XTAL4) and running. In this case the main oscillator is stopped when Power Down mode is entered, while the Real Time Clock continue counting using 32 kHz clock signal as reference. The presence of a running low-power oscillator is detected after the Poweron: this clock is immediately assumed (if present, or as soon as it is detected) as reference for the Real Time Clock counter and it will be maintained forever (unless specifically disabled via software). ● Only the main oscillator is running (XTAL1 / XTAL2 pins). In this case the main oscillator is not stopped when Power Down is entered, and the Real Time Clock continue counting using the main oscillator clock signal as reference. There are two different operating Power Down modes: protected mode and interruptible mode. 110/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Power reduction modes Before entering Power Down mode (by executing the instruction PWRDN), bit VREGOFF in XMISC register must be set. Note: Leaving the main voltage regulator active during Power Down may lead to unexpected behavior (ex: CPU wake-up) and power consumption higher than what specified. 21.2.1 Protected power down mode This mode is selected when PWDCFG (bit 5) of SYSCON register is cleared. The Protected Power Down mode is only activated if the NMI pin is pulled low when executing PWRDN instruction (this means that the PWRD instruction belongs to the NMI software routine). This mode is only deactivated with an external hardware reset on RSTIN pin. 21.2.2 Interruptible power down mode This mode is selected when PWDCFG (bit 5) of SYSCON register is set. The Interruptible Power Down mode is only activated if all the enabled Fast External Interrupt pins are in their inactive level. This mode is deactivated with an external reset applied to RSTIN pin or with an interrupt request applied to one of the Fast External Interrupt pins, or with an interrupt generated by the Real Time Clock, or with an interrupt generated by the activity on CAN’s and I2C module interfaces. To allow the internal PLL and clock to stabilize, the RSTIN pin must be held low according the recommendations described in Section 20. An external RC circuit must be connected to RPD pin, as shown in the Figure 35. Figure 35. External RC circuitry on RPD pin 67) 9'' 5 N:PLQLPXP 53'  & P)7\SLFDO *$3*5, To exit Power Down mode with an external interrupt, an EXxIN (x = 7...0) pin has to be asserted for at least 40ns. 21.3 Stand-by mode In Stand-by mode, it is possible to turn off the main VDD provided that VSTBY is available through the dedicated pin of the ST10F272. To enter Stand-by mode it is mandatory to held the device under reset: once the device is under reset, the RAM is disabled (see XRAM2EN bit of XPERCON register), and its digital interface is frozen in order to avoid any kind of data corruption. A dedicated embedded low-power voltage regulator is implemented to generate the internal low voltage supply (about 1.65V in Stand-by mode) to bias all those circuits that shall remain Doc ID 11917 Rev 5 111/188 Power reduction modes ST10F272B/ST10F272E active: the portion of XRAM (16Kbytes for ST10F272E), the RTC counters and 32 kHz onchip oscillator amplifier. In normal running mode (that is when main VDD is on) the VSTBY pin can be tied to VSS during reset to exercise the EA functionality associated with the same pin: the voltage supply for the circuitries which are usually biased with VSTBY (see in particular the 32 kHz oscillator used in conjunction with Real Time Clock module), is granted by the active main VDD. It must be noted that Stand-by Mode can generate problems associated with the usage of different power supplies in CMOS systems; particular attention must be paid when the ST10F272 I/O lines are interfaced with other external CMOS integrated circuits: if VDD of ST10F272 becomes (for example in Stand-by Mode) lower than the output level forced by the I/O lines of these external integrated circuits, the ST10F272 could be directly powered through the inherent diode existing on ST10F272 output driver circuitry. The same is valid for ST10F272 interfaced to active/inactive communication buses during Stand-by mode: current injection can be generated through the inherent diode. Furthermore, the sequence of turning on/off of the different voltage could be critical for the system (not only for the ST10F272 device). The device Stand-by mode current (ISTBY) may vary while VDD to VSTBY (and vice versa) transition occurs: some current flows between VDD and VSTBY pins. System noise on both VDD and VSTBY can contribute to increase this phenomenon. 21.3.1 Entering stand-by mode As already said, to enter Stand-by Mode XRAM2EN bit in the XPERCON Register must be cleared: this allows to freeze immediately the RAM interface, avoiding any data corruption. As a consequence of a RESET event, the RAM Power Supply is switched to the internal low-voltage supply V18SB (derived from VSTBY through the low-power voltage regulator). The RAM interface will remain frozen until the bit XRAM2EN is set again by software initialization routine (at next exit from main VDD power-on reset sequence). Since V18 is falling down (as a consequence of VDD turning off), it can happen that the XRAM2EN bit is no longer able to guarantee its content (logic “0”), being the XPERCON Register powered by internal V18. This does not generate any problem, because the Standby Mode switching dedicated circuit continues to confirm the RAM interface freezing, irrespective the XRAM2EN bit content; XRAM2EN bit status is considered again when internal V18 comes back over internal stand-by reference V18SB. If internal V18 becomes lower than internal stand-by reference (V18SB) of about 0.3 to 0.45V with bit XRAM2EN set, the RAM Supply switching circuit is not active: in case of a temporary drop on internal V18 voltage versus internal V18SB during normal code execution, no spurious Stand-by Mode switching can occur (the RAM is not frozen and can still be accessed). The ST10F272 Core module, generating the RAM control signals, is powered by internal V18 supply; during turning off transient these control signals follow the V18, while RAM is switched to V18SB internal reference. It could happen that a high level of RAM write strobe from ST10F272 Core (active low signal) is low enough to be recognized as a logic “0” by the RAM interface (due to V18 lower than V18SB): The bus status could contain a valid address for the RAM and an unwanted data corruption could occur. For this reason, an extra interface, powered by the switched supply, is used to prevent the RAM from this kind of potential corruption mechanism. 112/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Warning: 21.3.2 Power reduction modes During power-off phase, it is important that the external hardware maintains a stable ground level on RSTIN pin, without any glitch, in order to avoid spurious exiting from reset status with unstable power supply. Exiting stand-by mode After the system has entered the Stand-by Mode, the procedure to exit this mode consists of a standard power-on sequence, with the only difference that the RAM is already powered through V18SB internal reference (derived from VSTBY pin external voltage). It is recommended to held the device under RESET (RSTIN pin forced low) until external VDD voltage pin is stable. Even though, at the very beginning of the power-on phase, the device is maintained under reset by the internal low voltage detector circuit (implemented inside the main voltage regulator) till the internal V18 becomes higher than about 1.0V, there is no warranty that the device stays under reset status if RSTIN is at high level during power ramp up. So, it is important the external hardware is able to guarantee a stable ground level on RSTIN along the power-on phase, without any temporary glitch. The external hardware shall be responsible to drive low the RSTIN pin until the VDD is stable, even though the internal LVD is active. Once the internal reset signal goes low, the RAM (still frozen) power supply is switched to the main V18. At this time, everything becomes stable, and the execution of the initialization routines can start: XRAM2EN bit can be set, enabling the RAM. 21.3.3 Real time clock and stand-by mode When stand-by mode is entered (turning off the main supply VDD), the Real Time Clock counting can be maintained running in case the on-chip 32 kHz oscillator is used to provide the reference to the counter. This is not possible if the main oscillator is used as reference for the counter: Being the main oscillator powered by VDD, once this is switched off, the oscillator is stopped. Doc ID 11917 Rev 5 113/188 Power reduction modes 21.3.4 ST10F272B/ST10F272E Power reduction modes summary In Table 52, a summary of the different power reduction modes is reported. CPU Peripherals RTC Main OSC 32 kHz OSC STBY XRAM XRAM Mode VSTBY Power reduction modes summary VDD Table 52. on on off on off run off biased biased on on off on on run on biased biased on on off off off off off biased biased on on off off on on off biased biased on on off off on off on biased biased off on off off off off off biased off off on off off on off on biased off Idle Power down Stand-by 114/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E 22 Programmable output clock divider Programmable output clock divider A specific register mapped on the XBUS allows to choose the division factor on the CLKOUT signal (P3.15). This register is mapped on X-Miscellaneous memory address range. When CLKOUT function is enabled by setting bit CLKEN of register SYSCON, by default the CPU clock is output on P3.15. Setting bit XMISCEN of register XPERCON and bit XPEN of register SYSCON, it is possible to program the clock prescaling factor: in this way on P3.15 a prescaled value of the CPU clock can be output. When CLKOUT function is not enabled (bit CLKEN of register SYSCON cleared), P3.15 does not output any clock signal, even though XCLKOUTDIV register is programmed. Doc ID 11917 Rev 5 115/188 Register set 23 ST10F272B/ST10F272E Register set This section summarizes all registers implemented in the ST10F272, ordered by name. 23.1 Special function registers Table 25 lists all SFRs which are implemented in the ST10F272 in alphabetical order. Bit-addressable SFRs are marked with the letter “b” in column “Name”. SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in column “Physical Address”. Table 53. Name List of special function registers Physical address 8-bit address Description Reset value ADCICb FF98h CCh A/D converter end of conversion interrupt control register - - 00h ADCONb FFA0h D0h A/D converter control register 0000h ADDAT FEA0h 50h A/D converter result register 0000h ADDAT2 F0A0hE 50h A/D converter 2 result register 0000h ADDRSEL1 FE18h 0Ch Address select register 1 0000h ADDRSEL2 FE1Ah 0Dh Address select register 2 0000h ADDRSEL3 FE1Ch 0Eh Address select register 3 0000h ADDRSEL4 FE1Eh 0Fh Address select register 4 0000h ADEICb FF9Ah CDh A/D converter overrun error interrupt control register - - 00h BUSCON0b FF0Ch 86h Bus configuration register 0 0xx0h BUSCON1b FF14h 8Ah Bus configuration register 1 0000h BUSCON2b FF16h 8Bh Bus configuration register 2 0000h BUSCON3b FF18h 8Ch Bus configuration register 3 0000h BUSCON4b FF1Ah 8Dh Bus configuration register 4 0000h CAPREL FE4Ah 25h GPT2 capture/reload register 0000h CC0 FE80h 40h CAPCOM register 0 0000h CC0ICb FF78h BCh CAPCOM register 0 interrupt control register - - 00h CC1 FE82h 41h CAPCOM register 1 0000h CC1ICb FF7Ah BDh CAPCOM register 1 interrupt control register - - 00h CC2 FE84h 42h CAPCOM register 2 0000h CC2ICb FF7Ch BEh CAPCOM register 2 interrupt control register - - 00h CC3 FE86h 43h CAPCOM register 3 0000h CC3ICb FF7Eh BFh CAPCOM register 3 interrupt control register - - 00h 116/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 53. Name Register set List of special function registers (continued) Physical address 8-bit address Description Reset value CC4 FE88h 44h CAPCOM register 4 0000h CC4ICb FF80h C0h CAPCOM register 4 interrupt control register - - 00h CC5 FE8Ah 45h CAPCOM register 5 0000h CC5ICb FF82h C1h CAPCOM register 5 interrupt control register - - 00h CC6 FE8Ch 46h CAPCOM register 6 0000h CC6ICb FF84h C2h CAPCOM register 6 interrupt control register - - 00h CC7 FE8Eh 47h CAPCOM register 7 0000h CC7ICb FF86h C3h CAPCOM register 7 interrupt control register - - 00h CC8 FE90h 48h CAPCOM register 8 0000h CC8ICb FF88h C4h CAPCOM register 8 interrupt control register - - 00h CC9 FE92h 49h CAPCOM register 9 0000h CC9ICb FF8Ah C5h CAPCOM register 9 interrupt control register - - 00h CC10 FE94h 4Ah CAPCOM register 10 0000h CC10ICb FF8Ch C6h CAPCOM register 10 interrupt control register - - 00h CC11 FE96h 4Bh CAPCOM register 11 0000h CC11ICb FF8Eh C7h CAPCOM register 11 interrupt control register - - 00h CC12 FE98h 4Ch CAPCOM register 12 0000h CC12ICb FF90h C8h CAPCOM register 12 interrupt control register - - 00h CC13 FE9Ah 4Dh CAPCOM register 13 0000h CC13ICb FF92h C9h CAPCOM register 13 interrupt control register - - 00h CC14 FE9Ch 4Eh CAPCOM register 14 0000h CC14ICb FF94h CAh CAPCOM register 14 interrupt control register - - 00h CC15 FE9Eh 4Fh CAPCOM register 15 0000h CC15ICb FF96h CBh CAPCOM register 15 interrupt control register - - 00h CC16 FE60h 30h CAPCOM register 16 0000h CC16ICb F160hE B0h CAPCOM register 16 interrupt control register - - 00h CC17 FE62h 31h CAPCOM register 17 0000h CC17ICb F162hE B1h CAPCOM register 17 interrupt control register - - 00h CC18 FE64h 32h CAPCOM register 18 0000h CC18ICb F164hE B2h CAPCOM register 18 interrupt control register - - 00h CC19 FE66h 33h CAPCOM register 19 0000h CC19ICb F166hE B3h CAPCOM register 19 interrupt control register - - 00h CC20 FE68h 34h CAPCOM register 20 0000h CC20ICb F168hE B4h CAPCOM register 20 interrupt control register - - 00h Doc ID 11917 Rev 5 117/188 Register set Table 53. Name ST10F272B/ST10F272E List of special function registers (continued) Physical address 8-bit address Description Reset value CC21 FE6Ah 35h CAPCOM register 21 0000h CC21ICb F16AhE B5h CAPCOM register 21 interrupt control register - - 00h CC22 FE6Ch 36h CAPCOM register 22 0000h CC22ICb F16ChE B6h CAPCOM register 22 interrupt control register - - 00h CC23 FE6Eh 37h CAPCOM register 23 0000h CC23ICb F16EhE B7h CAPCOM register 23 interrupt control register - - 00h CC24 FE70h 38h CAPCOM register 24 0000h CC24ICb F170hE B8h CAPCOM register 24 interrupt control register - - 00h CC25 FE72h 39h CAPCOM register 25 0000h CC25ICb F172hE B9h CAPCOM register 25 interrupt control register - - 00h CC26 FE74h 3Ah CAPCOM register 26 0000h CC26ICb F174hE BAh CAPCOM register 26 interrupt control register - - 00h CC27 FE76h 3Bh CAPCOM register 27 0000h CC27ICb F176hE BBh CAPCOM register 27 interrupt control register - - 00h CC28 FE78h 3Ch CAPCOM register 28 0000h CC28ICb F178hE BCh CAPCOM register 28 interrupt control register - - 00h CC29 FE7Ah 3Dh CAPCOM register 29 0000h CC29ICb F184hE C2h CAPCOM register 29 interrupt control register - - 00h CC30 FE7Ch 3Eh CAPCOM register 30 0000h CC30ICb F18ChE C6h CAPCOM register 30 interrupt control register - - 00h CC31 FE7Eh 3Fh CAPCOM register 31 0000h CC31ICb F194hE CAh CAPCOM register 31 interrupt control register - - 00h CCM0b FF52h A9h CAPCOM Mode Control register 0 0000h CCM1b FF54h AAh CAPCOM Mode Control register 1 0000h CCM2b FF56h ABh CAPCOM Mode Control register 2 0000h CCM3b FF58h ACh CAPCOM mode Control register 3 0000h CCM4b FF22h 91h CAPCOM Mode Control register 4 0000h CCM5b FF24h 92h CAPCOM Mode Control register 5 0000h CCM6b FF26h 93h CAPCOM Mode Control register 6 0000h CCM7b FF28h 94h CAPCOM Mode Control register 7 0000h CP FE10h 08h CPU Context Pointer register FC00h CRICb FF6Ah B5h GPT2 CAPREL interrupt control register - - 00h CSP FE08h 04h CPU Code Segment Pointer register (read only) 0000h DP0Lb F100hE 80h P0L direction control register - - 00h 118/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 53. Name Register set List of special function registers (continued) Physical address 8-bit address Description Reset value DP0Hb F102hE 81h P0h direction control register - - 00h DP1Lb F104hE 82h P1L direction control register - - 00h DP1Hb F106hE 83h P1h direction control register - - 00h DP2 b FFC2h E1h Port 2 direction control register 0000h DP3 b FFC6h E3h Port 3 direction control register 0000h DP4 b FFCAh E5h Port 4 direction control register - - 00h DP6 b FFCEh E7h Port 6 direction control register - - 00h DP7 b FFD2h E9h Port 7 direction control register - - 00h DP8 b FFD6h EBh Port 8 direction control register - - 00h DPP0 FE00h 00h CPU data page pointer 0 register (10-bit) 0000h DPP1 FE02h 01h CPU data page pointer 1 register (10-bit) 0001h DPP2 FE04h 02h CPU data page pointer 2 register (10-bit) 0002h DPP3 FE06h 03h CPU data page pointer 3 register (10-bit) 0003h EMUCON FE0Ah 05h Emulation control register EXICONb F1C0hE E0h External interrupt control register 0000h EXISELb F1DAhE EDh External interrupt source selection register 0000h IDCHIP F07ChE 3Eh Device identifier register (n is the device revision) 110nh IDMANUF F07EhE 3Fh Manufacturer identifier register 0403h IDMEM F07AhE 3Dh On-chip memory identifier register 3040h IDPROG F078hE 3Ch Programming voltage identifier register 0040h IDX0b FF08h 84h MAC unit address pointer 0 0000h IDX1b FF0Ah 85h MAC unit address pointer 1 0000h MAH FE5Eh 2Fh MAC unit accumulator - high word 0000h MAL FE5Ch 2Eh MAC unit accumulator - low word 0000h MCWb FFDCh EEh MAC unit control word 0000h MDCb FF0Eh 87h CPU multiply divide control register 0000h MDH FE0Ch 06h CPU multiply divide register – high word 0000h MDL FE0Eh 07h CPU multiply divide register – low word 0000h MRWb FFDAh EDh MAC unit repeat word 0000h MSWb FFDEh EFh MAC unit status word 0200h ODP2b F1C2hE E1h Port 2 open drain control register 0000h ODP3b F1C6hE E3h Port 3 open drain control register 0000h ODP4b F1CAhE E5h Port 4 open drain control register - - 00h ODP6b F1CEhE E7h Port 6 open drain control register - - 00h Doc ID 11917 Rev 5 - - XXh 119/188 Register set Table 53. Name ST10F272B/ST10F272E List of special function registers (continued) Physical address 8-bit address Description Reset value ODP7b F1D2hE E9h Port 7 open drain control register - - 00h ODP8b F1D6hE EBh Port 8 open drain control register - - 00h ONESb FF1Eh 8Fh Constant value 1’s register (read only) FFFFh P0L b FF00h 80h PORT0 low register (lower half of PORT0) - - 00h P0H b FF02h 81h PORT0 high register (upper half of PORT0) - - 00h P1L b FF04h 82h PORT1 low register (lower half of PORT1) - - 00h P1H b FF06h 83h PORT1 high register (upper half of PORT1) - - 00h P2 b FFC0h E0h Port 2 register 0000h P3 b FFC4h E2h Port 3 register 0000h P4 b FFC8h E4h Port 4 register (8-bit) - - 00h P5 b FFA2h D1h Port 5 register (read only) P6 b FFCCh E6h Port 6 register (8-bit) - - 00h P7 b FFD0h E8h Port 7 register (8-bit) - - 00h P8 b FFD4h EAh Port 8 register (8-bit) - - 00h P5DIDISb FFA4h D2h Port 5 digital disable register 0000h PECC0 FEC0h 60h PEC channel 0 control register 0000h PECC1 FEC2h 61h PEC channel 1 control register 0000h PECC2 FEC4h 62h PEC channel 2 control register 0000h PECC3 FEC6h 63h PEC channel 3 control register 0000h PECC4 FEC8h 64h PEC channel 4 control register 0000h PECC5 FECAh 65h PEC channel 5 control register 0000h PECC6 FECCh 66h PEC channel 6 control register 0000h PECC7 FECEh 67h PEC channel 7 control register 0000h PICONb F1C4hE E2h Port input threshold control register - - 00h PP0 F038hE 1Ch PWM module period register 0 0000h PP1 F03AhE 1Dh PWM module period register 1 0000h PP2 F03ChE 1Eh PWM module period register 2 0000h PP3 F03EhE 1Fh PWM module period register 3 0000h PSWb FF10h 88h CPU program status word 0000h PT0 F030hE 18h PWM module up/down counter 0 0000h PT1 F032hE 19h PWM module up/down counter 1 0000h PT2 F034hE 1Ah PWM module up/down counter 2 0000h PT3 F036hE 1Bh PWM module up/down counter 3 0000h PW0 FE30h 18h PWM module pulse width register 0 0000h 120/188 Doc ID 11917 Rev 5 XXXXh ST10F272B/ST10F272E Table 53. Name Register set List of special function registers (continued) Physical address 8-bit address Description Reset value PW1 FE32h 19h PWM module pulse width register 1 0000h PW2 FE34h 1Ah PWM module pulse width register 2 0000h PW3 FE36h 1Bh PWM module pulse width register 3 0000h PWMCON0b FF30h 98h PWM module control register 0 0000h PWMCON1b FF32h 99h PWM module control register 1 0000h PWMICb F17EhE BFh PWM module interrupt control register - - 00h QR0 F004hE 02h MAC unit offset register r0 0000h QR1 F006hE 03h MAC unit offset register R1 0000h QX0 F000hE 00h MAC unit offset register X0 0000h QX1 F002hE 01h MAC unit offset register X1 0000h RP0Hb F108hE 84h System start-up configuration register (read only) S0BG FEB4h 5Ah Serial channel 0 baud rate generator reload register 0000h S0CONb FFB0h D8h Serial channel 0 control register 0000h S0EICb FF70h B8h Serial channel 0 error interrupt control register - - 00h S0RBUF FEB2h 59h Serial channel 0 receive buffer register (read only) - - XXh S0RICb FF6Eh B7h Serial channel 0 receive interrupt control register - - 00h S0TBICb F19ChE CEh Serial channel 0 transmit buffer interrupt control reg. - - 00h S0TBUF FEB0h 58h Serial channel 0 transmit buffer register (write only) 0000h S0TICb FF6Ch B6h Serial channel 0 transmit interrupt control register - - 00h SP FE12h 09h CPU system stack pointer register FC00h SSCBR F0B4hE 5Ah SSC Baud rate register 0000h SSCCONb FFB2h D9h SSC control register 0000h SSCEICb FF76h BBh SSC error interrupt control register - - 00h SSCRB F0B2hE 59h SSC receive buffer (read only) SSCRICb FF74h BAh SSC receive interrupt control register - - 00h SSCTB F0B0hE 58h SSC transmit buffer (write only) 0000h SSCTICb FF72h B9h SSC transmit interrupt control register - - 00h STKOV FE14h 0Ah CPU stack overflow pointer register FA00h STKUN FE16h 0Bh CPU stack underflow pointer register FC00h SYSCONb FF12h 89h CPU system configuration register T0 FE50h 28h CAPCOM timer 0 register 0000h T01CONb FF50h A8h CAPCOM timer 0 and timer 1 control register 0000h T0ICb FF9Ch CEh CAPCOM timer 0 interrupt control register - - 00h T0REL FE54h 2Ah CAPCOM timer 0 reload register 0000h Doc ID 11917 Rev 5 - - XXh XXXXh 0xx0h 1) 121/188 Register set Table 53. Name ST10F272B/ST10F272E List of special function registers (continued) Physical address 8-bit address Description Reset value T1 FE52h 29h CAPCOM timer 1 register 0000h T1ICb FF9Eh CFh CAPCOM timer 1 interrupt control register - - 00h T1REL FE56h 2Bh CAPCOM timer 1 reload register 0000h T2 FE40h 20h GPT1 timer 2 register 0000h T2CONb FF40h A0h GPT1 timer 2 control register 0000h T2ICb FF60h B0h GPT1 timer 2 interrupt control register - - 00h T3 FE42h 21h GPT1 timer 3 register 0000h T3CONb FF42h A1h GPT1 timer 3 control register 0000h T3ICb FF62h B1h GPT1 timer 3 interrupt control register - - 00h T4 FE44h 22h GPT1 timer 4 register 0000h T4CONb FF44h A2h GPT1 timer 4 control register 0000h T4ICb FF64h B2h GPT1 timer 4 interrupt control register - - 00h T5 FE46h 23h GPT2 timer 5 register 0000h T5CONb FF46h A3h GPT2 timer 5 control register 0000h T5ICb FF66h B3h GPT2 timer 5 interrupt control register - - 00h T6 FE48h 24h GPT2 timer 6 register 0000h T6CONb FF48h A4h GPT2 timer 6 control register 0000h T6ICb FF68h B4h GPT2 timer 6 interrupt control register - - 00h T7 F050hE 28h CAPCOM timer 7 register 0000h T78CONb FF20h 90h CAPCOM timer 7 and 8 control register 0000h T7ICb F17AhE BDh CAPCOM timer 7 interrupt control register - - 00h T7REL F054hE 2Ah CAPCOM timer 7 reload register 0000h T8 F052hE 29h CAPCOM timer 8 register 0000h T8ICb F17ChE BEh CAPCOM timer 8 interrupt control register - - 00h T8REL F056hE 2Bh CAPCOM timer 8 reload register 0000h TFR b FFACh D6h Trap Flag register 0000h WDT FEAEh 57h Watchdog timer register (read only) 0000h WDTCONb FFAEh D7h Watchdog timer control register 00xxh 2) XADRS3 F01ChE 0Eh XPER address select register 3 800Bh XP0ICb F186hE C3h See Section 9.1 - - 00h 3) XP1ICb F18EhE C7h See Section 9.1 - - 00h 3) XP2ICb F196hE CBh See Section 9.1 - - 00h 3) XP3ICb F19EhE CFh See Section 9.1 - - 00h 3) 122/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 53. Name Register set List of special function registers (continued) Physical address 8-bit address Description Reset value XPERCONb F024hE 12h XPER configuration register - - 05h ZEROSb FF1Ch 8Eh Constant value 0’s register (read only) 0000h Note: 1. The system configuration is selected during reset. SYSCON reset value is 0000 0xx0 x000 0000b. 2. Reset Value depends on different triggered reset event. 3. The XPnIC Interrupt Control Registers control interrupt requests from integrated X-Bus peripherals. Some software controlled interrupt requests may be generated by setting the XPnIR bits (of XPnIC register) of the unused X-Peripheral nodes. 23.2 X-registers Table 54 lists all X-Bus registers which are implemented in the ST10F272 ordered by their name. The FLASH control registers are listed in a separate section, in spite of they also are physically mapped on X-Bus memory space. Note: The X-Registers are not bit-addressable. Table 54. List of XBus registers Name Physical address Description Reset value CAN1BRPER EF0Ch CAN1: BRP extension register 0000h CAN1BTR EF06h CAN1: Bit timing register 2301h CAN1CR EF00h CAN1: CAN control register 0001h CAN1EC EF04h CAN1: error counter 0000h CAN1IF1A1 EF18h CAN1: IF1 arbitration 1 0000h CAN1IF1A2 EF1Ah CAN1: IF1 arbitration 2 0000h CAN1IF1CM EF12h CAN1: IF1 command mask 0000h CAN1IF1CR EF10h CAN1: IF1 command request 0001h CAN1IF1DA1 EF1Eh CAN1: IF1 data A 1 0000h CAN1IF1DA2 EF20h CAN1: IF1 data A 2 0000h CAN1IF1DB1 EF22h CAN1: IF1 data B 1 0000h CAN1IF1DB2 EF24h CAN1: IF1 data B 2 0000h CAN1IF1M1 EF14h CAN1: IF1 mask 1 FFFFh CAN1IF1M2 EF16h CAN1: IF1 mask 2 FFFFh CAN1IF1MC EF1Ch CAN1: IF1 message control 0000h CAN1IF2A1 EF48h CAN1: IF2 arbitration 1 0000h CAN1IF2A2 EF4Ah CAN1: IF2 arbitration 2 0000h Doc ID 11917 Rev 5 123/188 Register set ST10F272B/ST10F272E Table 54. List of XBus registers (continued) Name 124/188 Physical address Description Reset value CAN1IF2CM EF42h CAN1: IF2 command mask 0000h CAN1IF2CR EF40h CAN1: IF2 command request 0001h CAN1IF2DA1 EF4Eh CAN1: IF2 data A 1 0000h CAN1IF2DA2 EF50h CAN1: IF2 data A 2 0000h CAN1IF2DB1 EF52h CAN1: IF2 data B 1 0000h CAN1IF2DB2 EF54h CAN1: IF2 data B 2 0000h CAN1IF2M1 EF44h CAN1: IF2 Mask 1 FFFFh CAN1IF2M2 EF46h CAN1: IF2 mask 2 FFFFh CAN1IF2MC EF4Ch CAN1: IF2 message control 0000h CAN1IP1 EFA0h CAN1: interrupt pending 1 0000h CAN1IP2 EFA2h CAN1: interrupt pending 2 0000h CAN1IR EF08h CAN1: interrupt register 0000h CAN1MV1 EFB0h CAN1: message valid 1 0000h CAN1MV2 EFB2h CAN1: message valid 2 0000h CAN1ND1 EF90h CAN1: new data 1 0000h CAN1ND2 EF92h CAN1: new data 2 0000h CAN1SR EF02h CAN1: status register 0000h CAN1TR EF0Ah CAN1: test register 00x0h CAN1TR1 EF80h CAN1: transmission request 1 0000h CAN1TR2 EF82h CAN1: transmission request 2 0000h CAN2BRPER EE0Ch CAN2: BRP extension register 0000h CAN2BTR EE06h CAN2: bit timing register 2301h CAN2CR EE00h CAN2: CAN control register 0001h CAN2EC EE04h CAN2: error counter 0000h CAN2IF1A1 EE18h CAN2: IF1 arbitration 1 0000h CAN2IF1A2 EE1Ah CAN2: IF1 arbitration 2 0000h CAN2IF1CM EE12h CAN2: IF1 command mask 0000h CAN2IF1CR EE10h CAN2: IF1 command request 0001h CAN2IF1DA1 EE1Eh CAN2: IF1 data A 1 0000h CAN2IF1DA2 EE20h CAN2: IF1 data A 2 0000h CAN2IF1DB1 EE22h CAN2: IF1 data B 1 0000h CAN2IF1DB2 EE24h CAN2: IF1 data B 2 0000h CAN2IF1M1 EE14h CAN2: IF1 mask 1 FFFFh CAN2IF1M2 EE16h CAN2: IF1 mask 2 FFFFh Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 54. Register set List of XBus registers (continued) Name Physical address Description Reset value CAN2IF1MC EE1Ch CAN2: IF1 message control 0000h CAN2IF2A1 EE48h CAN2: IF2 arbitration 1 0000h CAN2IF2A2 EE4Ah CAN2: IF2 arbitration 2 0000h CAN2IF2CM EE42h CAN2: IF2 command mask 0000h CAN2IF2CR EE40h CAN2: IF2 command request 0001h CAN2IF2DA1 EE4Eh CAN2: IF2 data A 1 0000h CAN2IF2DA2 EE50h CAN2: IF2 data A 2 0000h CAN2IF2DB1 EE52h CAN2: IF2 data B 1 0000h CAN2IF2DB2 EE54h CAN2: IF2 data B 2 0000h CAN2IF2M1 EE44h CAN2: IF2 mask 1 FFFFh CAN2IF2M2 EE46h CAN2: IF2 mask 2 FFFFh CAN2IF2MC EE4Ch CAN2: IF2 message control 0000h CAN2IP1 EEA0h CAN2: interrupt pending 1 0000h CAN2IP2 EEA2h CAN2: interrupt pending 2 0000h CAN2IR EE08h CAN2: interrupt register 0000h CAN2MV1 EEB0h CAN2: message valid 1 0000h CAN2MV2 EEB2h CAN2: message valid 2 0000h CAN2ND1 EE90h CAN2: new data 1 0000h CAN2ND2 EE92h CAN2: new data 2 0000h CAN2SR EE02h CAN2: status register 0000h CAN2TR EE0Ah CAN2: test register 00x0h CAN2TR1 EE80h CAN2: transmission request 1 0000h CAN2TR2 EE82h CAN2: Transmission request 2 0000h I2CCCR1 EA06h I2C clock control register 1 0000h I2CCCR2 EA0Eh I2C clock control register 2 0000h I2CCR EA00h I2C control register 0000h I2CDR EA0Ch I2C data register 0000h I2COAR1 EA08h I2C own address register 1 0000h I2COAR2 EA0Ah I2C own address register 2 0000h I2CSR1 EA02h I2C status register 1 0000h I2CSR2 EA04h I2C status register 2 0000h RTCAH ED14h RTC alarm register high byte XXXXh RTCAL ED12h RTC alarm register low byte XXXXh RTCCON ED00H RTC control register 000Xh Doc ID 11917 Rev 5 125/188 Register set ST10F272B/ST10F272E Table 54. List of XBus registers (continued) Name 126/188 Physical address Description Reset value RTCDH ED0Ch RTC divider counter high byte XXXXh RTCDL ED0Ah RTC divider counter low byte XXXXh RTCH ED10h RTC programmable counter high byte XXXXh RTCL ED0Eh RTC programmable counter low byte XXXXh RTCPH ED08h RTC prescaler register high byte XXXXh RTCPL ED06h RTC prescaler register low byte XXXXh XCLKOUTDIV EB02h CLKOUT divider control register - - 00h XEMU0 EB76h XBUS emulation register 0 (write only) XXXXh XEMU1 EB78h XBUS emulation register 1 (write only) XXXXh XEMU2 EB7Ah XBUS emulation register 2 (write only) XXXXh XEMU3 EB7Ch XBUS emulation register 3 (write only) XXXXh XIR0CLR EB14h X-Interrupt 0 clear register (write only) 0000h XIR0SEL EB10h X-Interrupt 0 selection register 0000h XIR0SET EB12h X-Interrupt 0 set register (write only) 0000h XIR1CLR EB24h X-Interrupt 1 clear register (write only) 0000h XIR1SEL EB20h X-Interrupt 1 selection register 0000h XIR1SET EB22h X-Interrupt 1 set register (write only) 0000h XIR2CLR EB34h X-Interrupt 2 clear register (write only) 0000h XIR2SEL EB30h X-Interrupt 2 selection register 0000h XIR2SET EB32h X-Interrupt 2 set register (write only) 0000h XIR3CLR EB44h X-Interrupt 3 clear selection register (write only) 0000h XIR3SEL EB40h X-Interrupt 3 selection register 0000h XIR3SET EB42h X-Interrupt 3 set selection register (write only) 0000h XMISC EB46h XBUS miscellaneous features register 0000h XP1DIDIS EB36h Port 1 digital disable register 0000h XPEREMU EB7Eh XPERCON copy for emulation (write only) XXXXh XPICON EB26h Extended port input threshold control register - - 00h XPOLAR EC04h XPWM module channel polarity register 0000h XPP0 EC20h XPWM module period register 0 0000h XPP1 EC22h XPWM module period register 1 0000h XPP2 EC24h XPWM module period register 2 0000h XPP3 EC26h XPWM module period register 3 0000h XPT0 EC10h XPWM module up/down counter 0 0000h XPT1 EC12h XPWM module up/down counter 1 0000h Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 54. Register set List of XBus registers (continued) Name Physical address Description Reset value XPT2 EC14h XPWM module up/down counter 2 0000h XPT3 EC16h XPWM module up/down counter 3 0000h XPW0 EC30h XPWM module pulse width register 0 0000h XPW1 EC32h XPWM module pulse width register 1 0000h XPW2 EC34h XPWM module pulse width register 2 0000h XPW3 EC36h XPWM module pulse width register 3 0000h XPWMCON0 EC00h XPWM module control register 0 0000h XPWMCON0CLR EC08h XPWM module clear control reg. 0 (write only) 0000h XPWMCON0SET EC06h XPWM module set control register 0 (write only) 0000h XPWMCON1 EC02h XPWM module control register 1 0000h XPWMCON1CLR EC0Ch XPWM module clear control reg. 0 (write only) 0000h XPWMCON1SET EC0Ah XPWM module set control register 0 (write only) 0000h XPWMPORT EC80h XPWM module port control register 0000h XS1BG E906h XASC Baud rate generator reload register 0000h XS1CON E900h XASC control register 0000h XS1CONCLR E904h XASC clear control register (write only) 0000h XS1CONSET E902h XASC set control register (write only) 0000h XS1PORT E980h XASC port control register 0000h XS1RBUF E90Ah XASC receive buffer register 0000h XS1TBUF E908h XASC transmit buffer register 0000h XSSCBR E80Ah XSSC Baud rate register 0000h XSSCCON E800h XSSC control register 0000h XSSCCONCLR E804h XSSC clear control register (write only) 0000h XSSCCONSET E802h XSSC set control register (write only) 0000h XSSCPORT E880h XSSC port control register 0000h XSSCRB E808h XSSC receive buffer XXXXh XSSCTB E806h XSSC transmit buffer 0000h Doc ID 11917 Rev 5 127/188 Register set 23.3 ST10F272B/ST10F272E Flash registers ordered by name Table 55 lists all Flash Control Registers which are implemented in the ST10F272 ordered by their name. These registers are physically mapped on the IBus, except for XFVTAUR0, which is mapped on XBus. Note that these registers are not bit-addressable. Table 55. Name 23.4 List of flash registers Physical address Description Reset value FARH 0x0008 0012 Flash address register - high 0000h FARL 0x0008 0010 Flash address register - low 0000h FCR0H 0x0008 0002 Flash control register 0 - high 0000h FCR0L 0x0008 0000 Flash control register 0 - low 0000h FCR1H 0x0008 0006 Flash control register 1 - high 0000h FCR1L 0x0008 0004 Flash control register 1 - low 0000h FDR0H 0x0008 000A Flash data register 0 - high FFFFh FDR0L 0x0008 0008 Flash data register 0 - low FFFFh FDR1H 0x0008 000E Flash data register 1 - high FFFFh FDR1L 0x0008 000C Flash data register 1 - low FFFFh FER 0x0008 0014 Flash error register 0000h FNVAPR0 0x0008 DFB8 Flash non volatile access protection reg.0 ACFFh FNVAPR1H 0x0008 DFBE Flash non volatile access protection reg.1 - high FFFFh FNVAPR1L 0x0008 DFBC Flash non volatile access protection reg.1 - low FFFFh FNVWPIR 0x0008 DFB0 Flash non volatile protection I register FFFFh XFVTAUR0 0x0000 EB50 XBus Flash volatile temporary access unprotection register 0 0000h Identification registers The ST10F272 have four Identification registers, mapped in ESFR space. These registers contain: 128/188 ● A manufacturer identifier ● A chip identifier with its revision ● A internal Flash and size identifier ● Programming voltage description Doc ID 11917 Rev 5 ST10F272B/ST10F272E Register set IDMANUF (F07Eh / 3Fh) 15 14 13 12 11 ESFR 10 9 8 Reset Value: 0403h 7 6 5 MANUF 4 3 2 1 0 0 0 0 1 1 R Table 56. R IDMANUF Bit Function Manufacturer identifier 020h: STMicroelectronics manufacturer (JTAG worldwide normalization). MANUF IDCHIP (F07Ch / 3Eh) 15 14 13 Table 57. 12 ESFR 11 10 9 8 6 5 3 2 1 REVID R R 0 IDCHIP Function IDCHIP Device identifier 110h: ST10F272 identifier (272). REVID Device revision identifier Xh: According to revision number. IDMEM (F07Ah / 3Dh) 14 13 12 ESFR 11 10 9 8 Reset Value: 3040h 7 6 5 MEMTYP MEMSIZE R R Table 58. 4 IDCHIP Bit 15 Reset Value: 110Xh 7 4 3 2 1 0 IDMEM Bit Function Internal memory size MEMSIZE Internal memory size is 4 x (MEMSIZE) (in Kbyte) 040h for 256 Kbytes (ST10F272) Internal memory type MEMTYP ‘0h’: ROM-Less ‘1h’: (M) ROM memory ‘2h’: (S) Standard Flash memory ‘3h’: (H) High performance Flash memory (ST10F272) ‘4h...Fh’: Reserved Doc ID 11917 Rev 5 129/188 Register set ST10F272B/ST10F272E IDPROG (F078h / 3Ch) 15 14 Table 59. 13 12 ESFR 11 10 9 8 Reset Value: 0040h 7 5 4 3 PROGVPP PROGVDD R R 2 1 0 IDPROG Bit Note: 6 Function PROGVDD Programming VDD voltage VDD voltage when programming EPROM or FLASH devices is calculated using the following formula: VDD = 20 x [PROGVDD] / 256 (volts) - 40h for ST10F272 (5V). PROGVPP Programming VPP voltage (no need of external VPP) - 00h All identification words are read only registers. The values written inside different Identification Register bits are valid only after the Flash initialization phase is completed. When code execution is started from internal memory (pin EA held high during reset), the Flash has certainly completed its initialization, so the bits of Identification Registers are immediately ready to be read out. On the contrary, when code execution is started from external memory (pin EA held low during reset), the Flash initialization is not yet completed, so the bits of Identification Registers are not ready. The user can poll bits 15 and 14 of IDMEM register: when both bits are read low, the Flash initialization is complete, so all Identification Register bits are correct. Before Flash initialization completion, the default setting of the different Identification Registers are the following: 130/188 ● IDMANUF 0403h ● IDCHIP 110xh (x = silicon revision) ● IDMEM F040h ● IDPROG 0040h Doc ID 11917 Rev 5 ST10F272B/ST10F272E Electrical characteristics 24 Electrical characteristics 24.1 Absolute maximum ratings Stressing the device above the rating listed in Table 60 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in Table 60 for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS) the voltage on pins with respect to ground (VSS) must not exceed the values defined by the Absolute Maximum Ratings. During Power-on and Power-off transients (including Standby entering/exiting phases), the relationships between voltages applied to the device and the main VDD shall be always respected. In particular power-on and power-off of VAREF shall be coherent with VDD transient, in order to avoid undesired current injection through the on-chip protection diodes. Table 60. Absolute maximum ratings Symbol Parameter Values Unit VDD Voltage on VDD pins with respect to ground (VSS) -0.5 to +6.5 V VSTBY Voltage on VSTBY pin with respect to ground (VSS) -0.5 to +6.5 V VAREF Voltage on VAREF pins with respect to ground (VSS) -0.3 to VDD V VAGND Voltage on VAGND pins with respect to ground (VSS) VSS V -0.5 to VDD + 0.5 V VIO Voltage on any pin with respect to ground (VSS) IOV Input current on any pin during overload condition ± 10 mA ITOV Absolute sum of all input currents during overload condition | 75 | mA TST Storage temperature -65 to +150 °C ESD ESD Susceptibility (Human Body Model) 2000 V Doc ID 11917 Rev 5 131/188 Electrical characteristics ST10F272B/ST10F272E 24.2 Recommended operating conditions Table 61. Recommended operating conditions Value Symbol VDD VSTBY VAREF Parameter Operating supply voltage Operationg stand-by supply voltage (1) Operating analog reference voltage (2) Unit Min Max 4.5 5.5 V 4.5 5.5 V TA Ambient temperature under bias -40 +125 °C TJ Junction temperature under bias -40 +150 °C 1. The value of the VSTBY voltage is specified in the range 4.5 - 5.5 Volt. Nevertheless, it is acceptable to exceed the upper limit (up to 6.0 Volt) for a maximum of 100 hours over the global 300000 hours, representing the lifetime of the device (about 30 years). On the other hand, it is possible to exceed the lower limit (down to 4.0 Volt) whenever RTC and 32kHz on-chip oscillator amplifier are turned off (only Stand-by RAM powered through VSTBY pin in Stand-by mode). When VSTBY voltage is lower than main VDD, the input section of VSTBY/EA pin can generate a spurious static consumption on VDD power supply (in the range of tenth of μA). 2. For details on operating conditions concerning the usage of A/D Converter refer to Section 24.7. 24.3 Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x ΘJA) (1) Where: TA is the Ambient Temperature in °C, ΘJA is the Package Junction-to-Ambient Thermal Resistance, in °C/W, PD is the sum of PINT and PI/O (PD = PINT + PI/O), PINT is the product of IDD and VDD, expressed in Watt. This is the Chip Internal Power, PI/O represents the Power Dissipation on Input and Output Pins; User Determined. Most of the time for the applications PI/O < PINT and may be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273°C) (2) Therefore (solving equations 1 and 2): K = PD x (TA + 273°C) + ΘJA x PD2 (3) Where: K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA. 132/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 62. Electrical characteristics Thermal characteristics Symbol Description Value (typical) Unit ΘJA Thermal Resistance Junction-Ambient PQFP 144 - 28 x 28 x 3.4 mm / 0.65 mm pitch LQFP 144 - 20 x 20 mm / 0.5 mm pitch LQFP 144 - 20 x 20 mm / 0.5 mm pitch on four layer FR4 board (2 layers signals / 2 layers power) 30 40 35 °C/W Based on thermal characteristics of the package and with reference to the power consumption figures provided in next tables and diagrams, the following product classification can be proposed. Anyhow, the exact power consumption of the device inside the application must be computed according to different working conditions, thermal profiles, real thermal resistance of the system (including printed circuit board or other substrata), I/O activity, and so on. Table 63. 24.4 Package characteristics Package Ambient temperature range CPU frequency range PQFP 144 –40 / +125°C 1 – 64MHz LQFP 144 °C 1 – 40MHz –40 / +125 Parameter interpretation The parameters listed in the following tables represent the characteristics of the ST10F272 and its demands on the system. Where the ST10F272 logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics, is included in the “Symbol” column. Where the external system must provide signals with their respective timing characteristics to the ST10F272, the symbol “SR” for System Requirement, is included in the “Symbol” column. Doc ID 11917 Rev 5 133/188 Electrical characteristics 24.5 ST10F272B/ST10F272E DC characteristics VDD = 5 V ± 10%, VSS = 0 V, TA = –40 to +125°C Table 64. DC characteristics Limit values Parameter Symbol min. max. Unit Test Condition Input low voltage (TTL mode) (except RSTIN, EA, NMI, RPD, XTAL1, READY) VIL SR – 0.3 0.8 V – Input low voltage (CMOS mode) (except RSTIN, EA, NMI, RPD, XTAL1, READY) VILS SR – 0.3 0.3 VDD V – Input low voltage RSTIN, EA, NMI, RPD VIL1 SR – 0.3 0.3 VDD V – Input low voltage XTAL1 (CMOS only) VIL2 SR – 0.3 0.3 VDD V Direct Drive mode Input low voltage READY (TTL only) VIL3 SR – 0.3 0.8 V – Input high voltage (TTL mode) (except RSTIN, EA, NMI, RPD, XTAL1) VIH 2.0 VDD + 0.3 V – Input high voltage (CMOS mode) (except RSTIN, EA, NMI, RPD, XTAL1) VIHS SR 0.7 VDD VDD + 0.3 V – Input high voltage RSTIN, EA, NMI, RPD VIH1 SR 0.7 VDD VDD + 0.3 V – Input high voltage XTAL1 (CMOS only) VIH2 SR 0.7 VDD VDD + 0.3 V Direct Drive mode Input high voltage READY (TTL only) VIH3 SR 2.0 VDD + 0.3 V – Input Hysteresis (TTL mode) (except RSTIN, EA, NMI, XTAL1, RPD) VHYS CC 400 700 mV (1) Input Hysteresis (CMOS mode) (except RSTIN, EA, NMI, XTAL1, RPD) VHYSSCC 750 1400 mV (1) Input Hysteresis RSTIN, EA, NMI VHYS1CC 750 1400 mV (1) Input Hysteresis XTAL1 VHYS2CC 0 50 mV (1) Input Hysteresis READY (TTL only) VHYS3CC 400 700 mV (1) Input Hysteresis RPD VHYS4CC 500 1500 mV (1) Output low voltage (P6[7:0], ALE, RD, WR/WRL, BHE/WRH, CLKOUT, RSTIN, RSTOUT) VOL CC – 0.4 0.05 V IOL = 8 mA IOL = 1 mA Output low voltage (P0[15:0], P1[15:0], P2[15:0], P3[15,13:0], P4[7:0], P7[7:0], P8[7:0]) VOL1 CC – 0.4 0.05 V IOL1 = 4 mA IOL1 = 0.5 mA Output low voltage RPD VOL2 CC – VDD 0.5 VDD 0.3 VDD V IOL2 = 85 μA IOL2 = 80 μA IOL2 = 60 μA 134/188 SR Doc ID 11917 Rev 5 ST10F272B/ST10F272E Table 64. Electrical characteristics DC characteristics (continued) Limit values Parameter Symbol min. max. Unit Test Condition Output high voltage (P6[7:0], ALE, RD, WR/WRL, BHE/WRH, CLKOUT, RSTOUT) VOH CC VDD – 0.8 VDD – 0.08 – V IOH = – 8 mA IOH = – 1 mA Output high voltage (2) (P0[15:0], P1[15:0], P2[15:0], P3[15,13:0], P4[7:0], P7[7:0], P8[7:0]) VOH1 CC VDD – 0.8 VDD – 0.08 – V IOH1 = – 4 mA IOH1 = – 0.5 mA Output high voltage RPD VOH2 CC 0 0.3 VDD 0.5 VDD – V IOH2 = – 2 mA IOH2 = – 750 μA IOH2 = – 150 μA Input leakage current (P5[15:0]) (3) |IOZ1 | CC – ±0.2 μA – Input leakage current (all except P5[15:0], P2[0], RPD, P3[12], P3[15]) |IOZ2 | CC – ±0.5 μA – Input leakage current (P2[0]) (4) |IOZ3 | CC – +1.0 –0.5 μA – Input leakage current (RPD) |IOZ4 | CC – ±3.0 μA – Input leakage current ( P3[12], P3[15]) |IOZ5 | CC – ±1.0 μA – Overload current (all except P2[0]) |IOV1 | SR – ±5 mA (1) (5) Overload current (P2[0]) (4) |IOV2 | SR – +5 –1 mA (1) (5) RSTIN pull-up resistor RRST CC 50 250 kΩ 100 kΩ nominal IRWH – –40 μA VOUT = 2.4 V IRWL –500 – μA VOUT = 0.4V IALEL 20 – μA VOUT = 0.4V IALEH – 300 μA VOUT = 2.4 V IP6H – –40 μA VOUT = 2.4 V Read/Write inactive current (6) (7) Read/Write active current ALE inactive current ALE active current (6) (8) (6) (7) (6) (8) Port 6 inactive current (P6[4:0]) (6) (7) (6) (8) –500 – μA VOUT = 0.4V IP0H 6) – –10 μA VIN = 2.0V IP0L 7) –100 – μA VIN = 0.8V Pin Capacitance (Digital inputs / outputs) CIO CC – 10 pF (1) (6) Run Mode Power supply current (9) (Execution from Internal RAM) ICC1 – 15 + 1.5 fCPU mA – Run Mode Power supply current (1) (10) (Execution from Internal Flash) ICC2 – 15 + 1.5 fCPU mA – Idle mode supply current (11) IID – 15 + 0.6 fCPU mA – Port 6 active current (P6[4:0]) PORT0 configuration current (6) IP6L Doc ID 11917 Rev 5 135/188 Electrical characteristics Table 64. ST10F272B/ST10F272E DC characteristics (continued) Limit values Parameter Symbol min. max. Unit Test Condition Power Down supply current (12) (RTC off, Oscillators off, Main Voltage Regulator off) IPD1 – 200 μA TA = 25°C Power Down supply current (12) (RTC on, Main Oscillator on, Main Voltage Regulator off) IPD2 – 400 Typical Value μA TA = 25°C Power Down supply current (12) (RTC on, 32kHz Oscillator on, Main Voltage Regulator off) IPD3 – 200 μA TA = 25°C – 120 μA VSTBY = 5.5 V TA = TJ = 25°C – 500 μA VSTBY = 5.5 V TA = TJ = 125°C – 120 μA VSTBY = 5.5 V TA = TJ = 25°C – 500 μA VSTBY = 5.5 V TA = TJ = 125°C – 2.5 mA – Stand-by supply current (12) (RTC off, Oscillators off, VDD off, VSTBY on) ISB1 Stand-by supply current (12) (RTC on, 32kHz Oscillator on, main VDD off, VSTBY on) ISB2 Stand-by supply current (1) (12) (VDD transient condition) ISB3 1. Not 100% tested, guaranteed by design characterization. 2. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is imposed by the external circuitry. 3. Port 5 leakage values are granted for not selected A/D Converter channel. One channels is always selected (by default, after reset, P5.0 is selected). For the selected channel the leakage value is similar to that of other port pins. 4. The leakage of P2.0 is higher than other pins due to the additional logic (pass gates active only in specific test modes) implemented on input path. Pay attention to not stress P2.0 input pin with negative overload beyond the specified limits: failures in Flash reading may occur (sense amplifier perturbation). Refer to next Figure 36 for a scheme of the input circuitry. 5. Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. VOV > VDD + 0.3 V or VOV < –0.3 V). The absolute sum of input overload currents on all port pins may not exceed 50mA. The supply voltage must remain within the specified limits. 6. This specification is only valid during Reset, or during Hold- or Adapt-mode. Port 6 pins are only affected, if they are used for CS output and the open drain function is not enabled. 7. The maximum current may be drawn while the respective signal line remains inactive. 8. The minimum current must be drawn in order to drive the respective signal line active. 9. The power supply current is a function of the operating frequency (fCPU is expressed in MHz). This dependency is illustrated in the Figure 37 below. This parameter is tested at VDDmax and at maximum CPU clock frequency with all outputs disconnected and all inputs at VIL or VIH, RSTIN pin at VIH1min: this implies I/O current is not considered. The device is doing the following: Fetching code from IRAM and XRAM1, accessing in read and write to both XRAM modules Watchdog Timer is enabled and regularly serviced RTC is running with main oscillator clock as reference, generating a tick interrupts every 192 clock cycles Four channel of XPWM are running (waves period: 2, 2.5, 3 and 4 CPU clock cycles): no output toggling Five General Purpose Timers are running in timer mode with prescaler equal to 8 (T2, T3, T4, T5, T6) ADC is in Auto Scan Continuous Conversion mode on all 16 channels of Port5 All interrupts generated by XPWM, RTC, Timers and ADC are not serviced 136/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Electrical characteristics 10. The power supply current is a function of the operating frequency (fCPU is expressed in MHz). This dependency is illustrated in the Figure 37 below. This parameter is tested at VDDmax and at maximum CPU clock frequency with all outputs disconnected and all inputs at VIL or VIH, RSTIN pin at VIH1min: this implies I/O current is not considered. The device is doing the following: - Fetching code from all sectors of IFlash, accessing in read (few fetches) and write to XRAM - Watchdog Timer is enabled and regularly serviced - RTC is running with main oscillator clock as reference, generating a tick interrupts every 192 clock cycles - Four channel of XPWM are running (waves period: 2, 2.5, 3 and 4 CPU clock cycles): no output toggling - Five General Purpose Timers are running in timer mode with prescaler equal to 8 (T2, T3, T4, T5, T6) - ADC is in Auto Scan Continuous Conversion mode on all 16 channels of Port5 - All interrupts generated by XPWM, RTC, Timers and ADC are not serviced 11. The Idle mode supply current is a function of the operating frequency (fCPU is expressed in MHz). This dependency is illustrated in the Figure 36. These parameters are tested and at maximum CPU clock with all outputs disconnected and all inputs at VIL or VIH, RSTIN pin at VIH1min. 12. This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at VDD – 0.1 V to VDD, VAREF = 0 V, all outputs (including pins configured as outputs) disconnected. Besides, the Main Voltage Regulator is assumed off: in case it is not, additional 1mA shall be assumed. Figure 36. Port2 test mode structure 2XWSXW EXIIHU 3 &&,2 &ORFN $OWHUQDWHGDWDLQSXW ,QSXW ODWFK )DVWH[WHUQDOLQWHUUXSWLQSXW 7H VWPRGH )ODVKVHQVHDPSOLILHU DQGFROXPQGHFRGHU *$3*5, Doc ID 11917 Rev 5 137/188 Electrical characteristics ST10F272B/ST10F272E Figure 37. Supply current versus the operating frequency (RUN and IDLE modes)  ,&& ,&& ,>P$@  ,,'     7    I&38>0+]@    *$3*5, 138/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E 24.6 Electrical characteristics Flash characteristics VDD = 5 V ± 10%, VSS = 0 V Table 65. Flash characteristics Parameter Typical Maximum TA = 25°C TA = 125°C Unit Notes 0 cycles(1) 0 cycles(1) 100k cycles 35 80 290 μs – 60 150 570 μs – Bank 0 Program (256K) (Double Word Program) 1.6 2.0 3.9 s – Sector Erase (8K) 0.6 0.5 0.9 0.8 1.0 0.9 s not preprogrammed preprogrammed Sector Erase (32K) 1.1 0.8 2.0 1.8 2.7 2.5 s not preprogrammed preprogrammed Sector Erase (64K) 1.7 1.3 3.7 3.3 5.1 4.7 s not preprogrammed preprogrammed Bank 0 Erase (256K) (3) 5.6 4.0 13.6 11.9 19.2 17.5 s not preprogrammed preprogrammed Recovery from Power-Down (tPD) – 40 40 μs Program Suspend Latency (4) – 10 10 μs – 30 30 μs Erase Suspend Request Rate (4) 20 20 20 ms Set Protection (4) 40 90 300 μs Word Program (32-bit) (2) Double Word Program (64-bit)(2)) Erase Suspend Latency (4) (4) Min delay between 2 requests 1. The figures are given after about 100 cycles due to testing routines (0 cycles at the final customer). 2. Word and Double Word Programming times are provided as average values derived from a full sector programming time: absolute value of a Word or Double Word Programming time could be longer than the average value. 3. Bank Erase is obtained through a multiple Sector Erase operation (setting bits related to all sectors of the Bank). As ST10F272 implements only one bank, the Bank Erase operation is equivalent to Module and Chip Erase operations. 4. Not 100% tested, guaranteed by Design Characterization. Doc ID 11917 Rev 5 139/188 Electrical characteristics Table 66. ST10F272B/ST10F272E Flash data retention characteristics Data retention time Number of program / erase cycles (average ambient temperature 60°C) (-40°C ≤ TA ≤ 125°C) 256Kbyte (code store) 64Kbyte (EEPROM emulation) (1) 0 - 100 > 20 years > 20 years 1,000 - > 20 years 10,000 - 10 years 100,000 - 1 year 1. Two 64Kbyte Flash Sectors may be typically used to emulate up to 4, 8 or 16Kbyte of EEPROM. Therefore, in case of an emulation of a 16Kbyte EEPROM, 100,000 Flash Program / Erase cycles are equivalent to 800,000 EEPROM Program/Erase cycles. For an efficient use of the EEPROM Emulation please refer to dedicated Application Note document (AN2061 - “EEPROM Emulation with ST10F2xx”). Contact your local field service, local sales person or STMicroelectronics representative to get copy of such a guideline document. 24.7 A/D converter characteristics VDD = 5V ± 10%, VSS = 0V, TA = –40 to +125°C, 4.5V ≤ VAREF ≤ VDD, VSS ≤ VAGND ≤ VSS + 0.2V Table 67. A/D converter characteristics Limit Values Parameter Symbol Unit min. Test Condition max. Analog Reference voltage 1) VAREF SR 4.5 VDD V Analog Ground voltage VAGND SR VSS VSS + 0.2 V Analog Input voltage 2) VAIN SR VAGND VAREF V Reference supply current IAREF CC – – 5 1 mA μA Running mode 3) Power Down mode Sample time tS CC 1 – μs 4) Conversion time tC CC 3 – μs 5) DNL CC –1 +1 LSB No overload INL CC –1.5 +1.5 LSB No overload OFS CC –1.5 +1.5 LSB No overload Total unadjusted error 6) TUE CC –2.0 –5.0 –7.0 +2.0 +5.0 +7.0 LSB Port5 Port1 - No overload 3) Port1 - Overload 3) Coupling Factor between inputs 3) 7) K CC – 10–6 – On both Port5 and Port1 CP1 CC – 3 pF CP2 CC – 4 6 pF CS – 3.5 pF Differential Non Linearity 6) Integral Non Linearity Offset Error 6) 6) Input Pin Capacitance 3) 8) Sampling Capacitance 3) 8) 140/188 CC Doc ID 11917 Rev 5 Port5 Port1 ST10F272B/ST10F272E Table 67. Electrical characteristics A/D converter characteristics Limit Values Parameter Symbol Unit min. Analog Switch Resistance 3) 8) Test Condition max. RSW CC – – 600 1600 W RAD CC – 1300 W Port5 Port1 1. VAREF can be tied to ground when A/D Converter is not in use: an extra consumption (around 200μA) on main VDD is added due to internal analogue circuitry not completely turned off: so, it is suggested to maintain the VAREF at VDD level even when not in use, and eventually switch off the A/D Converter circuitry setting bit ADOFF in ADCON register. 2. VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these cases will be 0x000H or 0x3FFH, respectively. 3. Not 100% tested, guaranteed by design characterization. 4. During the sample time the input capacitance CAIN can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depends on programming and can be taken from Table 68: A/D converter programming. 5. This parameter includes the sample time tS, the time for determining the digital result and the time to load the result register with the conversion result. Values for the conversion clock tCC depend on programming and can be taken from next Table 68. 6. DNL, INL, OFS and TUE are tested at VAREF = 5.0 V, VAGND = 0V, VDD = 5.0 V. It is guaranteed by design characterization for all other voltages within the defined voltage range. ‘LSB’ has a value of VAREF/1024. For Port5 channels, the specified TUE (± 2LSB) is guaranteed also with an overload condition (see IOV specification) occurring on maximum 2 not selected analog input pins of Port5 and the absolute sum of input overload currents on all Port5 analog input pins does not exceed 10 mA. For Port1 channels, the specified TUE is guaranteed when no overload condition is applied to Port1 pins: when an overload condition occurs on maximum 2 not selected analog input pins of Port1 and the input positive overload current on all analog input pins does not exceed 10 mA (either dynamic or static injection), the specified TUE is degraded (± 7LSB). To get the same accuracy, the negative injection current on Port1 pins shall not exceed -1mA in case of both dynamic and static injection. 7. The coupling factor is measured on a channel while an overload condition occurs on the adjacent not selected channels with the overload current within the different specified ranges (for both positive and negative injection current). 8. Refer to scheme reported in Figure 39. 24.7.1 Conversion timing control When a conversion is started, first the capacitances of the converter are loaded via the respective analog input pin to the current analog input voltage. The time to load the capacitances is referred to as sample time. Next the sampled voltage is converted to a digital value several successive steps, which correspond to the 10-bit resolution of the ADC. During these steps the internal capacitances are repeatedly charged and discharged via the VAREF pin. The current that has to be drawn from the sources for sampling and changing charges depends on the time that each respective step takes, because the capacitors must reach their final voltage level within the given time, at least with a certain approximation. The maximum current, however, that a source can deliver, depends on its internal resistance. The time that the two different actions during conversion take (sampling, and converting) can be programmed within a certain range in the ST10F272 relative to the CPU clock. The absolute time that is consumed by the different conversion steps therefore is independent from the general speed of the controller. This allows adjusting the A/D converter of the ST10F272 to the properties of the system: Doc ID 11917 Rev 5 141/188 Electrical characteristics ST10F272B/ST10F272E Fast conversion can be achieved by programming the respective times to their absolute possible minimum. This is preferable for scanning high frequency signals. The internal resistance of analog source and analog supply must be sufficiently low, however. High internal resistance can be achieved by programming the respective times to a higher value, or the possible maximum. This is preferable when using analog sources and supply with a high internal resistance in order to keep the current as low as possible. The conversion rate in this case may be considerably lower, however. The conversion times are programmed via the upper four bits of register ADCON. Bit fields ADCTC and ADSTC are used to define the basic conversion time and in particular the partition between sample phase and comparison phases. Table 68 lists the possible combinations. The timings refer to the unit TCL, where fCPU = 1/2TCL. A complete conversion time includes the conversion itself, the sample time and the time required to transfer the digital value to the result register. Table 68. A/D converter programming ADCTC ADSTC Sample Comparison Extra Total conversion 00 00 TCL * 120 TCL * 240 TCL * 28 TCL * 388 00 01 TCL * 140 TCL * 280 TCL * 16 TCL * 436 00 10 TCL * 200 TCL * 280 TCL * 52 TCL * 532 00 11 TCL * 400 TCL * 280 TCL * 44 TCL * 724 11 00 TCL * 240 TCL * 480 TCL * 52 TCL * 772 11 01 TCL * 280 TCL * 560 TCL * 28 TCL * 868 11 10 TCL * 400 TCL * 560 TCL * 100 TCL * 1060 11 11 TCL * 800 TCL * 560 TCL * 52 TCL * 1444 10 00 TCL * 480 TCL * 960 TCL * 100 TCL * 1540 10 01 TCL * 560 TCL * 1120 TCL * 52 TCL * 1732 10 10 TCL * 800 TCL * 1120 TCL * 196 TCL * 2116 10 11 TCL * 1600 TCL * 1120 TCL * 164 TCL * 2884 Note: The total conversion time is compatible with the formula valid for ST10F269, while the meaning of the bit fields ADCTC and ADSTC is no longer compatible: the minimum conversion time is 388 TCL, which at 40MHz CPU frequency corresponds to 4.85μs (see ST10F269). 24.7.2 A/D conversion accuracy The A/D Converter compares the analog voltage sampled on the selected analog input channel to its analog reference voltage (VAREF) and converts it into 10-bit digital data. The absolute accuracy of the A/D conversion is the deviation between the input analog value and the output digital value. It includes the following errors: 142/188 ● Offset error (OFS) ● Gain Error (GE) ● Quantization error ● Non-Linearity error (Differential and Integral) Doc ID 11917 Rev 5 ST10F272B/ST10F272E Electrical characteristics These four error quantities are explained below using Figure 38. Offset error Offset error is the deviation between actual and ideal A/D conversion characteristics when the digital output value changes from the minimum (zero voltage) 00 to 01 (Figure 38, see OFS). Gain error Gain error is the deviation between the actual and ideal A/D conversion characteristics when the digital output value changes from the 3FE to the maximum 3FF, once offset error is subtracted. Gain error combined with offset error represents the so-called full-scale error (Figure 38, OFS + GE). Quantization error Quantization error is the intrinsic error of the A/D converter and is expressed as 1/2 LSB. Non-linearity error Non-Linearity error is the deviation between actual and the best-fitting A/D conversion characteristics (see Figure 38): ● Differential Non-Linearity error is the actual step dimension versus the ideal one (1 LSBIDEAL). ● Integral Non-Linearity error is the distance between the center of the actual step and the center of the bisector line, in the actual characteristics. Note that for Integral NonLinearity error, the effect of offset, gain and quantization errors is not included. Note: Bisector characteristic is obtained drawing a line from 1/2 LSB before the first step of the real characteristic, and 1/2 LSB after the last step again of the real characteristic. 24.7.3 Total unadjusted error The Total Unadjusted Error specifies the maximum deviation from the ideal characteristic: the number provided in the Data Sheet represents the maximum error with respect to the entire characteristic. It is a combination of the Offset, Gain and Integral Linearity errors. The different errors may compensate each other depending on the relative sign of the Offset and Gain errors. Refer to Figure 38, see TUE. Doc ID 11917 Rev 5 143/188 Electrical characteristics ST10F272B/ST10F272E Figure 38. A/D conversion characteristic 2IIVHW(UURU2)6 *DLQ(UURU*( )) )(  )' ,GHDO&KDUDFWHULVWLF )& )% )$ %LVHFWRU&KDUDFWHULVWLF  'LJLWDO 2XW  +(;             ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH  7KHLGHDOWUDQVIHUFXUYH  'LIIHUHQWLDO1RQ/LQHDULW\(UURU '1/  ,QWHJUDO1RQ/LQHDULW\(UURU ,1/  &HQWHURIDVWHSRIWKHDFWXDOWUDQVIHUFXUYH  4XDQWL]DWLRQ(UURU /6%  7RWDO8QDGMXVWHG(UURU 78( /6% LGHDO       2IIVHW(UURU2)6     9$,1 /6%,'($/ >/6%,'($/ 9$5()@   *$3*5, 24.7.4 Analog reference pins The accuracy of the A/D converter depends on how accurate is its analog reference: a noise in the reference results in at least that much error in a conversion. A low pass filter on the A/D converter reference source (supplied through pins VAREF and VAGND), is recommended in order to clean the signal, minimizing the noise. A simple capacitive bypassing may be sufficient in most of the cases; in presence of high RF noise energy, inductors or ferrite beads may be necessary. In this architecture, VAREF and VAGND pins represents also the power supply of the analog circuitry of the A/D converter: there is an effective DC current requirement from the reference voltage by the internal resistor string in the R-C DAC array and by the rest of the analog circuitry. An external resistance on VAREF could introduce error under certain conditions: for this reasons, series resistance are not advisable, and more in general any series devices in the filter network should be designed to minimize the DC resistance. Analog Input pins To improve the accuracy of the A/D converter, it is definitively necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device, can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; 144/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Electrical characteristics besides, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter, can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC Filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth). Figure 39. A/D converter input pins scheme (;7(51$/&,5&8,7 ,17(51$/&,5&8,76&+(0( 9'' 6RXUFH 56 9$ )LOWHU &XUUHQW/LPLWHU 5) &KDQQHO 6HOHFWLRQ 6DPSOLQJ 56: 5$' 5/ &) &3 &3 &6 566RXUFH,PSHGDQFH 5))LOWHU5HVLVWDQFH &))LOWHU&DSDFLWDQFH 5/&XUUHQW/LPLWHU5HVLVWDQFH 56:&KDQQHO6HOHFWLRQ6ZLWFK,PSHGDQFH 5$'6DPSOLQJ6ZLWFK,PSHGDQFH &33LQ&DSDFLWDQFH WZRFRQWULEXWLRQV&3DQG&3 &66DPSOLQJ&DSDFLWDQFH *$3*5, Input Leakage and external circuit The series resistor utilized to limit the current to a pin (see RL in Figure 39), in combination with a large source impedance can lead to a degradation of A/D converter accuracy when input leakage is present. Data about maximum input leakage current at each pin are provided in the Data Sheet (see Section 24: Electrical characteristics). Input leakage is greatest at high operating temperatures, and in general it decreases by one half for each 10° C decrease in temperature. Considering that, for a 10-bit A/D converter one count is about 5mV (assuming VAREF = 5V), an input leakage of 100nA acting though an RL = 50kΩ of external resistance leads to an error of exactly one count (5mV); if the resistance were 100kΩ the error would become two counts. Eventual additional leakage due to external clamping diodes must also be taken into account in computing the total leakage affecting the A/D converter measurements. Another contribution to the total leakage is represented by the charge sharing effects with the sampling capacitance: being CS substantially a switched capacitance, with a frequency equal to the conversion rate of a single channel (maximum when fixed channel continuous conversion mode is selected), it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 250kHz, with CS equal to 4pF, a resistance of 1MΩ is obtained (REQ = 1 / fCCS, where fC represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance Doc ID 11917 Rev 5 145/188 Electrical characteristics ST10F272B/ST10F272E (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the following relation: Equation 1 R S + R F + R L + R SW + R AD 1 V A ⋅ ------------------------------------------------------------------------------ < --- LSB 2 R EQ The formula above provides a constraints for external network design, in particular on resistive path. A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 39), when the sampling phase is started (A/D switch close), a charge sharing phenomena is installed. Figure 40. Charge sharing timing diagram during sampling phase 9ROWDJH7UDQVLHQWRQ&6 9&6 9$ 9$ '9/6%   W 56:5$' &676 W 5/ &6&3&3  9$ *$3*5, In particular two different transient periods can be distinguished (see Figure 40): ● A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitance CP and CS are in series, and the time constant is: Equation 2 C P ⋅ CS τ1 = ( R SW + R AD ) ⋅ ----------------------CP + CS ● This relation can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D Converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Equation 3 τ 1 < ( RSW + R AD ) ⋅ CS < < T S 146/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Electrical characteristics The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to the following equation: Equation 4 V A1 ⋅ ( C S + C P1 + C P2 ) = V A ⋅ ( C P1 + C P2 ) ● A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Equation 5 τ 2 < R L ⋅ ( C S + C P1 + C P2 ) In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Equation 6 10 ⋅ τ2 = 10 ⋅ RL ⋅ ( C S + CP1 + C P2 ) ≤ TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. The following equation must be respected (charge balance assuming now CS already charged at VA1): Equation 7 VA2 ⋅( C S + C P1 + C P2 + C F ) = V A ⋅C F + V A1 ⋅( C P1 + C P2 + C S ) The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing (see Figure 41). Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. Doc ID 11917 Rev 5 147/188 Electrical characteristics ST10F272B/ST10F272E Figure 41. Anti-aliasing filter and conversion rate $QDORJ6RXUFH%DQGZLGWK 9$ 1RLVH 7&d5)&) &RQYHUVLRQ5DWHYV)LOWHU3ROH  I) I $QWLDOLDVLQJ)LOWHULQJ&RQGLWLRQ IdI& 1\TXLVW I I $QWL$OLDVLQJ)LOWHU I) 5&)LOWHUSROH 6DPSOHG6LJQDO6SHFWUXP I& FRQYHUVLRQ5DWH I) I I I& I *$3*5, The considerations above lead to impose new constraints to the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive the following relation between the ideal and real sampled voltage on CS: Equation 8 VA C P1 + C P2 + C F ----------- = -----------------------------------------------------------V A2 C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5V), assuming to accept a maximum error of half a count (~2.44mV), it is immediately evident a constraints on CF value: Equation 9 C F > 2048 ⋅C S In the next section an example of how to design the external network is provided, assuming some reasonable values for the internal parameters and making hypothesis on the characteristics of the analog signal to be sampled. 148/188 Doc ID 11917 Rev 5 ST10F272B/ST10F272E Electrical characteristics Example of external network sizing The following hypothesis are formulated in order to proceed in designing the external network on A/D Converter input pins: ● Analog Signal Source Bandwidth (f0):10kHz ● conversion Rate (fC):25kHz ● Sampling Time (TS):1μs ● Pin Input Capacitance (CP1):5pF ● Pin Input Routing Capacitance (CP2):1pF ● Sampling Capacitance (CS):4pF ● Maximum Input Current Injection (IINJ):3mA ● Maximum Analog Source Voltage (VAM):12V ● Analog Source Impedance (RS):100Ω ● Channel Switch Resistance (RSW):500Ω ● Sampling Switch Resistance (RAD):200Ω 1. Supposing to design the filter with the pole exactly at the maximum frequency of the signal, the time constant of the filter is: Equation 10 1 R C C F = ------------ = 15.9μs 2πf0 2. Using the relation between CF and CS and taking some margin (4000 instead of 2048), it is possible to define CF: Equation 11 C F = 4000 C ⋅ S = 16nF 3. As a consequence of step 1 and 2, RC can be chosen: Equation 12 1 RF = --------------------- = 995Ω ≅ 1kΩ 2πf 0 C F 4. Considering the current injection limitation and supposing that the source can go up to 12V, the total series resistance can be defined as: Equation 13 V AM R S + R F + R L = ------------- = 4kΩ I INJ from which is now simple to define the value of RL: Doc ID 11917 Rev 5 149/188 Electrical characteristics ST10F272B/ST10F272E Equation 14 V AM R L = ------------- – R F – R S = 2.9kΩ I INJ 5. Now the three element of the external circuit RF, CF and RL are defined. Some conditions discussed in the previous paragraphs have been used to size the component, the other must now be verified. The relation which allow to minimize the accuracy error introduced by the switched capacitance equivalent resistance is in this case: Equation 15 1 R EQ = --------------- = 10MΩ fC CS So the error due to the voltage partitioning between the real resistive path and CS is less then half a count (considering the worst case when VA = 5V): Equation 16 R S + R F + R L + R SW + R AD 1 V A ⋅ --------------------------------------------------------------------------- = 2.35mV < --- LSB R EQ 2 The other conditions to be verified is the time constants of the transients are really and significantly shorter than the sampling period duration TS: Equation 17 τ 1 = ( R SW + R AD ) ⋅ C S = 2.8ns
F272-BAG-T 价格&库存

很抱歉,暂时无法提供与“F272-BAG-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货