0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC574K72E5C6FAR

SPC574K72E5C6FAR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TQFP144

  • 描述:

    IC MCU 32BIT 2.5MB FLSH 144ETQFP

  • 数据手册
  • 价格&库存
SPC574K72E5C6FAR 数据手册
SPC574Kx 32-bit Power Architecture® based MCU for automotive applications Datasheet - production data eTQFP176 (24 x 24 x 1.4 mm) eTQFP144 (20 mm × 20 mm × 1.0 mm) Features • AEC-Q100 qualified • Two main 32-bit Power Architecture® VLE compliant CPU core (e200z4), dual issue, running in lockstep – Single-precision floating point operations – 16 KB local instruction SRAM and 64 KB local data SRAM – 4 KB I-Cache and 2 KB D-Cache • One 32-bit Power Architecture® VLE compliant I/O processor core (e200z2) – Single-precision floating point operations – Lightweight Signal Processing Auxiliary Processing Unit (LSP APU) instruction support for digital signal processing (DSP) – 16 KB local instruction SRAM and 48 KB local data SRAM • 2624 KB on-chip flash memory – Supporting EEPROM emulation (64 KB) • 64 KB on-chip general-purpose SRAM (+112 KB data RAM included in the CPUs) • Multi-channel direct memory access controller (eDMA) with 32 channels • Dual interrupt controller (INTC) • Dual phase-locked loops, including one Frequency-modulated • Generic timer module (GTM122) – Intelligent complex timer module – 88 channels (24 input and 64 output) – 3 programmable fine grain multi-threaded cores – 26 KB of dedicated SRAM – Hardware support for engine control, motor control and safety related applications • Enhanced analog-to-digital converter system with: – 1 supervisor 12-bit SAR analog converter – 4 separate fast 12-bit SAR analog converters – 2 separate 16-bit Sigma-Delta analog converters • 5 Deserial Serial Peripheral Interface (DSPI) modules • 5 LIN and UART communication interface (LINFlexD) modules • 3 MCAN interfaces with advanced shared memory scheme, two supporting ISO CAN-FD and one supporting TTCAN • One Ethernet controller 10/100 Mbps, compliant IEEE 802.3-2008 • Dual-channel FlexRay controller • Nexus development interface (NDI) per IEEEISTO 5001-2003 standard, with partial support for 2010 standard • Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1) • Single 5 V +/-10% Power supply supporting cold start conditions (down to 3.0 V) • Designed for eTQFP144 and eLQFP176 • System integration unit lite (SIUL) • Boot Assist Flash (BAF) supports factory programming using a serial bootload through the asynchronous CAN or LIN/UART July 2017 This is information on a product in full production. DocID023601 Rev 6 1/160 www.st.com SPC574Kx Table 1. Device summary Memory Flash size 2/160 Root Part Numbers Package eTQFP144 Package eLQFP176 2624 KByte SPC574K72E5 SPC574K72E7 2112 KByte SPC574K70E5 SPC574K70E7 DocID023601 Rev 6 SPC574Kx Contents Contents 1 2 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Feature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 LVDS pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Generic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 BISS port and power supply limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.7 Temperature profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.9 I/O pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.9.1 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.9.2 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.10 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.11 Reset pad (PORST, ESR0) electrical characteristics . . . . . . . . . . . . . . . . 48 3.12 Oscillator and FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.12.1 FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 DocID023601 Rev 6 3/160 5 Contents SPC574Kx 3.13 3.12.2 External oscillator (XOSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.12.3 Internal oscillator (IRCOSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.13.1 ADC input description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.13.2 SAR ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.13.3 S/D ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.14 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.15 LVDS Fast Asynchronous Serial Transmission (LFAST) pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.15.1 LFAST interface timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.15.2 LFAST and MSC/DSPI LVDS interface electrical characteristics . . . . . 74 3.15.3 LFAST PLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.16 Aurora LVDS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.17 Power management: PMC, POR/LVD, sequencing . . . . . . . . . . . . . . . . . 79 3.18 3.17.1 Power management integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.17.2 Main voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . 80 3.17.3 Device voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.17.4 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.18.1 3.19 4 4/160 Flash read wait state and address pipeline control settings . . . . . . . . . 88 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.19.1 Debug and calibration interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.19.2 DSPI timing with CMOS and LVDS pads . . . . . . . . . . . . . . . . . . . . . . . . 96 3.19.3 FEC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.19.4 FlexRay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.19.5 PSI5 timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.19.6 UART timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.19.7 I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.19.8 GPIO delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2 eTQFP144 case drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.3 eLQFP176 case drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.4 FusionQuad® case drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 DocID023601 Rev 6 SPC574Kx Contents 4.5.1 General notes for specifications at maximum junction temperature . . 132 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 DocID023601 Rev 6 5/160 5 List of tables SPC574Kx List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/160 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SPC574Kx device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 LVDSM pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 LVDSF pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Radiated emissions testing specification, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Conducted emissions testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 RF immunity—Direct Power Injection (DPI) test specifications . . . . . . . . . . . . . . . . . . . . . 27 ESD ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Device operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Emulation (buddy) device operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Temperature profile – Packaged parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Unbiased temperature profile – Packaged parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I/O pad specification descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 WEAK configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 41 MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 42 STRONG configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . 43 VERY STRONG configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . 44 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 PLL0 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 PLL1 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 External Oscillator electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Selectable load capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Internal RC oscillator electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ADC pin specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ADC pin specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 SARn ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 SDn ADC electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LVDS pad startup and receiver electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LFAST transmitter electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 MSC/DSPI LVDS transmitter electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LFAST PLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Aurora LVDS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Device Power Supply Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Device supply relation during power-up/power-down sequence. . . . . . . . . . . . . . . . . . . . . 84 Functional terminals state during power-up and reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Flash memory program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Flash memory Life Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Flash memory RWSC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 DocID023601 Rev 6 SPC574Kx Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. List of tables Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Aurora LVDS interface timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Aurora debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI channel frequency support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1), CPHA = 0 or 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DSPI LVDS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1) . . . . . . . . . . . . . . . . 110 RMII serial management channel timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 RMII receive signal timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 RMII transmit signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 TxEN output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TxD output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 RxD input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 PSI5 timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 UART frequency support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 I2C input timing specifications — SCL and SDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 I2C output timing specifications — SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 GPIO delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Package case numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Thermal characteristics for eTQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Thermal characteristics for eLQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Conditional text tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 DocID023601 Rev 6 7/160 7 List of figures SPC574Kx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. 8/160 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Periphery allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 144-pin QFP and 172-pin FQ configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 176-pin QFP and 216-pin FQ configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 BISS port limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 BISS power supply limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Weak pull-up electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I/O output DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 PLL integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Crystal/Resonator Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Input equivalent circuit (Fast SARn channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Input equivalent circuit (SARB channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 S/D impedance generic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 LFAST and MSC/DSPI LVDS timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Power-down exit time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Rise/fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LVDS pad external load diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Voltage monitor threshold definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 JTAG JCOMP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Nexus TDI/TDIC, TMS/TMSC, TDO/TDOC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Aurora timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 DSPI CMOS master mode – classic timing, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 DSPI CMOS master mode – classic timing, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DSPI PCS strobe (PCSS) timing (master mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DSPI CMOS master mode – modified timing, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 104 DSPI CMOS master mode – modified timing, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 104 DSPI PCS strobe (PCSS) timing (master mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DSPI LVDS master mode – modified timing, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 107 DSPI LVDS master mode – modified timing, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 107 DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1)—CPHA = 0 . . . . . . . . 111 DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1)—CPHA = 1 . . . . . . . . 112 RMII serial management channel timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 RMII receive signal timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 RMII transmit signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TxEN signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TxEN signal propagation delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 TxD signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DocID023601 Rev 6 SPC574Kx Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. List of figures TxD Signal propagation delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 I2C input/output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 eTQFP144 – STMicroelectronics package mechanical drawing (1 of 2) . . . . . . . . . . . . . 123 eTQFP144 – STMicroelectronics package mechanical drawing (2 of 2) . . . . . . . . . . . . . 124 eLQFP176 – STMicroelectronics package mechanical drawing (1 of 2) . . . . . . . . . . . . . 125 eLQFP176 – STMicroelectronics package mechanical drawing (2 of 2) . . . . . . . . . . . . . 126 FusionQuad® QFP172 package mechanical drawing (1 of 2) . . . . . . . . . . . . . . . . . . . . . 127 FusionQuad® QFP172 package mechanical drawing (2 of 2) . . . . . . . . . . . . . . . . . . . . . 128 FusionQuad® QFP216 package mechanical drawing (1 of 2) . . . . . . . . . . . . . . . . . . . . . 129 FusionQuad® QFP216 package mechanical drawing (2 of 2) . . . . . . . . . . . . . . . . . . . . . 130 Product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 DocID023601 Rev 6 9/160 9 Introduction SPC574Kx 1 Introduction 1.1 Document overview This document provides electrical specifications, pin assignments, and package diagrams for the SPC574Kx series of microcontroller units (MCUs). For functional characteristics, see the SPC574Kx microcontroller reference manual. 1.2 Description This family of MCUs targets automotive powertrain controller applications for four-cylinder gasoline and diesel engines, chassis control applications, transmission control applications, steering and braking applications, as well as low-end hybrid applications. Many of the applications are considered to be functionally safe and the family is designed to achieve ISO26262 ASIL-D compliance. 1.3 Device feature summary Table 2. SPC574Kx device feature summary Feature Description Process Main processor 55 nm Core e200z4 Number of main cores 1 Number of checker cores 1 Local RAM (per main core) 16 KB Instruction 64 KB Data Single precision floating point Yes VLE Yes Cache I/O processor 4 KB Instruction 2 KB Data Core e200z2 Local RAM 16 KB Instruction 48 KB Data Single precision floating point Yes LSP Yes VLE Yes Cache No Main processor frequency 160 MHz I/O processor frequency 80 MHz MPU 10/160 Yes DocID023601 Rev 6 SPC574Kx Introduction Table 2. SPC574Kx device feature summary(Continued) Feature Description Semaphores Yes CRC channels 2 Software watchdog timer (task SWT/safety SWT) 3 (2/1) Core Nexus class 3+ Sequence processing unit (SPU) Yes Debug and calibration interface (DCI) / run control module Yes System SRAM 64 KB Flash memory 2560 KB Flash memory fetch accelerator 2 × 2 × 256-bit Data flash memory (EEPROM) 4 × 16 KB Flash memory overlay RAM 16 KB UTEST flash memory 16 KB Boot assist flash (BAF) 16 KB Calibration interface 64-bit IPS slave DMA channels 32 DMA Nexus Class 3 LINFlexD (UART/MSC) 5 (3/2) M_CAN (ISO CAN-FD/TTCAN) 3 (2/1) DSPI (SPI/MSC/sync SCI) 5 (3/2/1)(1) Microsecond bus downlink Yes SENT bus 6 I2C 1 PSI5 bus 2 FlexRay 1 × dual channel Ethernet (RMII) Yes Zipwire (SIPI/LFAST) interprocessor bus High speed System timers 6 PIT channels 2 AUTOSAR® (STM) 64-bit PIT GTM timer 24 input channels, 64 output channels GTM RAM 26 KB Interrupt controller 360 sources ADC (SAR) 5 ADC (SD) 2 Temperature sensor Yes DocID023601 Rev 6 11/160 159 Introduction SPC574Kx Table 2. SPC574Kx device feature summary(Continued) Feature Description Self-test control unit (STCU2) Yes PLL Dual PLL with FM Internal linear voltage regulator 1.2 V 5 V(2) 3.3 V(3) External power supplies Low-power modes Stop mode Slow mode Packages eTQFP144 eLQFP176 172-pin FusionQuad®(4) 216-pin FusionQuad®(4) 1. One of the two MSC DSPIs is remapped to be used as sync SCI. 2. The device can be powered up at 5V only. 3. Optional: can be used for special I/O segments. 4. Also available in a 172-pin FusionQuad® package, which allows an eTQFP144 pin-compatible package for development, and in a 216-pin FusionQuad® package, which allows an eLQFP176 pin-compatible package for development. 1.4 Block diagram Figure 1 and Figure 2 show the top-level block diagrams. 12/160 DocID023601 Rev 6 Peripheral Domain – 40 MHz LFAST SWT_3 JTAGM JTAGC DCI SPU Nexus Aurora Router Computational Shell– Fast Domain 160 MHz Introduction 13/160 Figure 1. Block diagram SWT_2 32ch. eDMA with E2E ECC Zipwire (LFAST & SIPI) DocID023601 Rev 6 Ethernet 32 ADD 32 DATA E200 z225 – 80 MHz Peripheral Core_2 STM_0 Nexus Data Trace 16 KB I-MEM E200 z420 – 160 MHz Main Core_0 Nexus3p Scaler SP-FPU VLE I-Mem Control LSP Unified Backdoor Interface with E2E ECC D-MEM Control 48 KB D-MEM Concentrator With E2E ECC 40 MHz Nexus Data Trace STM_2 Concentrator With E2E ECC 80 MHz FlexRay SWT_0 Dual INTC DMAMUX 32 ADD 32DATA Scaler SP-FPU I-Mem Control I-Cache Control 16KB I-MEM 4 KB 2 way D-MEM Control D-Cache Control 64KB D-MEM 2 KB 2 way E200 z419 – 160 MHz Checker Core_0s Delayed Lock-step with Redundancy Checkers Delay RCCU Unified Backdoor Interface with E2E ECC Unified Backdoor Interface With E2E ECC Delay VLE ScalerSPFPU I-Mem Control I-Cache Control D-MEM Control D-Cache Control RCCU Core Memory Protection Unit (CMPU) Core Memory Protection Unit (CMPU) Core Memory Protection Unit (CMPU) BIU with E2E ECC BIU with E2E ECC BIU with E2E ECC Load/ 32 ADD Store 32DATA Instruction 32 ADD 64 DATA M1 M0 M2 Slow Cross Bar Switch (XBAR_1, AMBA 2.0 v6 AHB) – 32 bit – 80 MHz System Memory Protection Unit(SMPU_1) S3 S2 Peripheral Bridge A E2E ECC Decorate Storage 40 MHz VLE Nexus3p Peripheral Bridge B E2E ECC Decorate Storage 40 MHz 32 ADD 32 DATA Peripheral Cluster A (See “Periphery allocation” diagram ) Peripheral Cluster B (See“Periphery allocation” diagram ) Safety Lake Load/ 32 ADD Store 64 DATA M3 M5 M0 M1 M4 Fast Cross Bar Switch (XBAR_0, AMBA 2.0 v6 AHB) – 64 bit– 160 MHz S0 S7 32 ADD 64 DATA Intelligent Bridging Bus Gasket Peripherals allocation to the bridges is based on safety and pinout requirements System Memory Protection Unit(SMPU_0) S4 S0 S1 SRAM 64 KB Overlay RAM 16 KB SRAM Control with E2E ECC Decorated Access 32 ADD 64 DATA S2 32 ADD 64 DATA Overlay FLASH Controller Backdoor for System RAM Dual Ported Incl. Set-Associative Prefetch Buffers with E2E ECC 256 Page Line FLASH 2.5 MB Calibration Interface EEPROM 4 x16KB NVM (Single Module) Buddy Device Interface SPC574Kx 32 ADD 32 DATA S1 Instruction 32 ADD 64 DATA Introduction SPC574Kx Figure 2. Periphery allocation Peripheral Bus B PBRIDGE_B SARADC_2 SARADC_6 PSI5_1 SENT SRX_1 DSPI_2 DSPI_5 LINFlexD_2 LINFlexD_15 SDADC_3 FCCU CRC_1 10 x CMU Peripheral Cluster B BAR SSCM PASS Flash control LFAST_1 LFAST_0 SIPI_0 SIUL2 MC_ME MC_CGM CMU_PLL PLLDIG XOSC IRCOSC MC_RGM PMCDIG MC_PCU WKPU PIT_0 PIT_1 TDM DTS JDC STCU JTAGM MEMU IMA CRC_0 DMAMUX_0 DMAMUX_1 DMAMUX_2 DMAMUX_3 Peripheral Bus A SENT SRX_0 IIC_0 DSPI_0 DSPI_1 DSPI_4 LINFlexD_0 LINFlexD_1 LINFlexD_14 CAN SRAM CCCU M_TTCAN_0 M_CAN_1 M_CAN_2 SDADC_0 PBRIDGE_A XBAR_0 XBAR_1 SMPU_0 SMPU_1 XBIC_0 XBIC_1 PRAM_0 PCM PFLASH_0 SEMA4 INTC_0 SWT_0 SWT_2 SWT_3 STM_0 STM_2 DMA_0 FEC_0 GTM SARADC_0 SARADC_4 SARADC_B PSI5_0 FLEXRAY_0 Peripheral Cluster A 14/160 DocID023601 Rev 6 SPC574Kx 1.5 Introduction Feature overview On-chip modules within SPC574Kx include the following features: • • • One main processor core and one checker core, single-issue, 32-bit CPU core complexes (e200z4), running in lockstep – Power Architecture embedded specification compliance – Instruction set enhancement allowing variable length encoding (VLE), encoding a mix of 16-bit and 32-bit instructions, for code size footprint reduction – Single-precision floating point operations – 16 KB local instruction SRAM and 64 KB local data SRAM – 4 KB I-Cache and 2 KB D-Cache I/O processor, single issue, 32-bit CPU core complexes (e200z2), with – Power Architecture embedded specification compliance – Instruction set enhancement allowing variable length encoding (VLE), encoding a mix of 16-bit and 32-bit instructions, for code size footprint reduction – Single-precision floating point operations – Lightweight Signal Processing Auxiliary Processing Unit (LSP APU) instruction support for digital signal processing (DSP) – 16 KB local instruction SRAM and 48 KB local data SRAM 2624 KB (2560 KB code + 64 KB EEPROM) on-chip flash memory: supports read during program and erase operations, and multiple blocks allowing EEPROM emulation • 64 KB on-chip general-purpose SRAM (+ 112 KB data RAM included in the CPUs) • Multi-channel direct memory access controller (eDMA) with 32 channels • Dual interrupt controller (INTC) • Dual phase-locked loops with stable clock domain for peripherals and FM modulation domain for computational shell • Dual crossbar switch architecture for concurrent access to peripherals, flash memory, or SRAM from multiple bus masters with end-to-end ECC • System integration unit lite (SIUL2) • Boot assist Flash (BAF) supports factory programming using a serial bootload through the asynchronous CAN or LIN/UART • Generic timer module (GTM122) • – Intelligent complex timer module – 88 channels (24 input and 64 output) – 3 programmable fine grain multi-threaded cores – 26 KB of dedicated SRAM – 24-bit wide channels – Hardware support for engine control, motor control and safety related applications Enhanced analog-to-digital converter system with: – • 1 supervisor 12-bit SAR analog converter – 4 separate fast 12-bit SAR analog converters – 2 separate 16-bit Sigma-Delta analog converters 5 Deserial Serial Peripheral Interface (DSPI) modules DocID023601 Rev 6 15/160 159 Introduction • 16/160 SPC574Kx 5 LIN and UART communication interface (LINFlexD) modules – LINFlexD_0 is a Master/Slave – LINFlexD_1, LINFlexD_2, LINFlexD_14, and LINFlexD_15 are Masters • 3 MCAN interfaces with advanced shared memory scheme, two supporting ISO CANFD and one supporting TTCAN • One Ethernet controller 10/100 Mbps, compliant IEEE 802.3-2008 • Dual-channel FlexRay controller • Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with partial support for 2010 standard • Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1) • Single 5 V +/-10% Power supply supporting cold start conditions (down to 3.0 V) and the supply voltage down to 1.2 V for core logic DocID023601 Rev 6 SPC574Kx Package pinouts and signal descriptions 2 Package pinouts and signal descriptions 2.1 Package pinouts The QFP and FusionQuad® package pinouts are shown in Figure 3 and Figure 4. 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PF[2] PF[3] VDD_HV_IO_MAIN PF[5] PF[4] PC[10] PC[11] PC[12] VDD_HV_IO_FLEX PC[13] PC[14] PC[15] PE[12] PD[0] PD[1] PD[2] PD[3] VDD_HV_FLA NC VDD_HV_PMC/VDD_HV_IO_MAIN PH[4] PH[3] PE[11] PE[10] PH[2] PA[11] PA[10] PH[1] PH[0] VDD_HV_IO_MAIN PG[15] PA[0] PA[13] PA[12] PA[1] PA[2] Figure 3. 144-pin QFP and 172-pin FQ configuration (top view) A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 NC NC NC PK[14] PM[5] PM[6] VDD_LV_BD VDD_HV_IO_MAIN VSS_HV LVDS Test In−* LVDS Test In+* VSS_HV NC VDD_HV_IO_MAIN eTQFP144 / FQ1723 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 VSS4 VSS_HV TX1N TX1P VDD_HV_IO_BD VSS_HV TX0N TX0P VSS_HV VDD_LV_BD NC VSS_HV CLKN CLKP VSS_HV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 PE[9] PE[8] PD[5] PD[4] PE[7] PE[6] PE[5] PG[14] PG[13] VDD_LV ESR0 PORST PA[4] PF[15] TESTMODE PF[14] PA[6] PA[5] PA[9] PA[7] PA[8] PA[14] PD[6] PD[7] PF[13] VDD_HV_IO_JTAG XTAL EXTAL VSSOSC VDD_LV VDD_HV_IO_MAIN PF[12] PF[11] PF[10] PF[9] PF[8] PB[7] PB[6] PG[7] PG[8] VSS_HV_ADR_S VDD_HV_ADR_S VSS_HV_ADV VDD_HV_ADV PG[9] PG[10] PG[11] PG[12] PE[15] PE[14] PB[4] PE[13] PD[11] PB[3] PB[2] PB[1] PB[0] VDD_LV VDD_HV_IO_MAIN PF[1] PF[0] PD[9] PD[10] PB[11] PB[10] PB[9] PB[8] PA[3] PD[8] PF[6] PF[7] PA[15] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PD[14] PD[15] PC[9] PC[8] PC[7] PC[6] PC[5] PC[4] PC[3] NC/VDD_LV_BD5 PC[2] PC[1] PC[0] PE[0] PE[1] PE[2] PD[12] PD[13] PE[3] PE[4] PI[9] VDD_LV VDD_HV_IO_MAIN VDD_HV_ADR_D VSS_HV_ADR_D PG[1] PG[2] PG[3] PG[4] PB[15] PB[14] PB[13] PB[12] PB[5] PG[5] PG[6] Note: 1 Pins marked “NC” have no connection. 2 LVDS Test pins marked with an asterix (*) can be soldered to GND or left unconnected. 3 The eLQFP144 and FQ172 package pinouts are nearly identical, with the following exception: A1–A28 are additional pins that appear only on the FQ172 package. 4 The shaded area in the middle of the pinout is an exposed pad that on both the eLQFP144 and FQ172 packages is the primary V SS connection. 5 Pin 10 is NC in the 144-pin package and VDD_LV_BD in the 172-pin package. DocID023601 Rev 6 17/160 159 Package pinouts and signal descriptions SPC574Kx 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PH[12] PH[13] PF[2] PF[3] PH[14] VDD_HV_IO_MAIN PF[5] PF[4] PH[15] PC[10] PC[11] PC[12] VDD_HV_IO_FLEX PC[13] PC[14] PC[15] PE[12] PD[0] PD[1] PD[2] PD[3] VDD_HV_FLA NC/VDD_LV_BD5 VDD_HV_PMC/VDD_HV_IO_MAIN PH[7] PH[8] PH[9] PH[10] PH[4] PH[3] PE[11] PE[10] PH[2] PA[11] PA[10] PH[1] PH[0] VDD_HV_IO_MAIN PG[15] PA[0] PA[13] PA[12] PA[1] PA[2] Figure 4. 176-pin QFP and 216-pin FQ configuration (top view) A40 A39 A38 A37 A36 A35 A34 A33 A32 A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 NC NC NC NC NC NC PK[14] PM[5] PM[6] PM[4] VDD_HV_IO_MAIN VSS_HV LVDS Test In–* LVDS Test In+* VSS_HV NC NC VDD_HV_IO_MAIN NC NC eLQFP176 / FQ2163 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 VSS4 NC NC NC VSS_HV TX1N TX1P VDD_HV_IO_BD VSS_HV TX0N TX0P VSS_HV VDD_LV_BD NC NC NC NC VSS_HV CLKN CLKP VSS_HV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PE[9] PE[8] PD[5] PD[4] PE[7] PE[6] PE[5] PG[14] PG[13] VDD_LV ESR0 PORST PA[4]_ESR1 PF[15] TESTMODE PH[11] PF[14] PA[6] PA[5] PA[9] PA[7] PA[8] PA[14] PD[6] PD[7] PF[13] PI[15] PI[14] VDD_HV_IO_JTAG XTAL EXTAL VSSOSC VDD_LV VDD_HV_IO_MAIN PF[12] PF[11] PF[10] PF[9] PH[6] PH[5] PJ[4] PJ[3] PF[8] PJ[2] PB[7] PB[6] PI[6] PI[7] PG[7] PG[8] VSS_HV_ADR_S VDD_HV_ADR_S VSS_HV_ADV VDD_HV_ADV PG[9] PG[10] PG[11] PG[12] PE[15] PE[14] PB[4] PE[13] PD[11] PB[3] PB[2] PB[1] PB[0] VDD_LV VDD_HV_IO_MAIN PI[13] PI[12] PI[11] PI[10] PF[1] PF[0] PD[9] PD[10] PB[11] PB[10] PB[9] PB[8] PA[3] PD[8] PF[6] PF[7] PJ[0] PJ[1] PA[15] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PD[14] PD[15] PC[9] PC[8] PC[7] PC[6] PC[5] PC[4] PC[3] NC/VDD_LV_BD5 PC[2] PC[1] PC[0] PE[0] PE[1] PE[2] PD[12] PD[13] PE[3] PE[4] PG[0] PI[8] PI[9] VDD_LV VDD_HV_IO_MAIN VDD_HV_ADR_D VSS_HV_ADR_D PG[1] PG[2] PG[3] PG[4] PB[15] PB[14] PB[13] PB[12] PB[5] PI[0] PI[1] PI[2] PI[3] PI[4] PI[5] PG[5] PG[6] Note: 1 Pins marked “NC” have no connection. 2 FQ LVDS Test pins marked with an asterix (*) can be soldered to GND or left unconnected. 3 The eLQFP176 and FQ216 package pinouts are nearly identical, with the following exception: A1–A40 are additional pins that appear only on the FQ216 package. 4 The shaded area in the middle of the pinout is an exposed pad that on both the eLQFP176 and FQ216 packages is the primary V SS connection. 5 Pins 10 and 154 are NC in the 176-pin package and VDD_LV_BD in the 216-pin package. 18/160 DocID023601 Rev 6 SPC574Kx Package pinouts and signal descriptions Note: The FusionQuad® package is for development purposes only and is not available as a production device. The FusionQuad package is not intended to be qualified and is available only in small quantities. 2.2 Pin descriptions The following sections provide signal descriptions and related information about device functionality and configuration. 2.2.1 Power supply and reference voltage pins The Supply Pins Table contains information on power supply and reference pins. See the Signal Table (Excel file) attached to this document. Locate the paperclip symbol on the left side of the PDF window, and click it. Double-click on the excel file to open it and select the Supply Pins Table tab. Note: All ground supplies must be toed to ground. They must not float. 2.2.2 System pins Table 3 contains information on system pin functions for the devices. Table 3. System pins QFP pin Symbol Description Direction 144 FQ172 176 FQ216 PORST Power on reset with Schmitt trigger characteristics and Bidirectional noise filter. PORST is active low 97 121 ESR0 External functional reset with Schmitt trigger characteristics and noise filter. ESR0 is active low Bidirectional 98 122 Input only 94 118 Output 82 103 Input 81 102 TESTMODE Pin for testing purpose only. An internal pull-down is implemented on the TESTMODE pin to prevent the device from entering TESTMODE. It is recommended to connect the TESTMODE pin to VSS_HV_IO on the board. The value of the TESTMODE pin is latched at the negation of reset and has no affect afterward. The device will not exit reset with the TESTMODE pin asserted during power-up. XTAL Analog output of the oscillator amplifier circuit needs to be grounded if oscillator is used in bypass mode. EXTAL Analog input of the oscillator amplifier circuit when oscillator is not in bypass mode Analog input for the clock generator when oscillator is in bypass mode DocID023601 Rev 6 19/160 159 Package pinouts and signal descriptions 2.2.3 SPC574Kx LVDS pins Table 4 contains information on LVDS pin functions for the devices. Table 4. LVDSM pin descriptions Package pin number Functional block SIPI LFAST(1) Port pin Signal PF[13] SIPI_RXN Interprocessor Bus LFAST, LVDS Receive Negative Terminal I 84 107 PD[7] SIPI_RXP Interprocessor Bus LFAST, LVDS Receive Positive Terminal I 85 108 PD[6] SIPI_TXN Interprocessor Bus LFAST, LVDS Transmit Negative Terminal O 86 109 PA[14] SIPI_TXP Interprocessor Bus LFAST, LVDS Transmit Positive Terminal O 87 110 O 88 111 DEBUG_TXP Debug LFAST, LVDS Transmit Negative Terminal O 89 112 PA[9] DEBUG_RXP Debug LFAST, LVDS Receive Negative Terminal I 90 113 PA[5] DEBUG_RXN Debug LFAST, LVDS Receive Positive Terminal I 91 114 PD[3] SCK_N DSPI 4 Microsecond Bus Serial Clock, LVDS Negative Terminal O 128 156 PD[2] SCK_P DSPI 4 Microsecond Bus Serial Clock, LVDS Positive Terminal O 129 157 PD[1] SOUT_N DSPI 4 Microsecond Bus Serial Data, LVDS Negative Terminal O 130 158 PD[0] SOUT_P DSPI 4 Microsecond Bus Serial Data, LVDS Positive Terminal O 131 159 PF[9] SCK_N DSPI 5 Microsecond Bus Serial Clock, LVDS Negative Terminal O 74 95 PF[10] SCK_P DSPI 5 Microsecond Bus Serial Clock, LVDS Positive Terminal O 75 96 PF[11] SOUT_N DSPI 5 Microsecond Bus Serial Data, LVDS Negative Terminal O 76 97 PF[12] SOUT_P DSPI 5 Microsecond Bus Serial Data, LVDS Positive Terminal O 77 98 Signal description Debug LFAST(1)(2) PA[8] DEBUG_TXN Debug LFAST, LVDS Transmit Positive Terminal PA[7] DSPI 4 Microsecond Bus DSPI 5 Microsecond Bus 20/160 DocID023601 Rev 6 Direction eTQFP144, eLQFP176, FQ172 FQ216 SPC574Kx Package pinouts and signal descriptions Table 4. LVDSM pin descriptions(Continued) Package pin number Port pin Signal Signal description Direction Differential DSPI 2 PD[3] SCK_N Differential DSPI 2 Clock, LVDS Negative Terminal O 128 156 PD[2] SCK_P Differential DSPI 2 Clock, LVDS Positive Terminal O 129 157 PD[1] SOUT_N Differential DSPI 2 Serial Output, LVDS Negative Terminal O 130 158 PD[0] SOUT_P Differential DSPI 2 Serial Output, LVDS Positive Terminal O 131 159 PF[13] SIN_N Differential DSPI 2 Serial Input, LVDS Negative Terminal I 84 107 PD[7] SIN_P Differential DSPI 2 Serial Input, LVDS Positive Terminal I 85 108 Differential DSPI 5 PF[9] SCK_N Differential DSPI 5 Clock, LVDS Negative Terminal O 74 95 PF[10] SCK_P Differential DSPI 5 Clock, LVDS Positive Terminal O 75 96 PF[11] SOUT_N Differential DSPI 5 Serial Output, LVDS Negative Terminal O 76 97 PF[12] SOUT_P Differential DSPI 5 Serial Output, LVDS Positive Terminal O 77 98 PF[13] SIN_N Differential DSPI 5 Serial Input, LVDS Negative Terminal I 84 107 PD[7] SIN_P Differential DSPI 5 Serial Input, LVDS Positive Terminal I 85 108 Functional block eTQFP144, eLQFP176, FQ172 FQ216 1. DRCLK and TCK/DRCLK usage for SIPI LFAST and Debug LFAST are described in the SPC574Kxx reference manual, refer to SIPI LFAST and Debug LFAST chapters. 2. Pads use special enable signal from DCI block: DCI driven enable for Debug LFAST pads is transparent to user. DocID023601 Rev 6 21/160 159 Package pinouts and signal descriptions SPC574Kx Table 5. LVDSF pin descriptions Functional Pad block Nexus — Aurora High — Speed Trace — 2.2.4 Package pin number Signal Signal description Direction eTQFP144 FQ172 eLQFP176 FQ216 TXAP Not available O — — — — TXAN Not available O — — — — TXBP (TX0P) Nexus Aurora High Speed Trace Lane 0, LVDS Positive Terminal O — A7 — A10 — TXBN (TX0N) Nexus Aurora High Speed Trace Lane 0, LVDS Negative Terminal O — A6 — A9 — TXCP (TX1P) Nexus Aurora High Speed Trace Lane 1, LVDS Positive Terminal O — A3 — A6 — TXCN (TX1N) Nexus Aurora High Speed Trace Lane 1, LVDS Negative Terminal O — A2 — A5 — TXDP Not available O — — — — — TXDN Not available O — — — — — CLKP (BD- Nexus Aurora High AGBTCLKP) Speed Trace Clock, LVDS Positive Terminal O — A13 — A19 — CLKN (BD- Nexus Aurora High AGBTCLKN) Speed Trace Clock, LVDS Negative Terminal O — A12 — A18 — LPBK_P Aurora High Speed Trace Loopback, LVDS Positive Terminal (LVDS Test In +) I — A18 — A27 — LPBK_N Aurora High Speed Trace Loopback, LVDS Negative Terminal (LVDS Test In −) I — A19 — A28 Generic pins The I/O Signal Description Table contains information on generic pins. See the I/O Signal Description and Input Multiplexing Tables (Excel file) attached to this document. Locate the paperclip symbol on the left side of the PDF window, and click it. Double-click on the excel file to open it and select the I/O Signal Description Table tab. 22/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 3 Electrical characteristics 3.1 Introduction This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” (Controller Characteristics) is included in the “Symbol” column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” (System Requirement) is included in the “Symbol” column. Note: Parameters given to junction temperature TJ = 150 °C are for packaged parts . Note: Within this document, VDD_HV_IO refers to supply pins VDD_HV_IO_MAIN, VDD_HV_IO_JTAG, VDD_HV_IO_FLEX, VDD_HV_OSC and VDD_HV_FLA. 3.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate. Table 6. Parameter classifications Classification tag 3.3 Tag description P Parameters are guaranteed by production testing on each individual device. C Parameters are guaranteed by the design characterization by measuring a statistically relevant sample size across process variations. T Parameters are guaranteed by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Parameters are derived mainly from simulations. Absolute maximum ratings Table 7 describes the maximum ratings of the device. Table 7. Absolute maximum ratings(1) Value Symbol Parameter Conditions Unit Min Max Cycle T Lifetime power cycles — — 1000 k — VSS_HV D Ground voltage — — — — VDD_LV D 1.2 V core supply voltage(2),(3),(4) — –0.3 1.5 V DocID023601 Rev 6 23/160 159 Electrical characteristics SPC574Kx Table 7. Absolute maximum ratings(1)(Continued) Value Symbol Parameter Conditions Unit Min Max VDD_LV_BD D 1.2 V Emulation module supply — –0.3 1.5 V VDD_HV_IO(5) D I/O supply voltage(6) — –0.3 6.0 V VDD_HV_IO_BD D I/O Emulation module supply — –0.3 6.0 V VDD_HV_PMC D Power Management Controller supply voltage(6) — –0.3 6.0 V VSS_HV_ADV (3),(3),(4) D SAR and S/D ADC ground voltage Reference to VSS_HV –0.3 0.3 V (7) D SAR and S/D ADC supply voltage Reference to VSS_HV_ADV –0.3 6.0 V VSS_HV_ADR_D D S/D ADC ground reference — –0.3 0.3 V VDD_HV_ADR_D D S/D ADC voltage reference Reference to VSS_HV_ADR_D –0.3 6.0 V VSS_HV_ADR_S D SAR ADC ground reference — –0.3 0.3 V VDD_HV_ADR_S D SAR ADC voltage reference Reference to VSS_HV_ADR_S –0.3 6.0 V VDD_LV_BD – VDD_LV — Emulation module supply differential to 1.2 V core supply — –0.3 1.5 V VSS – VSS_HV_ADR_D D VSS_HV_ADR_D differential voltage — –0.3 0.3 V VSS – VSS_HV_ADR_S D VSS_HV_ADR_S differential voltage — –0.3 0.3 V VSS_HV – VSS_HV_ADV D VSS_HV_ADV differential voltage — –0.3 0.3 V VIN D I/O input voltage range(8) — –0.3 6.0 V Relative to VSS_HV_IO(9),(10) –0.3 — Relative to VDD_HV_IO(9),(10) — 0.3 Relative to VDD_HV_ADV — 0.3 VDD_HV_ADV IINJD T Maximum DC injection current for digital pad Per pin, applies to all digital pins –5 5 mA IINJA T Maximum DC injection current for analog pad Per pin, applies to all analog pins –5 5 mA −7 8 mA –10 10 –11 11 — –90 90 mA — –55 175 °C IMAXD SR Maximum output DC current when Medium driven Strong Very strong IMAXSEG TSTG 24/160 SR Maximum current per power segment(11) T Storage temperature range and non-operating times DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 7. Absolute maximum ratings(1)(Continued) Value Symbol Parameter Conditions Unit Min Max STORAGE — Maximum storage time, assembled No supply; storage part programmed in ECU temperature in range –40 °C to 85 °C — 20 years TSDR T Maximum solder temperature(12) Pb-free package — — 260 °C MSL T Moisture sensitivity level(13) — — 3 — tXRAY T X-ray screen time — 200 ms At 80÷130 KV; 20÷50 µA; max 1 Gy dose 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 125 °C, remaining time as defined in note 3 and note 4 3. Allowed 1.375 – 1.45 V for 10 hours cumulative time at maximum TJ = 125 °C, remaining time as defined in note 4 4. 1.32 – 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.288 V at maximum TJ = 125 °C 5. VDD_HV_IO refers to supply pins VDD_HV_IO_MAIN, VDD_HV_IO_JTAG, VDD_HV_IO_FLEX, VDD_HV_OSC, VDD_HV_FLA. 6. Allowed 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, TJ = 125 °C, remaining time at or below 5.5 V. 7. Includes ADC supplies VDD_HV_ADV_S and VDD_HV_ADV_D. VDD_HV_ADV is also the supply for the device temperature sensor and bandgap reference. 8. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current condition on a pin, the voltage equals the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies significantly across process and temperature, but a value of 0.3V can be used for nominal calculations. 9. VDD_HV_IO/VSS_HV_IO refers to supply pins and corresponding grounds: VDD_HV_IO_MAIN, VDD_HV_IO_FLEX, VDD_HV_IO_JTAG, VDD_HV_OSC, VDD_HV_FLA. 10. Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameters IINJD and IINJA). 11. Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDD_HV_IO power segment is defined as one or more GPIO pins located between two VDD_HV_IO supply pins. 12. Solder profile per IPC/JEDEC J-STD-020D. 13. Moisture sensitivity per JEDEC test method A112. 3.4 Electromagnetic compatibility (EMC) Table 8 and Table 9 describe the EMC characteristics of the device. DocID023601 Rev 6 25/160 159 Electrical characteristics SPC574Kx Table 8. Radiated emissions testing specification(1), (2) Coupling structure Test setup Function Functional configuration BISS radiated emissions limit Entire IC (G) TEM Reference test C1-S3 36 dBµV Reference test with SSCG C1-S3 36 dBµV Memory copy C4-S2 36 dBµV Memory copy with SSCG C4-S2 36 dBµV 1. Reference “BISS Generic IC EMC Test Specification”, version 1.2, section 9.3, “Emission test configuration for ICs with CPU”. 2. The EMC parameters are classified as "T", validated on testbench. Table 9 contains the conducted emissions testing specifications. The BISS port limits are described in Section 3.4.1, BISS port and power supply limits. Table 9. Conducted emissions testing specifications(1) Module Signal Single/ Functional Differential configuration Emission test method BISS limits(2)(3) 150 Ω CAN TXCAN Single C1-S3, C5-S3 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 MRST - Diff Yes As per Figure 5 MTSR - Diff Yes As per Figure 5 RXCAN DSPI SCLK - Diff SCK Ethernet FlexRay Differential Single C1-S3, C5-S3 Yes As per Figure 5 MRST (4) Yes As per Figure 5 MTSR (4) Yes As per Figure 5 Yes As per Figure 5 RXD(5) Yes As per Figure 5 REF_CLK Yes As per Figure 5 TXCLK Yes As per Figure 5 RXCLK Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 TXD(5) TXD C1-S3, C5-S3 Single Single C1-S3 C1-S3, C5-S3 RXD I 2C SCL Single C1-S3 SDA PSI5 PSI-TX Single C1-S3 PSI-RX SENT 26/160 SENT Single DocID023601 Rev 6 C1-S3 SPC574Kx Electrical characteristics Table 9. Conducted emissions testing specifications(1)(Continued) Module Single/ Functional Differential configuration Signal Emission test method BISS limits(2)(3) 150 Ω SIPI RF_TX Differential C1-S3 RF_RX SysClk Tx Single (10/20 MHz) SysClk Rx SCI TXD Single C1-S3 RXD LINFlex LINTX Single C1-S3, C5-S3 LINRX Oscillator XTAL Single C1-S3 EXTAL (6) Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 Yes As per Figure 5 External clock SYSCLK Single C1-S3 Yes As per Figure 5 GPIO GPIO(7) Single C1-S3, C5-S3 Yes As per Figure 5 1.2 V core supply voltage VDD_LV N/A C1-S3 Yes As per Figure 6 VDD_HV_IO N/A C1-S3 Yes As per Figure 6 VDD_HV_PMC N/A C1-S3 Yes As per Figure 6 I/O supply voltage Power management controller (PMC) supply voltage 1. Reference “BISS Generic IC EMC Test Specification”, section 9.3, “Emission test configuration for ICs with CPU”. 2. All pins of the microcontroller are defined as ‘Local’ (according to BISS specification). Therefore, the supply pin on the microcontroller are tested to ‘Local’ requirements. 3. Limits apply to signal under test in static mode only 4. BISS port limits measured with SCK frequency below 10 MHz 5. BISS port limits: The 25/50 MHz clocks for an Ethernet RMII interface could cause the limits specified in Figure 5 (BISS port limits) to be exceeded unless care is taken in the application to ensure high EMC. 6. BISS port limits measured with clock less than 10 MHz and only one clock enabled at a time 7. BISS port limits: GPIO toggling less than 50 kHz and not more than 40 GPIO pins toggling simultaneously Table 10. RF immunity—Direct Power Injection (DPI) test specifications(1) Module Signal Monitor pin Function BISS signal/power supply limit class Oscillator XTAL EXTCLK C11 0 dBm Reset PORST GPIO C10 12 dBm ESR0 GPIO C10 12 dBm Test controller TESTMODE GPIO C10 12 dBm VDD core VDD_LV Power C10 12 dBm VDD I/O VDD_HV_IO Power C10 12 dBm VDD FlexRay I/O VDD_HV_IO_FLX Power C10 12 dBm DocID023601 Rev 6 27/160 159 Electrical characteristics SPC574Kx Table 10. RF immunity—Direct Power Injection (DPI) test specifications(1)(Continued) Module Signal Monitor pin Function BISS signal/power supply limit class VDD regulator VDD_HV_PMC Power C10 0 dBm VDD Flash VDD_HV_FLA Power C10 12 dBm VDD JTAG/OSC VDD_HV_IO_JTAG Power C10 0 dBm 1. Reference “BISS Generic IC EMC Test Specification”, section 9.4, “Immunity test configuration for ICs with CPU”. 3.4.1 BISS port and power supply limits Figure 5 shows the BISS port limits behavior and Figure 6 shows BISS power supply limits behavior. Class limits apply to signal under test in static mode only. All pins of the microcontroller are defined as ‘Local’ (according to BISS specification). Therefore, the supply pins on the microcontroller are tested to ‘Local’ requirements. Figure 5. BISS port limits dBμV BISS Limits 80 -Limits 4 layer 70 60 50 40 30 20 10 0 0.1 1 10 100 (Start = 0.10, Stop = 1000.00) MHz 28/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Figure 6. BISS power supply limits dBμV BISS Limits 80 70 -Limits 4 Layer 60 50 40 30 20 10 0 0.1 1 10 100 (Start = 0.10, Stop = 1000.00) MHz 3.5 Electrostatic discharge (ESD) The following table describes the ESD ratings of the device. Table 11. ESD ratings(1)(2) Parameter ESD for Human Body Model (HBM)(3) ESD for field induced Charged Device Model (CDM) (4) C Conditions Value Unit T All pins 2000 V T All pins 500 V 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature. Maximum DC parametrics variation within 10% of maximum specification” 3. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing 4. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level 3.6 Operating conditions The following table describes the operating conditions for the device for which all specifications in the datasheet are valid, except where explicitly noted. The device operating conditions must not be exceeded or the functionality of the device is not guaranteed. DocID023601 Rev 6 29/160 159 Electrical characteristics SPC574Kx Table 12. Device operating conditions(1) Value Symbol C Parameter Conditions Unit Min Typ Max Frequency fSYS SR C Device operating frequency(2) TJ = −40 °C to 150 °C — — 160 MHz fLBIST SR C Self-test operating frequency TJ = −40 °C to 150 °C — — 20 MHz Temperature TJ SR P Junction Temperature –40.0 — 150.0 °C TA (TL to TH) SR P Ambient temperature –40.0 — 125.0 °C Refer to Section 3.17: Power management: PMC, POR/LVD, sequencing V Voltage VDD_LV CC P Core supply voltage measured at external pin(3),(4) VDD_HV_IO_MAIN SR P I/O supply voltage LVD400/HVD600 enabled 4.5 — 5.5 C LVD400/HVD600 disabled (5),(6),(7) 4.0 — 5.9 3.0 — 5.9 C VDD_HV_IO_JTAG VDD_HV_IO_FLEX VDD_HV_PMC(9) SR SR SR P JTAG I/O supply voltage(8) C 5 V range 4.5 — 5.5 3.3 V range 3.0 — 3.6 C 5 V range 4.0 — 5.9 P FlexRay I/O supply voltage C 5 V range 4.5 — 5.5 3.3 V range 3.0 — 3.6 4.5 — 5.5 3.0 — 5.5 3.0 — 5.5 V LVD295/ enabled 4.5 — 5.5 V LVD295/ disabled(5),(6) 4.0 — 5.9 LVD295/ disabled(5),(6) 3.7 — 5.9 4.5 VDD_HV_ADV 5.5 P Power Management Full functionality Controller (PMC) C supply voltage VDD_HV_FLA(10), CC P Flash core voltage VDD_HV_ADV SR P SARADC and SDADC supply C voltage (11) C VDD_HV_ADR_D SR P SD ADC supply reference voltage C — — C VDD_HV_ADR_D – VDD_HV_ADV 30/160 SR V D SD ADC reference differential voltage — DocID023601 Rev 6 4.0 5.9 3.0 4.0 — — 25 V V V V mV SPC574Kx Electrical characteristics Table 12. Device operating conditions(1)(Continued) Value Symbol C Parameter Conditions Unit Min Typ Max VSS_HV_ADR SR P SD ADC ground reference voltage — VSS_HV_ADR_D – VSS_HV_ADV SR D VSS_HV_ADR_D differential voltage — –25 — 25 mV P SARADC reference — 4.5 — 5.5 V VDD_HV_ADR_S(12) SR VSS_HV_ADV V C 4.0 5.9 C 2.0 4.0 VDD_HV_ADR_S – VDD_HV_ADV SR D SARADC reference differential voltage — — — 25 mV VSS_HV_ADR_S – VSS_HV_ADV SR D VSS_HV_ADR_S differential voltage — –25 — 25 mV VSS_HV_ADV – VSS SR D VSS_HV_ADV differential voltage — –25 — 25 mV VRAMP_HV SR D Slew rate on HV power supply pins — — — 100 V/ms VIN SR C I/O input voltage range — 0 — 5.5 V Injection current IIC SR T DC injection current Digital pins and (per pin)(13),(14),(15) analog pins –3.0 — 3.0 mA IMAXSEG SR D Maximum current per power segment(16) –80 — 80 mA — 1. The ranges in this table are design targets and actual data may vary in the given range. 2. Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the SPC574Kxx Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device. 3. Core voltage as measured on device pin to guarantee published silicon performance. 4. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. Refer to the Power Management and Reset Generation Module chapters in the SPC574Kxx Microcontroller Reference Manual for further information. 5. Maximum voltage is not permitted for entire product life. See Table 7: Absolute maximum ratings. 6. When internal LVD/HVDs are disabled, external monitoring is required to guarantee correct device operation. 7. Reduced output/input capabilities below 4.2 V. See performance derating values in I/O pad electrical characteristics 8. VDD_HV_IO_JTAG supply is shorted with VDD_HV_OSC supply within package. 9. VDD_HV_PMC is shorted with VDD_HV_IO_MAIN in the package. 10. Flash read operation is supported for a minimum VDD_HV_FLA value of 3.0 V. Flash read, program, and erase operations are supported for a minimum VDD_HV_FLA value of 3.0 V. 11. This voltage can be measured on the pin but is not supplied by an external regulator. The Power Management Controller generates PORs based on this voltage. 12. VDD_HV_ADR_S must be between 4.5 V and 5.5 V for accurate reading of the device Temperature Sensor. 13. Full device lifetime without performance degradation 14. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See Table 7: Absolute maximum ratings for maximum input current for reliability requirements. DocID023601 Rev 6 31/160 159 Electrical characteristics SPC574Kx 15. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current is injected through the clamp diode to the supply rail. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. 16. Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDD_HV_IO power segment is defined as one or more GPIO pins located between two VDD_HV_IO supply pins. Table 13. Emulation (buddy) device operating conditions(1) Value Symbol C Parameter Conditions Unit Min Typ Max Frequency — SR C Standard JTAG 1149.1/1149.7 frequency — — — 50 MHz — SR C High-speed debug frequency — — — 320 MHz — SR T Data trace frequency — — — 1250 MHz Temperature TJ_BD SR P Device junction operating temperature range — –40.0 — 150.0 °C TA _BD SR P Ambient operating temperature range — –40.0 — 125.0 °C Voltage SR P Buddy core supply voltage — 1.2 — 1.32 V VDD_HV_IO_BD SR P Buddy I/O supply voltage — 3.0 — 5.5 V VRAMP_LV_BD SR D Buddy slew rate on core power supply pins — — — 100 V/ms VRAMP_HV_BD SR D Buddy slew rate on HV power supply pins — — — 100 V/ms VDD_LV_BD 1. The ranges in this table are design targets and actual data may vary in the given range. 3.7 Temperature profile Table 14. Temperature profile – Packaged parts Vehicle category Operation Temperature Passenger cars Active operation TJ = 150 °C 3000 TJ = 135 °C — TJ = 125 °C 9000 TJ = 110 °C 6000 TJ = 85 °C 1000 TJ = 40 °C 500 TJ = –40 °C 500 Total operation time 32/160 Cumulated duration (hours) DocID023601 Rev 6 20000 SPC574Kx Electrical characteristics Table 14. Temperature profile – Packaged parts(Continued) Vehicle category Operation Passenger cars – low end Active operation Commercial vehicles Temperature Active operation Cumulated duration (hours) TA = 120 to 125 °C 100 TA = 115 to 120 °C 100 TA = 110 to 115 °C 100 TA = 105 to 110 °C 100 TA = 100 to 105 °C 100 TA = 95 to 100 °C 100 TA = 90 to 95 °C 100 TA = 85 to 90 °C 150 TA = 80 to 85 °C 300 TA = 50 to 80 °C 800 TA = 40 to 50 °C 1600 TA = 25 to 40 °C 2200 TA = –10 to 25 °C 1500 TA = –40 to –10 °C 500 Total operation time 7750 TJ = 150 °C 360 TJ = 140 °C 1200 TJ = 130 °C 2100 TJ = 120 °C 29000 TJ = 110 °C 3600 TJ = 85 °C 2740 TJ = 40 °C 500 TJ = –40 °C 500 Total operation time 40000 Table 15. Unbiased temperature profile – Packaged parts Operation Temperature Cumulated duration (years) Unbiased TJ > 60 °C 0(1) TJ = –40 to 60 °C 20 1. Temperatures above 60 °C are accumulated against active operation biased condition. 3.8 DC electrical specifications The following table describes the DC electrical specifications. DocID023601 Rev 6 33/160 159 Electrical characteristics SPC574Kx Table 16. DC electrical specifications(1) Symbol C Parameter Conditions Value Min Typ Max Unit IDD CC P Operating current all supply rails fMAX(2) — — 450 mA IDDPE CC C Operating current all supplies including program/erase fMAX(3) — — 470 mA IDDAPP(4) CC C Operating current all supplies with typical application T fSYS = 160 MHz TJ < 142 °C — — 340 mA fSYS = 140 MHz TJ < 165 °C — — 360 IDD_MAIN_CORE_AC CC C Main Core 0 dynamic operating current fSYS = 160 MHz — — 56 mA IDD_CHKR_CORE_AC CC C Checker Core 0 dynamic operating current fSYS = 160 MHz — — 40 mA Tamb = 55oC Total device consumption on VDD_HV_IO, including consumption for VDD_LV generation. No I/O activity — — 35 mA Tamb = 40oC — — 33 CC P Debug/Emulation low voltage supply operating current(6),(7) TJ = 150 °C VDD_LV_BD = 1.32 V — — 250 mA CC D Debug/Emulation high voltage supply operating current (Aurora + JTAGM/LFAST) TJ = 150 °C — — 130 mA CC T Maximum short term current spike(8) < 20 µs observation window — — 90 mA — — 20 % — — 90(11) mA 100 — — μA IDDAR CC T VDD_HV_IO After Run operating current at 1.32 V(5) P IDD_LV_BD IDD_HV_IO_BD ISPIKE dI CC T Current difference ratio to 20 µs observation average current window (dI/avg(I))(9) ISR CC D Current variation during boot/shut-down IDDOFF —(10) CC T Power-off current on VDD_HV_IO = 2.5 V VDD_HV_IO supply rails(12) VREF_BG_T CC P Bandgap trimmed reference voltage TJ = –40 °C to 150 °C VDD_HV_ADV = 5 V + 10% 1.200 — 1.237 V VREF_BG_TC CC C Bandgap temperature coefficient(13) TJ = –40 °C to 150 °C VDD_HV_ADV = 5 V + 10% — — 50 ppm/ °C 34/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 16. DC electrical specifications(1)(Continued) Symbol VREF_BG_LR C Parameter Conditions CC C Bandgap line regulation C Value Min Typ Max TJ = –40 °C VDD_HV_ADV = 5 V + 10% — — 8000 TJ = 150 °C VDD_HV_ADV = 5 V + 10% — — 4000 Unit ppm/ V 1. The ranges in this table are design targets and actual data may vary in the given range. 2. Application with maximum consumption, excludes lock step (safety) core, unloaded I/O with LVDS pins active and terminated. 3. Application with maximum consumption, excludes lock step (safety) core, unloaded I/O with LVDS pins active and terminated, with active flash program and erase. 4. Typical application consumption, unloaded I/O with LVDS pins active and terminated. 5. Device in STOP mode running from the internal RCOSC, with the external oscillator and ADCs disabled. Includes regulator consumption for VDD_LV generation. Includes static I/O current with no pins toggling. VDD_HV refers to all 5 V supplies (VDD_HV_ADV, VDD_HV_IO_MAIN, VDD_HV_IO_JTAG, VDD_HV_IO_FLEX, and VDD_HV_PMC). The IDDAR current can be further reduced by disabling the I/O pad compensation cells via the PDO bits in the ME__MC registers in the mode entry module (MC_ME). 6. Leakage of VDD_LV_BD at junction temperature of 150 °C with production device powered estimated at 120 mA 7. Aurora and LFAST enabled, further consumption of 70 mA on VDD_HV_IO_BD supply for Aurora transmission line 8. ISPIKE value is only valid for the use cases defined for the IDDAPP and IDDAPP_LV specifications and its conditions given in Table 16 (DC electrical specifications). 9. Moving window, valid for IDDAPP and its conditions given in Table 16 (DC electrical specifications), with a maximum of 90 mA for the worst case application. 10. Condition 1: For power on period from 0 V up to normal operation with reset asserted. Condition 2: From reset asserted until IRCOSC frequency. Condition 3: Increasing frequency from IRCOSC to PLL full frequency. Condition 4: reverse order for power down to 0 V. 11. Current variation is considered during boot or during shut-down sequence. Progressive clock switching should be use to guarantee low current variation.This does not include current requested for the loading of the capacitances on the VDD_LV domain. Please refer to Section 3.17.1, Power management integration, Iclamp specification 12. IDDOFF is the minimum guaranteed consumption of the device during power-up. It can be used to correctly size power-off ballast in case of current injection during power-off state.Power up/down current transients can be limited by controlling the clock ramp rates with the Progressive Clock Frequency Switching block on the device. 13. The temperature coefficient and line regulation specifications are used to calculate the reference voltage drift at an operating point within the specified voltage and temperature operating conditions. 3.9 I/O pad specification The following table describes the different pad type configurations. Table 17. I/O pad specification descriptions Pad type Description Weak configuration Provides a good compromise between transition time and low electromagnetic emission. Pad impedance is centered around 800 Ω. Medium configuration Provides transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Pad impedance is centered around 200 Ω. Strong configuration Provides fast transition speed; used for fast interface. Pad impedance is centered around 50 Ω. DocID023601 Rev 6 35/160 159 Electrical characteristics SPC574Kx Table 17. I/O pad specification descriptions(Continued) Pad type Description Very strong configuration Provides maximum speed and controlled symmetric behavior for rise and fall transition. Used for fast interface including Ethernet and FlexRay interfaces requiring fine control of rising/falling edge jitter. Pad impedance is centered around 40 Ω. Differential configuration A few pads provide differential capability providing very fast interface together with good EMC performances. Input only pads These low input leakage pads are associated with the ADC channels. Note: Each I/O pin on the device supports specific drive configurations. See the signal description table in the device reference manual for the available drive configurations for each I/O pin. 3.9.1 I/O input DC characteristics Table 18 provides input DC electrical characteristics as described in Figure 7. Figure 7. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL VINTERNAL (SIUL register) Table 18. I/O input DC electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max TTL VIHTTL SR P Input high level TTL 4.5 V < VDD_HV_IO < 5.5 V(6) 2 — VDD_HV_IO + 0.3 VILTTL SR P Input low level TTL 4.5 V < VDD_HV_IO < 5.5 V(6) –0.3 — 0.8 0.275 — — — — 100 VHYSTTL — C Input hysteresis TTL VDRFTTTL — C Input VIL/VIH temperature drift TTL 36/160 (6) 4.5 V < VDD_HV_IO < 5.5 V — DocID023601 Rev 6 V mV SPC574Kx Electrical characteristics Table 18. I/O input DC electrical characteristics(Continued) Value Symbol C Parameter Conditions Unit Min Typ Max AUTOMOTIVE VIHAUT(1) SR P Input high level AUTOMOTIVE 4.5 V < VDD_HV_IO < 5.5 V 3.8 — VDD_HV_IO + 0.3 V VILAUT(2) SR P Input low level AUTOMOTIVE 4.5 V < VDD_HV_IO < 5.5 V –0.3 — 2.1(3) V VHYSAUT(4) — C Input hysteresis AUTOMOTIVE 4.5 V < VDD_HV_IO < 5.5 V 0.4(6) — — V VDRFTAUT — C Input VIL/VIH temperature drift 4.5 V < VDD_HV_IO < 5.5 V — — 100(5) mV 0.65 * VDD_HV_IO — VDD_HV_IO + 0.3 V 0.6 * VDD_HV_IO — VDD_HV_IO + 0.3 V –0.3 — 0.35 * VDD_HV_IO V –0.3 — 0.4 * VDD_HV_IO V 0.1 * VDD_HV_IO — — V — — 100(5) mV — — 1 µA CMOS VIHCMOS_H (6) SR C P VIHCMOS(6) SR C P VILCMOS_H (6) SR C P VILCMOS(6) SR C P VHYSCMOS — C Input high level CMOS (with hysteresis) Input high level CMOS (without hysteresis) Input low level CMOS (with hysteresis) 3.0 V < VDD_HV_IO < 3.6 V 4.5 V < VDD_HV_IO < 5.5 V 3.0 V < VDD_HV_IO < 3.6 V 4.5 V < VDD_HV_IO < 5.5 V 3.0 V < VDD_HV_IO < 3.6 V 4.5 V < VDD_HV_IO < 5.5 V Input low level CMOS (without hysteresis) 3.0 V < VDD_HV_IO < 3.6 V 4.5 V < VDD_HV_IO < 5.5 V Input hysteresis CMOS 3.0 V < VDD_HV_IO < 3.6 V 4.5 V < VDD_HV_IO < 5.5 VDRFTCMOS — C Input VIL/VIH temperature drift CMOS V(7) 3.0 V < VDD_HV_IO < 3.6 V 4.5 V < VDD_HV_IO < 5.5 V INPUT CHARACTERISTICS(8) ILKG CC Digital input leakage ILKG_MED CC C Digital input leakage for 4.5 V < VDD_HV < 5.5 V MEDIUM pad VSS_HV < VIN < VDD_HV — — 500 nA CIN CC D Digital input capacitance GPIO input pins — — 10 pF Ethernet input pins — — 8 P 4.5 V < VDD_HV < 5.5 V 0.1*VDD_HV < VIN < 0.9*VDD_HV TJ < 150 °C 1. A good approximation for the variation of the minimum value with supply is given by formula VIHAUT = 0.69 × VDD_HV_IO. 2. A good approximation for the variation of the maximum value with supply is given by formula VILAUT = 0.49 × VDD_HV_IO. 3. Sum of VILAUT and VHYSAUT is guaranteed to remain above 2.6 V in the 4.5 V < VDD_HV_IO < 5.5 V. Production test done with 2.06 V limit at cold, Tj < 25 oC. 4. A good approximation of the variation of the minimum value with supply is given by formula VHYSAUT = 0.11 × VDD_HV_IO. 5. In a 1 ms period, assuming stable voltage and a temperature variation of ±30 °C, VIL/VIH shift is within ±50 mV. For SENT requirement refer to Note: on page 46. DocID023601 Rev 6 37/160 159 Electrical characteristics SPC574Kx 6. Only for VDD_HV_IO_JTAG and VDD_HV_IO_FLEX power segment. The TTL threshold are controlled by the VSIO bit. VSIO[VSIO_xx] = 0 in the range 3.0 V < VDD_HV_IO < 3.6 V, VSIO[VSIO_xx] = 1 in the range 4.5 V < VDD_HV_IO < 5.5 V. 7. Only for VDD_HV_IO_JTAG and VDD_HV_IO_FLEX power segment. 8. For LFAST, microsecond bus and LVDS input characteristics, refer to dedicated communication module chapters. Table 19 provides weak pull figures. Both pull-up and pull-down current specifications are provided. Table 19. I/O pull-up/pull-down DC electrical characteristics Value Symbol |IWPU| C Parameter Unit Min Typ Max VIN = 0 V VDD_POR(2) < VDD_HV_IO < 3.0 V(3)(4) 10.6 * VDD_HV – 10.6 — — CC T CC T VIN > VIL = 1.1 V (TTL) 4.5 V < VDD_HV_IO < 5.5 V — — 130 CC P VIN = 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 23 — 65 CC T VIN = 0.49* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V — — 82 RWPU CC D Weak pull-up resistance 0.49* VDD_HV_IO < VIN < 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 34 — 62 kΩ |IWPD| CC T Weak pull-down current absolute value VIN < VIL = 0.9 V (TTL) 4.5 V < VDD_HV_IO < 5.5 V 16 — — µA VIN = 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 50 — 130 VIN = 0.49* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 40 — — 0.49* VDD_HV_IO < VIN < 0.69* VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 30 — 55 P Weak pull-up current absolute value(1) Conditions T RWPD CC D Weak pull-down resistance 1. Weak pull-up/down is enabled within tWK_PU = 1 µs after internal/external reset has been asserted. Output voltage will depend on the amount of capacitance connected to the pin. 2. VDD_POR is the minimum VDD_HV_IO supply voltage for the activation of the device pull-up/down, and is given in the Table 25: Reset electrical characteristics of Section 3.11: Reset pad (PORST, ESR0) electrical characteristics. 3. VDD_POR is defined in the Table 25: Reset electrical characteristics of Section 3.11: Reset pad (PORST, ESR0) electrical characteristics. 4. Weak pull-up behavior during power-up. Operational with VDD_HV_IO > VDD_POR. 38/160 DocID023601 Rev 6 µA kΩ SPC574Kx Electrical characteristics Figure 8. Weak pull-up electrical characteristics definition tWK_PU tWK_PU VDD_HV_IO VDD_POR RESET(INTERNAL) pull-up enabled YES NO (1) PAD (1) (1) POWER-UP Application defined RESET Application defined POWER-DOWN 1. Actual PAD slopes will depend on external capacitances and VDD_HV_IO supply. 3.9.2 I/O output DC characteristics The figure below provides description of output DC electrical characteristics. DocID023601 Rev 6 39/160 159 Electrical characteristics SPC574Kx Figure 9. I/O output DC electrical characteristics definition VINTERNAL (SIUL register) 50% 50% VHYS tPHL (falling edge) tPLH (rising edge) tSKEW20-80 Vout 90% 80% 50% 20% 10% tR20-80 tF20-80 tR10-90 tF10-90 tTR (max) = MAX (tR10-90;tF10-90) tTR20-80(max) = MAX (tR20-80;tF20-80) tTR (min) = MIN (tR10-90;tF10-90) tTR20-80(min) = MIN (tR20-80;tF20-80) tSKEW = |tR20-80-tF20-80| The following tables provide DC characteristics for bidirectional pads: Note: • Table 20 provides output driver characteristics for I/O pads when in WEAK configuration. • Table 21 provides output driver characteristics for I/O pads when in MEDIUM configuration. • Table 22 provides output driver characteristics for I/O pads when in STRONG configuration. • Table 23 provides output driver characteristics for I/O pads when in VERY STRONG configuration. Driver configuration is controlled by SIUL2_MSCRn registers. It is available within two PBRIDGEA_CLK clock cycles after the associated SIUL2_MSCRn bits have been written. Table 20 shows the WEAK configuration output buffer electrical characteristics. 40/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 20. WEAK configuration output buffer electrical characteristics Symbol C Value(2) (1) Parameter Conditions Unit Min Typ Max ROH_W CC P PMOS output impedance weak configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 0.5 mA — — 1040 Ω ROL_W CC P NMOS output impedance weak configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 0.5 mA — — 1040 Ω fMAX_W CC T Output frequency weak configuration CL = 25 pF(3) — — 2 MHz (3) CL = 50 pF — — 1 CL = 200 pF(3) — — 0.25 CL = 25 pF, 4.5 V < VDD_HV_IO < 5.5 V 40 — 120 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.5 V 80 — 240 CL = 200 pF, 4.5 V < VDD_HV_IO < 5.5 V 320 — 820 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 50 — 150 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 100 — 300 CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 350 — 1050 D tTR_W CC T Transition time output pin weak configuration(4) D |tSKEW_W| ns CC T Difference between rise and fall time — — — 25 % IDCMAX_W CC D Maximum DC current — — — 4 mA CC D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 120 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 150 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 240 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) — — 300 TPHL/PLH 1. All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0 2. All values need to be confirmed during device validation. 3. CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 18) are to be added to calculate total signal capacitance (CTOT = CL + CIN). 4. Transition time maximum value is approximated by the following formula: 0 pF < CL < 50 pFtTR_W(ns) = 22 ns + CL(pF) × 4.4 ns/pF 50 pF < CL < 200 pFtTR_W(ns) = 50 ns + CL(pF) × 3.85 ns/pF 5. Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_FLEX segment when VSIO[VSIO_IF] = 0. Table 21 shows the MEDIUM configuration output buffer electrical characteristics. DocID023601 Rev 6 41/160 159 Electrical characteristics SPC574Kx Table 21. MEDIUM configuration output buffer electrical characteristics Symbol C Parameter Conditions Value(2) (1) Unit Min Typ Max ROH_M CC P PMOS output impedance MEDIUM configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 2 mA — — 270 Ω ROL_M CC P NMOS output impedance MEDIUM configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 2 mA — — 270 Ω fMAX_M CC T Output frequency MEDIUM configuration CL = 25 pF(3) — — 12 MHz (4) CL = 50 pF — — 6 CL = 200 pF(4) — — 1.5 CL = 25 pF 4.5 V < VDD_HV_IO < 5.5 V 10 — 30 CL = 50 pF 4.5 V < VDD_HV_IO < 5.5 V 20 — 60 CL = 200 pF 4.5 V < VDD_HV_IO < 5.5 V 60 — 200 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 12 — 42 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 24 — 86 CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 70 — 300 D tTR_M CC T Transition time output pin MEDIUM configuration(4) D ns |tSKEW_M| CC T Difference between rise and fall time — — — 25 % IDCMAX_M CC D Maximum DC current — — — 4 mA TPHL/PLH CC D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 35 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 42 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 70 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) — — 85 1. All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0 2. All values need to be confirmed during device validation. 3. CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 18) are to be added to calculate total signal capacitance (CTOT = CL + CIN). 4. Transition time maximum value is approximated by the following formula: 0 pF < CL < 50 pFtTR_M(ns) = 5.6 ns + CL(pF) × 1.11 ns/pF 50 pF < CL < 200 pFtTR_M(ns) = 13 ns + CL(pF) × 0.96 ns/pF 42/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 5. Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_FLEX segment when VSIO[VSIO_IF] = 0 Table 22 shows the STRONG configuration output buffer electrical characteristics. Table 22. STRONG configuration output buffer electrical characteristics Symbol C Parameter Conditions Value(2) (1) Unit Min Typ Max ROH_S CC P PMOS output impedance STRONG configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 8 mA — — 70 Ω ROL_S CC P NMOS output impedance STRONG configuration 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 8 mA — — 70 Ω fMAX_S CC T Output frequency STRONG configuration CL = 25 pF(3) — — 40 MHz pF(4) — — 20 CL = 200 pF(4) — — 5 CL = 25 pF 4.5 V < VDD_HV_IO < 5.5 V 2.5 — 10 CL = 50 pF 4.5 V < VDD_HV_IO < 5.5 V 3.5 — 16 CL = 200 pF 4.5 V < VDD_HV_IO < 5.5 V 13 — 50 CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 4 — 15 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 6 — 27 CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) 20 — 83 tTR_S CC T CL = 50 Transition time output pin STRONG configuration(4) ns IDCMAX_S CC D Maximum DC current — — — 10 mA |tSKEW_S| CC T Difference between rise and fall time — — — 25 % TPHL/PLH CC D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 12 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 18 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 20 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V(5) — — 36 1. All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0 2. All values need to be confirmed during device validation. DocID023601 Rev 6 43/160 159 Electrical characteristics SPC574Kx 3. CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 18) are to be added to calculate total signal capacitance (CTOT = CL + CIN). 4. Transition time maximum value is approximated by the following formula: tTR_S(ns) = 4.5 ns + CL(pF) x 0.23 ns/pF. 5. Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_FLEX segment when VSIO[VSIO_IF] = 0 Table 23 shows the VERY STRONG configuration output buffer electrical characteristics. Table 23. VERY STRONG configuration output buffer electrical characteristics(1) Symbol ROH_V C CC P CC P Typ Max VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, IOH = 8 mA — — 60 VDD_HV_IO = 3.3 V ± 10%, VSIO[VSIO_xx] = 0, IOH = 7 mA(4) — — 85 VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, IOL = 8 mA — — 60 VDD_HV_IO = 3.3 V ± 10%, VSIO[VSIO_xx] = 0, IOL = 7 mA(4) — — 85 VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, CL = 25 pF(5) — — 50 VDD_HV_IO = 3.3 V ± 10%, VSIO[VSIO_xx] = 1, CL = 15 pF(4),(5) — — 50 VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, CL = 25 pF(5) 1 — 5.3 VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, CL = 50 pF(5) 2.5 — 12 VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, CL = 200 pF(5) 11 — 45 20–80% threshold VDD_HV_IO = 5.0 V ± 10%, transition time(6) output pin VSIO[VSIO_xx] = 1, VERY STRONG CL = 25 pF(5) configuration VDD_HV_IO = 3.3 V ± 10%, CL = 15 pF(5) 0.8 — 4 1 — 5 1 — 5 PMOS output impedance VERY STRONG configuration NMOS output impedance VERY STRONG configuration C fMAX_V tTR_V tTR20-80 tTRTTL 44/160 CC CC CC CC T T D D Unit Min C ROL_V Value(3) Conditions(2) Parameter Output frequency VERY STRONG configuration 10–90% threshold transition time output pin VERY STRONG configuration TTL threshold transition time(7) for output pin in VERY STRONG configuration VDD_HV_IO = 3.3 V ± 10%, CL = 25 pF(5) DocID023601 Rev 6 Ω Ω MHz ns ns ns SPC574Kx Electrical characteristics Table 23. VERY STRONG configuration output buffer electrical characteristics(1)(Continued) Symbol ΣtTR20-80 C CC D Value(3) Conditions(2) Parameter Unit Min Typ Max Sum of transition time 20– VDD_HV_IO = 5.0 V ± 10%, 80% output pin VERY VSIO[VSIO_xx] = 1, STRONG configuration(8) CL = 25 pF — — 9 VDD_HV_IO = 3.3 V ± 10%, CL = 15 pF(5) — — 9 ns |tSKEW_V| CC T Difference between rise and fall time at 20–80% VDD_HV_IO = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, CL = 25 pF(5) 0 — 1 ns TPHL/PLH CC D Propagation delay CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 9 ns CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 10.5 CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V — — 15 CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V — — 12 — — 10 IDCMAX_VS CC D Maximum DC current — mA 1. Refer to FlexRay section for parameter dedicated to this interface. 2. All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0. 3. All values need to be confirmed during device validation. 4. Only available on the VDD_HV_IO_JTAG and VDD_HV_IO_FLEX segments. 5. CL is the sum of external capacitance. Add device and package capacitances (CIN, defined in Table 18: I/O input DC electrical characteristics) to calculate total signal capacitance (CTOT = CL + CIN). 6. 20–80% transition time as per FlexRay standard. 7. TTL transition time as for Ethernet standard. 8. For specification per Electrical Physical Layer Specification 3.0.1, see the dCCTxDRISE25+dCCTxDFALL25 (Sum of Rise and Fall time of TxD signal at the output pin) specification in Table 63: TxD output characteristics in Section 3.19.4.2: TxD. 3.10 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair. Table 24 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. In order to ensure device functionality, the sum of the dynamic and static currents of the I/O on a single segment should remain below the IDYNSEG maximum value. Pad mapping on each segment can be optimized using the pad usage information provided in the I/O Signal Description table. The sum of all pad usage ratios within a segment should remain below 100%. DocID023601 Rev 6 45/160 159 Electrical characteristics SPC574Kx Note: In order to maintain the required input thresholds for the SENT interface, the sum of all I/O pad output percent IR drop as defined in the I/O Signal Description table, must be below 50 %. See the I/O Signal Description attachment. Note: The SPC574Kxx I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® workbook file attached to this document. Locate the paperclip symbol on the left side of the PDF window, and click it. Double-click on the Excel file to open it and select the I/O Signal Description Table tab. Table 24. I/O consumption(1) Value Symbol IRMS_SEG IRMS_W IRMS_M IRMS_S 46/160 C SR CC CC CC D D D D Parameter Sum of all the DC I/O current within a supply segment RMS I/O current for WEAK configuration RMS I/O current for MEDIUM configuration RMS I/O current for STRONG configuration Conditions Unit Min Typ Max VDD = 5.0 V ± 10% — — 80 VDD = 3.3 V ± 10% — — 80 CL = 25 pF, 2 MHz VDD = 5.0 V ± 10% — — 1.1 CL = 50 pF, 1 MHz VDD = 5.0 V ± 10% — — 1.1 CL = 25 pF, 2 MHz VDD = 3.3 V ± 10% — — 0.6 CL = 50 pF, 1 MHz VDD = 3.3 V ± 10% — — 0.6 CL = 25 pF, 12 MHz VDD = 5.0 V ± 10% — — 4.7 CL = 50 pF, 6 MHz VDD = 5.0 V ± 10% — — 4.8 CL = 25 pF, 12 MHz VDD = 3.3 V ± 10% — — 2.6 CL = 50 pF, 6 MHz VDD = 3.3 V ± 10% — — 2.7 CL = 25 pF, 50 MHz VDD = 5.0 V ± 10% — — 19 CL = 50 pF, 25 MHz VDD = 5.0 V ± 10% — — 19 CL = 25 pF, 50 MHz VDD = 3.3 V ± 10% — — 10 CL = 50 pF, 25 MHz VDD = 3.3 V ± 10% — — 10 DocID023601 Rev 6 mA mA mA mA SPC574Kx Electrical characteristics Table 24. I/O consumption(1)(Continued) Value Symbol IRMS_V IDYN_SEG IDYN_W(2) IDYN_M IDYN_S C CC SR CC CC CC D D D D D Parameter Conditions Unit Min Typ Max CL = 25 pF, 50 MHz, VDD = 5.0V +/- 10% — — 22 CL = 50 pF, 25 MHz, VDD = 5.0V ± 10% — — 22 CL = 25 pF, 50 MHz, VDD = 3.3V ± 10% — — 11 CL = 25 pF, 25 MHz, VDD = 3.3V ± 10% — — 11 Sum of all the dynamic and DC I/O VDD = 5.0 V ± 10% current within a supply segment VDD = 3.3 V ± 10% — — 195 — — 150 Dynamic I/O current for WEAK configuration CL = 25 pF, VDD = 5.0 V ± 10% — — 5.0 CL = 50 pF, VDD = 5.0 V ± 10% — — 5.1 CL = 25 pF, VDD = 3.3 V ± 10% — — 2.2 CL = 50 pF, VDD = 3.3 V ± 10% — — 2.3 Dynamic I/O current for MEDIUM CL = 25 pF, configuration VDD = 5.0 V ± 10% — — 15 CL = 50 pF, VDD = 5.0 V ± 10% — — 15.5 CL = 25 pF, VDD = 3.3 V ± 10% — — 7.0 CL = 50 pF, VDD = 3.3 V ± 10% — — 7.1 Dynamic I/O current for STRONG CL = 25 pF, configuration VDD = 5.0 V ± 10% — — 50 CL = 50 pF, VDD = 5.0 V ± 10% — — 55 CL = 25 pF, VDD = 3.3 V ± 10% — — 22 CL = 50 pF, VDD = 3.3 V ± 10% — — 25 RMS I/O current for VERY STRONG configuration DocID023601 Rev 6 mA mA mA mA mA 47/160 159 Electrical characteristics SPC574Kx Table 24. I/O consumption(1)(Continued) Value Symbol IDYN_V C CC D Parameter Dynamic I/O current for VERY STRONG configuration Conditions Unit Min Typ Max CL = 25 pF, VDD = 5.0 V ± 10% — — 60 CL = 50 pF, VDD = 5.0 V ± 10% — — 64 CL = 25 pF, VDD = 3.3 V ± 10% — — 26 CL = 50 pF, VDD = 3.3 V ± 10% — — 29 mA 1. I/O current consumption specifications for the 4.5 V 4 V –6 6 T TJ < 150 °C, VDD_HV_ADV > 4 V, 4 V > VDD_HV_ADR > 2 V –6 6 T TJ < 150 °C, 4 V > VDD_HV_ADV > 3.5 V –12 12 TJ < 150 °C, VDD_HV_ADV > 4 V VDD_HV_ADR > 4 V –1.5 1.5 TJ < 150 °C, VDD_HV_ADV > 4 V, 4 V > VDD_HV_ADR > 2 V –2.0 C Total unadjusted error in 10-bit configuration DocID023601 Rev 6 µA µA mA LSB (12b) P C µs LSB (10b) 2.0 61/160 159 Electrical characteristics SPC574Kx Table 33. SARn ADC electrical specification(1)(Continued) Value Symbol ΔTUE12 62/160 C CC Parameter Conditions Unit Min Max TUE degradation due to VIN < VDD_HV_ADV VDD_HV_ADR offset with VDD_HV_ADR − VDD_HV_ADV respect to VDD_HV_ADV ∈ [0:25 mV] 0 0 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –2 2 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –4 4 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –6 6 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV] –2.5 2.5 D VDD_HV_ADV< VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –4 4 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –7 7 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –12 12 D DocID023601 Rev 6 LSB (12b) SPC574Kx Electrical characteristics Table 33. SARn ADC electrical specification(1)(Continued) Value Symbol ΔTUE10 DNL ΣIADR_S C CC CC CC D Parameter Conditions TUE degradation due to VIN < VDD_HV_ADV VDD_HV_ADR offset with VDD_HV_ADR − VDD_HV_ADV respect to VDD_HV_ADV ∈ [0:25 mV] Unit Min Max 0 0 (10b) D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –0.5 0.5 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –1 1 D VIN < VDD_HV_ADV VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –1.5 1.5 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV] –1 1 D VDD_HV_ADV< VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [25:50 mV] –1 1 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [50:75 mV] –2 2 D VDD_HV_ADV < VIN < VDD_HV_ADR VDD_HV_ADR − VDD_HV_ADV ∈ [75:100 mV] –3 3 Differential non-linearity VDD_HV_ADV > 4 V VDD_HV_ADR > 4 V –1 2 ADC pin reference consumption (single pin)(10) — P P All SAR ADC associated to the pin enabled (tconv = 5 µs) LSB LSB (12b) 30 µA 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within the sampling window. Please refer to Figure 15 and Figure 16 for models of the internal ADC circuit, and the values to use in external RC sizing and calculating the sampling window duration. 3. IADCSAR_REFH and IADCSAR_REFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven by the transfer of charge between internal capacitances during the conversion. 4. Current parameter values are for a single ADC. 5. Total consumption is given by the sum for all ADCs (associated to the reference pin) of their dynamic consumption and their static consumption. 6. IADCSAR_REFH typical consumption 60 % of maximum value. DocID023601 Rev 6 63/160 159 Electrical characteristics SPC574Kx 7. Extra bias current is present only when BIAS is selected. 8. Extended bench validation performed on 3 samples for each process corner. 9. This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to ± 6 LSB. 10. Consumption is given after power-up, when steady state is reached. Extra consumption up to 2 mA may be required during internal circuitry set-up. 3.13.3 S/D ADC electrical specification The SDn ADCs are Sigma Delta 16-bit analog-to-digital converters with 333 Ksps maximum output rate. Table 34. SDn ADC electrical specification(1) Value Symbol VIN C SR P Parameter Conditions ADC input signal — Unit Min Typ Max 0 — VDD_HV_A V DV VIN_PK2PK(2) SR D Input range peak to Single ended peak VINM = VSS_HV_ADR VIN_PK2PK = VINP(3) Single ended – VINM VINM = 0.5*VDD_HV_ADR GAIN = 1 VDD_HV_ADR/GAIN D Single ended VINM = 0.5*VDD_HV_ADR GAIN = 2,4,8,16 ±VDD_HV_ADR/GAIN D Differential, 0 < VIN < VDD_HV_IO_MAIN ±VDD_HV_ADR/GAIN D fADCD_M SR P S/D modulator Input — Clock BWIN SR D Input bandwith D fADCD_S SR — CC D D Output conversion rate GAIN 64/160 SR ±0.5*VDD_HV_ADR 4 14.4 16 MHz SNR = 80 dB fADCD_S = 150 kHz 0.01 — 50(4) KHz SNR = 74 dB fADCD_S = 333 kHz 0.01 — 111(4) — — 333 ksps 24 — 256 — — — 256 — TJ < 150 °C Oversampling ratio Internal modulator External modulator RESOLUTION CC V D S/D register resolution(5) 2’s complement notation D ADC gain Defined via ADC_SD[PGA] register. Only integer powers of 2 are valid gain values. DocID023601 Rev 6 16 1 — bit 16 — SPC574Kx Electrical characteristics Table 34. SDn ADC electrical specification(1)(Continued) Value Symbol |δGAIN| C CC C D VOFFSET CC P D Parameter Conditions Unit Min Typ Max Before calibration (applies to gain setting = 1) — — 1.5 % After calibration, ΔVDD_HV_ADR < 5% ΔVDD_HV_ADV < 10% ΔTJ < 50 °C — — 5 mV After calibration, ΔVDD_HV_ADR < 5% ΔVDD_HV_ADV < 10% ΔTJ < 100 °C — — 7.5 After calibration, ΔVDD_HV_ADR < 5% ΔVDD_HV_ADV < 10% ΔTJ < 150 °C — — 10 Input Referred Before calibration (applies to all Offset Error(6),(7),(8) gain settings – 1, 2, 4, 8, 16) — 10* (1+1/gain) 20 — — 5 Absolute value of the ADC gain error(6),(7) After calibration, ΔVDD_HV_ADR < 10% ΔTJ < 50 °C After calibration, ΔVDD_HV_ADV < 10% ΔTJ < 100 °C After calibration, ΔVDD_HV_ADV < 10% ΔTJ < 150 °C DocID023601 Rev 6 mV 7.5 0.5 10 65/160 159 Electrical characteristics SPC574Kx Table 34. SDn ADC electrical specification(1)(Continued) Value Symbol C SNRDIFF150(9) CC T Parameter Signal to noise ratio in differential mode 150 ksps output rate T Conditions Unit Min Typ Max 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 1 TJ < 150 °C 80 — — 4.5 < VDD_HV_ADV < 5.5(10),(11) 77 — — 74 — — , dBFS VDD_HV_ADR = VDD_HV_ADV GAIN = 2 TJ < 150 °C 4.5 < VDD_HV_ADV < 5.5(10),(11) T , VDD_HV_ADR = VDD_HV_ADV GAIN = 4 TJ < 150 °C SNRDIFF333 (12) 66/160 CC T 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 8 TJ < 150 °C 71 — — D 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 16 TJ < 150 °C 68 — — 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 1 TJ < 150 °C 74 — — T 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 2 TJ < 150 °C 71 — — T 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 4 TJ < 150 °C 68 — — T 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 8 TJ < 150 °C 65 — — D 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 16 TJ < 150 °C 62 — — P Signal to noise ratio in differential mode 333 ksps output rate DocID023601 Rev 6 dBFS SPC574Kx Electrical characteristics Table 34. SDn ADC electrical specification(1)(Continued) Value Symbol C SNRSE150(16) CC Parameter Conditions Unit Min Typ Max 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 1 TJ < 150 °C 74 — — 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 2 TJ < 150 °C 71 — — 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 4 TJ < 150 °C 68 — — 4.5 < VDD_HV_ADV < 5.5(10),(11) VDD_HV_ADR = VDD_HV_ADV GAIN = 8 TJ < 150 °C 65 — — 4.5 < VDD_HV_ADV < 5.5(10),(11), 62 — — GAIN = 1 60 — — GAIN = 2 60 — — C GAIN = 4 60 — — C GAIN = 8 60 — — GAIN = 16 60 — — GAIN = 1, fADCD_M = 16 MHz 1.2 1.6 1.9 GAIN = 16, fADCD_M = 16 MHz 0.1 — — GAIN = 1 1000 1250 1500 GAIN = 2 600 800 1000 GAIN = 4 300 400 500 GAIN = 8 200 250 300 GAIN = 16 200 250 300 GAIN = 1 1400 1800 2200 GAIN = 2 1000 1300 1600 GAIN = 4 700 950 1150 GAIN = 8 500 650 800 GAIN = 16 500 650 800 T Signal to noise ratio in single ended mode 150 ksps output rate T D dBFS VDD_HV_ADR=VDD_HV_ADV GAIN = 16 TJ < 150 °C SFDR CC P C Spurious free dynamic range D ZIN CC CC D D Input impedance(13) Differential Input impedance ZDIFF(14) CC ZCM (15) D Common Mode Input impedance DocID023601 Rev 6 dBc MΩ kΩ kΩ 67/160 159 Electrical characteristics SPC574Kx Table 34. SDn ADC electrical specification(1)(Continued) Value Symbol C Parameter Conditions Unit Min Typ Max 144 180 kΩ 12 % RBIAS CC D bias resistance — 110 ΔVINTCM CC D Common mode input reference voltage — –12 VBIAS CC D Bias voltage — — VDD_HV_ ADR/2 — V δVBIAS CC D Bias voltage accuracy — –2.5 — +2.5 % CMRR SR D Common mode rejection ratio — 54 — — dB RCaaf SR D Anti-aliasing filter — — 20 kΩ CC D 180 — — pF 0.01 — 0.333 * fADCD_S KHz External series resistance Filter capacitances (16) fPASSBAND CC D Pass band δRIPPLE CC D Pass band ripple(17) 0.333 * fADCD_S –1 — 1 % Frolloff CC D Stop band attenuation [0.5 * fADCD_S, 1.0 * fADCD_S] 40 — — dB [1.0 * fADCD_S, 1.5 * fADCD_S] 45 — — [1.5 * fADCD_S, 2.0 * fADCD_S] 50 — — [2.0 * fADCD_S, 2.5 * fADCD_S] 55 — — [2.5 * fADCD_S, fADCD_M/2] 60 — — 68/160 — DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 34. SDn ADC electrical specification(1)(Continued) Value Symbol δGROUP C CC D Parameter Group delay Conditions Unit Min Typ Max Within pass band – Tclk is fADCD_M / 2 — — — — OSR = 24 — — 238.5 Tclk OSR = 28 — — 278 OSR = 32 — — 317.5 OSR = 36 — — 357 OSR = 40 — — 396.5 OSR = 44 — — 436 OSR = 48 — — 475.5 OSR = 56 — — 554.5 OSR = 64 — — 633.5 OSR = 72 — — 712.5 OSR = 75 — — 699 OSR = 80 — — 791.5 OSR = 88 — — 870.5 OSR = 96 — — 949.5 OSR = 112 — — 1107.5 OSR = 128 — — 1265.5 OSR = 144 — — 1423.5 OSR = 160 — — 1581.5 OSR = 176 — — 1739.5 OSR = 192 — — 1897.5 OSR = 224 — — 2213.5 OSR = 256 — — 2529.5 –0.5/ fADC — +0.5/ fADCD_S — — 10e-5* fADCD_S — — — — 100 µs — — δGROUP + fADCD_S — — — δGROUP — Distortion within pass band D_S fHIGH CC D High pass filter 3dB Enabled frequency tSTARTUP CC D Start-up time from power down state tLATENCY CC D Latency between HPF = ON input data and converted data HPF = OFF when input mux (18) does not change — DocID023601 Rev 6 69/160 159 Electrical characteristics SPC574Kx Table 34. SDn ADC electrical specification(1)(Continued) Value Symbol tSETTLING C CC tODRECOVERY CC D D Parameter Conditions Typ Max Analog inputs are muxed HPF = ON — — 2*δGROUP + 3*fADCD_S — HPF = OFF — — 2*δGROUP + 2*fADCD_S — — — 2*δGROUP + fADCD_S — — — 2*δGROUP — S/D ADC sampling GAIN = 1, 2, 4, 8 capacitance after GAIN = 16 sampling switch(19) — — 75*GAIN fF — — 600 fF — — 3.5 mA mA Settling time after mux change(19) Overdrive recovery After input comes within range time from saturation HPF = ON HPF = OFF CS_D CC D D Unit Min IBIAS CC D Bias consumption IADV_D CC T VDD_HV_ADV power ADCD enabled supply current Sum of all ADCs + BIAS (each ADC) — — 3.5 — — 10.5 P ΣIADR_D At least 1 ADCD enabled CC P Sum of all ADC reference consumption(20) ADCD enabled — — 30 µA IADCS/D_REFH CC T S/D ADC Reference High Current Dynamic consumption (Conversion) — — 3.5 µA Static consumption (Power-down mode and bias) — — +10 T 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the signal will only be ‘clipped’. 3. VINP is the input voltage applied to the positive terminal of the SDADC. 4. Maximum input of 166.67 kHz supported with reduced accuracy. See SNR specifications. 5. When using a GAIN setting of 16, the conversion result will always have a value of zero in the least significant bit. The gives an effective resolution of 15 bits. 6. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device. 7. Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5*VDD_HV_ADR for differential mode and single ended mode with negative input=0.5*VDD_HV_ADR. Offset Calibration should be done with respect to 0 for “single ended mode with negative input=0”. Both offset and Gain Calibration is guaranteed for ±5% variation of VDD_HV_ADR, ±10% variation of VDD_HV_ADV, and ± 50 °C temperature variation. 8. Conversion offset error must be divided by the applied gain factor (1, 2, 4, 8, or 16) to obtain the actual input referred offset error. 9. This parameter is guaranteed by bench validation with a small sample of devices across process variations, and tested in production to a value of 3 dB less. 10. S/D ADC is functional in the range 3.6 V – 4.5 V, SNR parameter degrades by 3 dB. Degraded SNR value based on simulation. 70/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 11. S/D ADC is functional in the range 3.0 – 4.5 V, SNR parameter degrades by 9 dB. Degraded SNR value based on simulation. 12. This parameter is guaranteed by bench validation with a small sample of devices across process variations. 13. Input impedance is valid over the full input frequency range.Input impedance is calculated in megaohms by the formula 25.6/(Gain * fADCD_M). 14. Impedance given at FADCD_M = 16MHz. Impedance is inversely proportional to frequency: ZDIFF(FADCD_M) = 16MHz/FADCD_M*ZDIFF 15. Impedance given at FADCD_M = 16MHz. Impedance is inversely proportional to frequency: ZCM(FADCD_M) = 16MHz/FADCD_M*ZCM 16. SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the frequency range of fADCD_M – fADCD_S to fADCD_M + fADCD_S, where fADCD_M is the input sampling frequency, and fADCD_S is the output sample frequency. A proper external input filter should be used to remove any interfering signals in this frequency range. 17. The ±1% passband ripple specification is equivalent to 20 * log10 (0.99) = 0.087 dB. 18. Propagation of the information from the pin to the register CDR[CDATA] and flags SFR[DFEF], SFR[DFFF] is given by the different modules that need to be crossed: delta/sigma filters, high pass filter, fifo module, clock domain synchronizers. The time elapsed between data availability at pin and internal S/D module registers is given by the below formula: REGISTER LATENCY = tLATENCY + 0.5/fADCD_S + 2 (~+1)/fADCD_M + 2(~+1)fPBRIDGEx_CLK where fADCD_S is the frequency of the sampling clock, fADCD_M is the frequency of the modulator, and fPBRIDGEx_CLK is the frequency of the peripheral bridge clock feeds to the ADC S/D module. The (~+1) symbol refers to the number of clock cycles uncertainty (from 0 to 1 clock cycle) to be added due to resynchronization of the signal during clock domain crossing. Some further latency may be added by the target module (core, DMA, interrupt) controller to process the data received from the ADC S/D module. 19. This capacitance does not include pin capacitance, that can be considered together with external capacitance, before sampling switch. 20. Consumption is given after power-up, when steady state is reached. Extra consumption up to 2 mA may be required during internal circuitry set-up. Figure 17. S/D impedance generic model DocID023601 Rev 6 71/160 159 Electrical characteristics 3.14 SPC574Kx Equation 1 IINP = (VINP – VINM)/2.ZDIFF + (VICM – VINT)/ZCM = (VINP – VICM)/ZDIFF + (VICM – VINT)/ZCM Equation 2 IINP = (VINM – VINP)/2.ZDIFF + (VICM – VINT)/ZCM = (VINM – VICM)/ZDIFF + (VICM – VINT)/ZCM Temperature sensor The following table describes the temperature sensor electrical characteristics. Table 35. Temperature sensor electrical characteristics Value Symbol C — CC TSENS CC TACC ITEMP_SENS 3.15 Parameter Conditions Unit Min Typ Max Temperature monitoring range — –40 — 150 °C T Sensitivity — — 5.18 — mV/°C CC C Accuracy TJ < 150 °C –3 — 3 °C CC C VDD_HV_ADV power supply current — — — 700 µA LVDS Fast Asynchronous Serial Transmission (LFAST) pad electrical characteristics The LFAST pad electrical characteristics apply to both the SIPI and high-speed debug serial interfaces on the device. The same LVDS pad is used for the Microsecond Channel (MSC) and DSPI LVDS interfaces, with different characteristics given in the following tables. 72/160 DocID023601 Rev 6 SPC574Kx 3.15.1 Electrical characteristics LFAST interface timing diagrams Figure 18. LFAST and MSC/DSPI LVDS timing definition Signal excursions above this level NOT allowed 1743 mV Max. common mode input at RX 1600 mV |ΔVOD| Max Differential Voltage = 285 mV p-p (LFAST) 400 mV p-p (MSC/DSPI) Minimum Data Bit Time Opening = 0.55 * T (LFAST) 0.50 * T (MSC/DSPI) “No-Go” Area VOS = 1.2 V +/- 10% TX common mode |ΔVOD| Min Differential Voltage = 100 mV p-p (LFAST) 150 mV p-p (MSC/DSPI) VICOM |ΔPEREYE |ΔPEREYE Data Bit Period T = 1 /FDATA Min. common mode input at RX 150 mV 0V Signal excursions below this level NOT allowed DocID023601 Rev 6 73/160 159 Electrical characteristics SPC574Kx Figure 19. Power-down exit time H lfast_pwr_down L tPD2NM_TX Differential TX Data Lines pad_p/pad_n Data Valid Figure 20. Rise/fall time VIH Differential TX Data Lines 90% 10% pad_p/pad_n VIL tTR tTR 3.15.2 LFAST and MSC/DSPI LVDS interface electrical characteristics The following table contains the electrical characteristics for the LFAST interface. Table 36. LVDS pad startup and receiver electrical characteristics(1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max STARTUP(3),(4) tSTRT_BIAS CC T Bias current reference startup time(5) — — 0.5 4 µs tPD2NM_TX CC T Transmitter startup time (power down to normal mode)(6) — — 0.4 2.75 µs 74/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 36. LVDS pad startup and receiver electrical characteristics(1)(2)(Continued) Value Symbol C Parameter Conditions Unit Min Typ Max Not applicable to the MSC/DSPI LVDS pad — 0.2 0.5 µs — — 20 40 ns tSM2NM_TX CC T Transmitter startup time (sleep mode to normal mode)(7) tPD2NM_RX CC T Receiver startup time (power down to normal mode)(8) tPD2SM_RX CC T Receiver startup time (power down Not applicable to the to sleep mode)(9) MSC/DSPI LVDS pad — 20 50 ns ILVDS_BIAS CC C LVDS bias current consumption — — 0.95 mA 47.5 50 52.5 Ω Tx or Rx enabled TRANSMISSION LINE CHARACTERISTICS (PCB Track) Z0 SR D Transmission line characteristic impedance — ZDIFF SR D Transmission line differential impedance — 95 100 105 Ω RECEIVER VICOM SR T Common mode voltage — 0.15 — 1.6(11) V |ΔVI| SR T Differential input voltage(12) — 100 — — mV RIN CC D Terminating resistance VDD_HV_IO = 5.0 V ± 10% 80 125 150 Ω VDD_HV_IO = 3.3 V ± 10% 80 115 150 Ω — 3.5 6.0 pF — — 0.5 mA D CIN CC D Differential input capacitance(13) ILVDS_RX CC C Receiver DC current consumption Enabled — (10) 1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST & High-speed Debug (HSD) LVDS pad, and the MSC/DSPI LVDS pad except where noted in the conditions. 2. All LVDS pad electrical characteristics are valid from –40 °C to 150 °C. 3. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and High-Speed Debug modules. The value of the LCR bits for the LFAST/HSD modules don’t take effect until the corresponding SIUL2 MSCR ODC bits are set to LFAST LVDS mode. Startup times for MSC/DSPI LVDS are defined after 2 peripheral bridge clock delay after selecting MSC/DSPI LVDS in the corresponding SIUL2 MSCR ODC field. 4. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables. 5. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled. 6. Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock periods. 7. Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. 8. Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock periods. 9. Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. 10. Absolute min = 0.15 V – (285 mV/2) = 0 V DocID023601 Rev 6 75/160 159 Electrical characteristics SPC574Kx 11. Absolute max = 1.6 V + (285 mV/2) = 1.743 V 12. The LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to ensure proper LFAST receive timing. 13. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. Table 37. LFAST transmitter electrical characteristics(1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max fDATA SR D Data rate — — — 320 Mbps VOS CC P Common mode voltage — 1.08 — 1.32 V |VOD| CC P Differential output voltage swing (terminated)(3)(4) — 110 171 285 mV tTR CC T Rise/Fall time (absolute value of the differential output voltage swing)(3),(4) — 0.26 — 1.5 ns CL SR D External lumped differential load capacitance(3) VDD_HV_IO = 4.5 V — — 12.0 pF VDD_HV_IO = 3.0 V — — 8.5 — — 3.2 ILVDS_TX CC T Transmitter DC current consumption Enabled mA 1. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance values shown in Figure 21. 2. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from –40 °C to 150 °C. 3. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 21. 4. Valid for maximum external load CL. Table 38. MSC/DSPI LVDS transmitter electrical characteristics (1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max Data Rate fDATA SR D Data rate — — — 80 Mbps VOS CC P Common mode voltage — 1.08 — 1.32 V |VOD| CC P Differential output voltage swing (terminated)(3)(4) — 150 214 400 mV tTR CC T Rise/Fall time (absolute value of the differential output voltage swing)(3),(4) — 0.8 — 4.0 ns CL SR D External lumped differential load capacitance(3) ILVDS_TX CC T VDD_HV_IO = 4.5 V — — 50 VDD_HV_IO = 3.0 V — — 39 — — 4.0 Transmitter DC current consumption Enabled pF mA 1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst case internal capacitance values given in Figure 21. 2. All MSC and DSPI LVDS pad electrical characteristics are valid from –40 °C to 150 °C. 76/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 3. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 21. 4. Valid for maximum external load CL. Figure 21. LVDS pad external load diagram bond pad GPIO Driver CL 1pF 2.5pF 100Ω terminator LVDS Driver bond pad GPIO Driver CL 1pF 2.5pF Die 3.15.3 Package PCB LFAST PLL electrical characteristics The following table contains the electrical characteristics for the LFAST PLL. Table 39. LFAST PLL electrical characteristics(1) Value Symbol C Parameter Conditions Unit Min Nominal Max fRF_REF SR D PLL reference clock frequency — 10 — 26 MHz ERRREF CC D PLL input reference clock frequency error — –1 — 1 % DCREF CC D PLL input reference clock duty cycle — 45 — 55 % DocID023601 Rev 6 77/160 159 Electrical characteristics SPC574Kx Table 39. LFAST PLL electrical characteristics(1)(Continued) Value Symbol PN C CC D D fVCO CC D Parameter Conditions Integrated phase noise (single side band) Unit Min Nominal Max fRF_REF = 20 MHz — — –58 fRF_REF = 10 MHz — — –64 PLL VCO frequency (3) — — 640 — — (2) dBc — MHz — 40 µs — — 300 ps tLOCK CC D PLL phase lock ΔPERREF SR T Input reference clock jitter (peak to Single period, peak) fRF_REF = 10 MHz T Long term, fRF_REF = 10 MHz –500 — 500 ps — — — 400 ps ΔPEREYE CC T Output Eye Jitter (peak to peak)(4) 1. The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces. 2. The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO frequency is 624 MHz. PLL lock with 640 MHz VCO frequency guaranteed by production testing. 3. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral bridge clock that is connected to the PLL on the device. 4. Measured at the transmitter output across a 100 Ohm termination resistor on a device evaluation board. See Figure 21. 3.16 Aurora LVDS electrical characteristics The following table describes the Aurora LVDS electrical characteristics. Note: The Aurora interface is AC coupled, so there is no common-mode voltage specification. Table 40. Aurora LVDS electrical characteristics(1)(2) Value Symbol C Parameter Conditions Unit Min Typ Max Transmitter FTX CC |ΔVOD_LVDS| CC D Transmit Data Rate — — — P Differential output voltage swing (terminated)(3) — 400 600 Rise/Fall time (10%–90% of swing) — 60 tTR_LVDS CC T RV_L_Tx SR D Differential Terminating resistance TLoss CC — D Transmission Line Loss due to loading effects — 81 — 1.25 Gbps 800 mV — ps 100 120 W — — 6(4) dB Transmission line characteristics (PCB track) LLINE SR D Transmission line length — — — 20 cm ZLINE SR D Transmission line characteristic impedance — 45 50 55 W Cac_clk SR D Clock Receive Pin External AC Coupling Capacitance Values are nominal, valid for +/– 50% tolerance 100 — 270 pF 78/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 40. Aurora LVDS electrical characteristics(1)(2)(Continued) Value Symbol Cac_tx C SR Parameter Conditions D Transmit Lane External AC Coupling Capacitance Unit Min Typ Max 250 — 2000 — — 1.25 Gbps — 200 — 1000 mV — 81 100 Values are nominal, valid for +/– 50% tolerance pF Receiver FRX CC D Receive Clock Rate TJ = 150 °C |ΔVI_L| SR P RV_L_Rx CC D Differential Terminating resistance Differential input voltage (peak to peak) 120 W 1. All Aurora electrical characteristics are valid from –40 °C to 150 °C, except where noted. 2. All specifications valid for maximum transmit data rate FTX. 3. The minimum value of 400 mV is only valid for differential terminating resistance (RV_L) = 99 Ohm to 101 ohm. The differential output voltage swing tracks with the value of RV_L. 4. Transmission line loss maximum value is specified for the maximum drive level of the Aurora transmit pad. 3.17 Power management: PMC, POR/LVD, sequencing The power management module monitors the different power supplies as well as generating the required internal supplies. The power management module is supplied by the VDD_HV_PMC supply, with redundant voltage references and monitors guaranteeing safe operation. DocID023601 Rev 6 79/160 159 Electrical characteristics 3.17.1 SPC574Kx Power management integration Use the integration scheme provided below to ensure proper device function. Figure 22. Voltage regulator capacitance connection CDECHV (regulator supply decoupling) CDECBV (regulator supply decoupling) VDD_HV_PMC VDD_LV Voltage Regulator I VSS DEVICE CDECREG1 (LV_COR/LV_FLA) VREF VDD_LVn VSS VDD_LV VSS DEVICE VSS VSS VDD_LV VSS VDD_LV CDECREG4 (LV_COR) VDD_HV_PMC VSS CDECREG3 (LV_COR\LV_PLL) VDD_HV_IO_MAIN VDD_BV_PMC (supplied via VDD_IO_MAIN) CDECREG2 (LV_COR) CREG (LV_COR) Note: The pins positions correspond to the pins positions in the pins package. The internal voltage regulator requires external capacitance (CREGn) to be connected to the device to provide a stable low voltage digital supply to the device. Placed capacitances on the board as near as possible to the associated pins and limit the serial inductance of the board to less than 5 nH. Place a decoupling capacitor between each VDD_LV supply pin and VSS ground plane to ensure stable voltage. Place the capacitor as near as possible to the VDD_LV supply pin. 3.17.2 Main voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_BV_PMC, internally connected to VDD_HV_IO_MAIN supply. The regulator itself is supplied by VDD_HV_PMC. Both high voltage supplies are common with VDD_HV_IO. Note: 80/160 Refer to SPC574Kx_IO_Signal_Table.xls table for details regarding power connectivity. DocID023601 Rev 6 SPC574Kx Electrical characteristics The following supplies are involved: • HV—High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV_PMC/VDD_HV_IO_MAIN power pin. • BV—High voltage external power supply for internal ballast module. This must be provided externally through VDD_HV_PMC/VDD_HV_IO_MAIN power pins. • LV—Low voltage internal power supply for core, PLL and Flash digital logic. This is generated by the internal voltage regulator but provided externally to allow connection to a stability capacitor. It is further split into three main domains to ensure noise isolation between critical LV modules: – LV_COR—Low voltage supply for the core. It is also used to provide supply LV_PLL through double bonding. – LV_FLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_PLL—Low voltage supply for PLL0. It is shorted to LV_COR through double bonding. Table 41. Device Power Supply Integration Symbol C Value(2) Conditions(1) Parameter Unit Min Typ Max 1.3 2(3) — µF CREG SR D Internal voltage regulator stability external capacitance RREG SR D Stability capacitor equivalent serial Total resistance including resistance board track — — 50 mΩ CDECREGn SR D Internal voltage regulator decoupling external capacitance 30 100 — nF RDECREGn SR D Stability capacitor equivalent serial — resistance — — 50 mΩ CDECBV SR D Relay capacitance for ballast power-up — 3 4(3) — µF CDECHV SR D Decoupling capacitance regulator supply VDD_HV_IO_MAIN/VSS pair 30 100 — nF VMREG CC P Main regulator output voltage Before trimming 1.14 1.28 1.4(4) V After trimming 1.14 1.28 1.32 — — 350 mA 200 — 1500 mA –60 — 60 mA IMREG = 300 mA — — 3.5 mA IMREG = 0 mA — — 2.2 P — VDD_LV/VSS pair IDDMREG SR P Main regulator current provided to — VDD_LV domain IDDCLAMP CC D Main regulator rush current sinked Power-up condition from VDD_HV_IO_MAIN domain during VDD_LV external capacitance loading ΔIDDMREG SR T Main regulator current variation IMREGINT CC D Main regulator current consumption D 20 µs observation window DocID023601 Rev 6 81/160 159 Electrical characteristics SPC574Kx Table 41. Device Power Supply Integration(Continued) Symbol CDECFLA CHV_ADC C SR Value(2) Conditions(1) Parameter D Decoupling capacitance for flash supply VDD_HV_FLA/VSS pair SR D VDD_HV_ADV external capacitance(5) Unit Min Typ Max 100 220 — nF 1 2.2 — µF 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 / 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Recommended X7R or X5R ceramic –35 % / +20 % variation across process, temperature, voltage and after aging. 4. At power-up condition before trimming. 5. For noise filtering, add a high frequency bypass capacitance of 0.1 µF between VDD_HV_ADV and VSS_HV_ADV. 3.17.3 Device voltage monitoring The LVD/HVDs and their associated levels for the device are given in the following table. The figure below illustrates the workings of voltage monitoring threshold. Figure 23. Voltage monitor threshold definition VDD_xxx VHVD(rise) VHVD(fall) VLVD(rise) VLVD(fall) tVDASSERT tVDRELEASE HVD TRIGGER (INTERNAL) tVDRELEASE LVD TRIGGER (INTERNAL) 82/160 DocID023601 Rev 6 tVDASSERT SPC574Kx Electrical characteristics Table 42. Voltage monitor electrical characteristics(1) Value Symbol C VPORUP_LV(2) CC Parameter D LV supply power on reset threshold[ P Conditions Unit Min Typ Max Rising voltage (power up) 1040 — 1180 Falling voltage (power down)(3) 960 — 1100 Hysteresis on power-up 50 — — mV VLVD096 CC P LV internal(4) supply low voltage monitoring See note (5) 960 — 1100 mV VLVD108 CC P Core LV internal(4) supply low voltage monitoring See note(6) 1080 — 1170 mV VLVD112 CC P LV external(7) supply low voltage See note (5) monitoring 1110 — 1180 mV VHVD140 CC P LV external(7) supply high voltage See note (8) monitoring 1320 — 1420 mV VHVD145 CC P LV external(7) supply high voltage See note (8) monitoring 1390 — 1480 mV VPORUP_HV(2) CC P HV supply power on reset threshold(9) Rising voltage (power up) on PMC/IO Main supply 2850 — 3210 mV Rising voltage (power up) on IO JTAG and Osc supply 2680 — 2980 Rising voltage (power up) on ADC supply 2870 — 3182 Falling voltage (power down)(10) 2710 — 3000 Hysteresis on power up(11) 150 — — HV supply power-on reset voltage Rising voltage monitoring Falling voltage 2420 — 2780 2400 — 2760 HV supply low voltage monitoring Rising voltage 2750 — 3000 Falling voltage 2700 — 2950 Rising voltage — — 3120 Falling voltage 2920 — 3100 HV supply low voltage monitoring Rising voltage 4110 — 4410 Falling voltage 3970 — 4270 Rising voltage 5560 — 5960 Falling voltage 5500 — 5900 VPOR240 VLVD270 VLVD295 VLVD400 VHVD600 CC CC CC CC CC P P P P P ADC supply low voltage monitoring HV supply high voltage monitoring DocID023601 Rev 6 mV mV mV mV mV 83/160 159 Electrical characteristics SPC574Kx Table 42. Voltage monitor electrical characteristics(1)(Continued) Value Symbol C Parameter Conditions Unit Min Typ Max tVDASSERT CC D Voltage detector threshold crossing assertion — 0.1 — 2 µs tVDRELEASE CC D Voltage detector threshold crossing de-assertion — 5 — 20 µs 1. For VDD_LV levels, a maximum of 30 mV IR drop is incurred from the pin to all sinks on the die. For other LVD, the IR drop is estimated by multiplying the supply current by 0.5 Ω. 2. VPORUP_LV and VPORUP_HV threshold are untrimmed values before completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming. 3. Assume all of LVDs on LV supplies disabled. 4. LV internal supply levels are measured on device internal supply grid after internal voltage drop. 5. LVD is released after tVDRELEASE temporization when upper threshold is crossed, LVD is asserted tVDASSERT after detection when lower threshold is crossed. 6. This is combination of LVD108_C, P, and F. Min is from min value of LVD108_F, and P which is the lowest one. Max is the max value of LVD108_C which is the highest one of three. 7. LV external supply levels are measured on the die side of the package bond wire after package voltage drop. 8. HVD is released after tVDRELEASE temporization when lower threshold is crossed, HVD is asserted tVDASSERT after detection when upper threshold is crossed. HVD140 does not cause reset. 9. This supply also needs to be below 5472 mV (untrimmed HVD600 min). 10. Untrimmed LVD300_A will be asserted first on power down. 11. Hysteresis is implemented only between the VDD_HV_IO_MAIN High voltage Supplies and the ADC high voltage supply. When these two supplies are shorted together, the hysteresis is as is shown in Table 42. If the supplies are not shorted (VDD_IO_MAIN and ADC high voltage supply), then there will be no hysteresis on the high voltage supplies. 3.17.4 Power up/down sequencing The following table shows the constraints and relationships for the different power supplies. Table 43. Device supply relation during power-up/power-down sequence Supply 2(1) VDD_LV VDD_HV_IO_JTAG/ VDD_HV_IO_FLEX VDD_HV_IO VDD_HV_ADV VDD_HV_ADR ALTREFn(2) Supply 1(1) VDD_LV VDD_HV_IO_JTAG/ VDD_HV_IO_FLEX VDD_HV_IO VDD_HV_ADV 5 mA VDD_HV_ADR ALTREFn 10 mA(3) 10 mA(3) 1. Red cells: Supply 1 (row) can exceed Supply 2 (column), granted that external circuitry ensures current flowing from supply1 is less than absolute maximum rating current value provided. 2. ALTREFn are the alternate references for the ADC that can be used in place of the default reference (VDD_HV_ADR_*). They are SARB.ALTREF and SAR2.ALTREF. 84/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 3. ADC performance is not guaranteed when ALTREFn, and VDD_HV_ADR supplies are above VDD_HV_IO/VDD_HV_ADV. During power-up, all functional terminals are maintained in a known state as described in the following table. Table 44. Functional terminals state during power-up and reset TERMINAL type(1) POWER-UP(2) pad state PORST pad state DEFAULT (3) pad state Strong pulldown(4) Weak pull-down Weak pull-down Power-on reset pad ESR0(5) Strong pull-down Strong pull-down Weak pull-up Functional reset pad ESR1 Weak pull-up Weak pull-up Weak pull-up TEST_MODE GPIO RESET (6) Weak pull-down Comments — (6) Weak pull-down Weak pull-down (4) Weak pull-up Weak pull-up — — Weak pull-up — ANALOG High impedance High impedance High impedance ERROR[0] High impedance High impedance High impedance TRST High impedance Weak pull-down Weak pull-down — TCK High impedance Weak pull-down Weak pull-down — TMS Weak pull-up Weak pull-up Weak pull-up — TDI Weak pull-up Weak pull-up Weak pull-up — TDO High impedance High impedance High impedance — During functional reset, pad state can be overridden by FCCU 1. Refer to pinout information for terminal type. 2. POWER-UP state is guaranteed from VDD_HV_IO > VDD_POR and maintained until supply crosses the power-on reset thresholds VPORUP_LV for LV supply and VPORUP_HV for high voltage supply. 3. Before software configuration. 4. Pull-down and pull-up strengths are provided in Table 19 (I/O pull-up/pull-down DC electrical characteristics) 5. Unlike ESR0, ESR1 is provided as a normal GPIO and implements weak pull-up during power-up. 6. An internal pull-down is implemented on the TESTMODE pin to prevent the device from entering test mode if the package TESTMODE pin is not connected. It is recommended to connect the TESTMODE pin to VSS_HV_IO on the board for maximum robustness, but not required. The value of TESTMODE is latched at the negation of reset and has no affect afterward. The device will not exit functional reset with the TESTMODE pin asserted during power-up. The TESTMODE pin can be connected externally directly to ground without any other components. 3.18 Flash memory electrical characteristics Table 45 shows the estimated Program/Erase characteristics. DocID023601 Rev 6 85/160 159 Electrical characteristics SPC574Kx Table 45. Flash memory program and erase specifications (1) Value Symbol Initial max Characteristics(2) Typ(3) C All 25 °C(6) temp C Typical end of life(4) (7) Lifetime max(5) Unit C < 1 k < 250 K cycles cycles tdwprogram Double Word (64 bits) program time [Packaged part] 34 C 100 — — 55 500 C µs tpprogram Page (256 bits) program time 60 C 200 — — 108 1000 C µs 69 C 220 — — 124 1000 C µs Quad Page (1024 bits) program time 204 C 1040 1200 P 850 2000 C µs tqprogrameep Quad Page (1024 bits) program time EEPROM (partition 2) [Packaged part] 234 C 1140 1320 P 978 2000 C µs t16kpperase 16 KB block pre-program and erase time 150 C 1000 1000 P 330 5000 — C ms t32kpperase 32 KB block pre-program and erase time 200 C 1000 1000 P 440 5000 — C ms t64kpperase 64 KB block pre-program and erase time 300 C 1000 1000 P 660 5000 — C ms 900 C 2000 3000 P 1100 15000 — C ms tpprogrameep Page (256 bits) program time EEPROM (partition 2) [Packaged part] tqprogram t256kpperase 256 KB block pre-program and erase time t16kprogram 16 KB block program time 27 C 45 50 P 40 1000 — C ms t32kprogram 32 KB block program time 54 C 90 100 P 80 2000 — C ms t64kprogram 64 KB block program time 108 C 175 200 P 169 4000 — C ms t256kprogram 256 KB block program time 432 C 700 850 P 634 17000 — C ms t16kprogrameep Program 16 KB EEPROM (partition 2) [Packaged part] 31 C 52 58 P 64 1000 C ms 160 C 1000 1000 P 500 5000 C ms 1.73 C 2.24 3.40 C 1.9 — C s/MB 4.0 C 8.0 12.0 C 4.4 — C s/MB 5 C 20 30 P 5.8 32 — C s 13 C 26 30 P 14.2 40 — C s 5.5 T — — — — — — ms 20 T — — — — — — µs — — — — — — 10 T µs t16keraseeep Erase 16 KB EEPROM (partition 2) [Packaged part] ttr Program rate(8) tpr Erase rate(8) tffprogram tfferase Full flash programming Full flash erasing time(9) time(9) rate(10) tESRT Erase suspend request tPSRT Program suspend request rate(10) tPSUS 86/160 (11) Program suspend latency DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 45. Flash memory program and erase specifications (1)(Continued) Value Symbol Initial max (2) Characteristics Typ(3) C All 25 °C(6) temp C Typical end of life(4) (7) Lifetime max(5) < 1 k < 250 K cycles cycles tESUS Erase suspend latency(11) — — — — — — tAIC0S Array Integrity Check (2.5 MB, sequential)(12) 25 T — — — — — Array Integrity Check (256 KB, sequential)(12) 2.5 T — — — — tAIC0P Array Integrity Check (2.5 MB, proprietary)(12) 2.5 T — — — tMR0S Margin Read (2.5 MB, sequential)(12) 125 T — — Margin Read (256 KB, sequential)(12) 12.5 T — — tAIC256KS tMR256KS Unit C 20 T µs — — ms — — — ms — — — — s — — — — — ms — — — — — ms 1. Characteristics are valid both for Data Flash and Code Flash, unless specified in the characteristics column. 2. Actual hardware programming times; this does not include software overhead. 3. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 4. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. These values are characteristic, but not tested. 5. Lifetime maximum program & erase times apply across the voltages and temperatures and occur after the specified number of program/erase cycles. These maximum values are characterized but not tested or guaranteed. 6. Initial factory condition: < 100 program/erase cycles, 20 °C < TJ < 30 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing. 7. Initial maximum “All temp” program and erase times provide guidance for time-out limits used in the factory and apply for less than or equal to 100 program or erase cycles, –40 °C < TJ < 150 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing. 8. Rate computed based on 256 K sectors. 9. Only code sectors, not including EEPROM. 10. Time between suspend resume and next suspend. Value stated actually represents minimum value specification. 11. Timings guaranteed by design. 12. AIC is done using system clock, thus all timing is dependant on system frequency and number of wait states. Timing in the table is calculated at max frequency. Table 46. Flash memory Life Specification Symbol Value Characteristics(1) Unit Min C Typ C NCER16K 16 KB CODE Flash endurance 10 — 100 — kcycles NCER32K 32 KB CODE Flash endurance 10 — 100 — kcycles NCER64K 64 KB CODE Flash endurance 10 — 100 — kcycles DocID023601 Rev 6 87/160 159 Electrical characteristics SPC574Kx Table 46. Flash memory Life Specification(Continued) Symbol Value Characteristics(1) Unit Min C Typ C 1 — 100 — kcycles 250 — — — kcycles Minimum data retention Blocks with 0 - 1,000 P/E cycles 20 — — — Years tDR10k Minimum data retention Blocks with 1,001 - 10,000 P/E cycles 20 — — — Years tDR250k Minimum data retention Blocks with 10,001 - 250,000 P/E cycles 10 — — — Years NCER256K 256 KB CODE Flash endurance NDER16K 16 KB EEPROM Flash endurance tDR1k 1. Program and erase cycles supported across specified temperature specs. 3.18.1 Flash read wait state and address pipeline control settings Table 47 describes the recommended RWSC settings at various operating frequencies based on specified intrinsic flash access times of the Flash array at 150 °C. Table 47. Flash memory RWSC configuration 88/160 Platform Frequency Minimum RWSC settings 0 – 25 MHz 0 25 – 50 MHz 1 50 – 80 MHz 2 80 – 110 MHz 3 110 – 140 MHz 4 140 – 160 MHz 5 DocID023601 Rev 6 SPC574Kx Electrical characteristics 3.19 AC specifications 3.19.1 Debug and calibration interface timing 3.19.1.1 JTAG interface timing Table 48. JTAG pin AC electrical characteristics(1)(2) Value # Symbol C Characteristic Unit Min Max 1 tJCYC CC D TCK cycle time 100 — ns 2 tJDC CC T TCK clock pulse width 40 60 % 3 tTCKRISE CC D TCK rise and fall times (40%–70%) — 3 ns 4 tTMSS, tTDIS CC D TMS, TDI data setup time 5 — ns 5 tTMSH, tTDIH CC D TMS, TDI data hold time 5 — ns ns 6 tTDOV CC D TCK low to TDO data valid — 15(3) 7 tTDOI CC D TCK low to TDO data invalid 0 — ns 8 tTDOHZ CC D TCK low to TDO high impedance — 15 ns 9 tJCMPPW CC D JCOMP assertion time 100 — ns 10 tJCMPS CC D JCOMP setup time to TCK low 40 — ns 11 tBSDV CC D TCK falling edge to output valid — 600(4) ns 12 tBSDVZ CC D TCK falling edge to output valid out of high impedance — 600 ns 13 tBSDHZ CC D TCK falling edge to output high impedance — 600 ns 14 tBSDST CC D Boundary scan input valid to TCK rising edge 15 — ns 15 tBSDHT CC D TCK rising edge to boundary scan input invalid 15 — ns 1. These specifications apply to JTAG boundary scan only. See Table 49 for functional specifications. 2. JTAG timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O section of the data sheet. 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay. 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay. DocID023601 Rev 6 89/160 159 Electrical characteristics SPC574Kx Figure 24. JTAG test clock input timing TCK 2 3 2 1 3 Figure 25. JTAG test access port timing TCK 4 5 TMS, TDI 6 8 7 TDO 90/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Figure 26. JTAG JCOMP timing TCK 10 JCOMP 9 DocID023601 Rev 6 91/160 159 Electrical characteristics SPC574Kx Figure 27. JTAG boundary scan timing TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals 3.19.1.2 Nexus interface timing Table 49. Nexus debug port timing(1) Value # Symbol C Characteristic Unit Min Max 7 tEVTIPW CC P EVTI pulse width 4 — tCYC(2) 8 tEVTOPW CC P EVTO pulse width 40 — ns 2(3), — tCYC(2) 9 tTCYC CC D TCK cycle time 9 tTCYC CC D Absolute minimum TCK cycle time(5) (TDO sampled on posedge 40(6) of TCK) — ns 11(7) tNTDIS CC D TDI/TDIC data setup time 5 — ns 12 tNTDIH CC D TDI/TDIC data hold time 5 — ns 92/160 (4) DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 49. Nexus debug port timing(1)(Continued) Value # Symbol C Characteristic 13(8) tNTMSS CC D TMS/TMSC data setup time 14 tNTMSH CC D TMS/TMSC data hold time 15 (9) 16 1. Unit (10) Min Max 5 — ns 5 — ns — 16 ns — ns — CC D TDO/TDOC propagation delay from falling edge of TCK — CC D TDO/TDOC hold time with respect to TCK falling edge (minimum 2.25 TDO/TDOC propagation delay) Nexus timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O section of the data sheet. 2. tCYC is system clock period. 3. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number greater than or equal to that specified here. 4. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute minimum TCK period specification. 5. This timing applies to TDI/TDIC, TDO/TDOC, TMS/TMSC pins; however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency. 6. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. 7. TDIC represents the TDI bit frame of the scan packet in compact JTAG 2-wire mode. 8. TMSC represents the TMS bit frame of the scan packet in compact JTAG 2-wire mode. 9. TDOC represents the TDO bit frame of the scan packet in compact JTAG 2-wire mode. 10. Timing includes TCK pad delay, clock tree delay, logic delay and TDO/TDOC output pad delay. Figure 28. Nexus event trigger and test clock timings TCK EVTI EVTO 9 DocID023601 Rev 6 93/160 159 Electrical characteristics SPC574Kx Figure 29. Nexus TDI/TDIC, TMS/TMSC, TDO/TDOC timing TCK 11 13 12 14 TMS/TMSC, TDI/TDIC 15 16 TDO/TDOC 3.19.1.3 Aurora LVDS interface timing Table 50. Aurora LVDS interface timing specifications Value Symbol C Parameter Unit Min Typ Max — — 1250 Mbps — — 5 µs — — 5 µs — — 4 µs Data Rate — SR T Data rate STARTUP tSTRT_BIAS CC T Bias startup time(1) time(2) tSTRT_TX CC T Transmitter startup tSTRT_RX CC T Receiver startup time(3) 1. Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr_down (power down) has been deasserted. LVDS functionality is guaranteed only after the startup time. 2. Startup time is defined as the time taken by LVDS transmitter for settling after its pwr_down (power down) has been deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is guaranteed only after the startup time. 94/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 3. Startup time is defined as the time taken by LVDS receiver for settling after its pwr_down (power down) has been deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is guaranteed only after the startup time. 3.19.1.4 Aurora debug port timing Table 51. Aurora debug port timing Value # Symbol C Characteristic Unit Min Max 625 1250 MHz 1 tREFCLK CC T Reference clock frequency 1a tMCYC CC T Reference clock rise/fall time — 400 ps 2 tRCDC CC D Reference clock duty cycle 45 55 % 3 JRC CC D Reference clock jitter — 40 ps 4 tSTABILITY CC D Reference clock stability 50 — PPM 5 BER CC D Bit error rate — 10–12 — 6 JD SR D Transmit lane deterministic jitter — 0.17 OUI 7 JT SR D Transmit lane total jitter — 0.35 OUI 8 SO CC T Differential output skew — 20 ps 9 SMO CC T Lane to lane output skew — 1000 ps 625 Mbps 1600 1600 ps 1.25 Gbps 800 800 10 OUI CC D Aurora lane unit interval (1) D 1. ± 100 PPM DocID023601 Rev 6 95/160 159 Electrical characteristics SPC574Kx Figure 30. Aurora timings 1 2 2 CLOCKREF Zero Crossover CLOCKREF + 1a 1a 1a 8 1a 8 8 Tx Data Ideal Zero Crossover Tx Data + Tx Data [n] Zero Crossover Tx Data [n+1] Zero Crossover Tx Data [m] Zero Crossover 9 3.19.2 9 DSPI timing with CMOS and LVDS(a) pads DSPI channel frequency support is shown in Table 52. Timing specifications are shown in Table 53, Table 54, Table 55, Table 56 and Table 57. Table 52. DSPI channel frequency support DSPI use mode CMOS (Master mode) Max usable frequency (MHz)(1),(2) Full duplex – Classic timing (Table 53) 17 Full duplex – Modified timing (Table 54) 30 Output only mode (SCK/SOUT/PCS) (Table 53 and Table 54) 30 Output only mode TSB mode (SCK/SOUT/PCS) (Table 57) 30 a. DSPI in TSB mode with LVDS pads can be used to implement Micro Second Channel bus protocol. 96/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 52. DSPI channel frequency support(Continued) Max usable frequency (MHz)(1),(2) DSPI use mode LVDS (Master mode) CMOS Slave mode Full duplex – Modified timing (Table 55) 33 Output only mode TSB mode (SCK/SOUT/PCS) (Table 56) 40 Full duplex (Table 58) 16 1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads. 2. Maximum usable frequency does not take into account external device propagation delay. 3.19.2.1 DSPI master mode full duplex timing with CMOS and LVDS pads 3.19.2.1.1 DSPI CMOS Master Mode – Classic Timing Table 53. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1(1) Value(2) Condition # 1 2 Symbol tSCK tCSC CC CC C Characteristic D SCK cycle time Unit Pad drive(3) Load (CL) tASC CC Max SCK drive strength Very strong 25 pF 33.0 — Strong 50 pF 80.0 — Medium 50 pF 200.0 — ns D PCS to SCK delay SCK and PCS drive strength Very strong 25 pF (N(4) × tSYS(5)) – 16 — Strong 50 pF (N(4) × tSYS(5)) – 16 — Medium 50 pF (N(4) × tSYS(5)) – 16 — (N(4) × tSYS(5)) – 29 — PCS medium PCS = 50 pF and SCK strong SCK = 50 pF 3 Min D After SCK delay ns SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Medium PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — PCS medium PCS = 0 pF and SCK strong SCK = 50 pF (M(6) × tSYS(5)) – 35 — DocID023601 Rev 6 ns 97/160 159 Electrical characteristics SPC574Kx Table 53. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1(1)(Continued) Value(2) Condition # 4 Symbol tSDC CC C Characteristic D SCK duty cycle(7) Unit Pad drive(3) Load (CL) Min Max SCK drive strength Very strong Strong Medium 0 pF 1 0 pF 1 0 pF 1 /2tSCK – 2 1 /2tSCK + 2 /2tSCK – 2 1 /2tSCK + 2 /2tSCK – 5 1 /2tSCK + 5 ns PCS strobe timing 5 6 tPCSC tPASC CC CC D PCSx to PCSS time(8) PCS and PCSS drive strength D PCSS to PCSx time(8) PCS and PCSS drive strength Strong 25 pF Strong 25 pF 16.0 — ns 16.0 — ns ns SIN setup time 7 tSUI CC D SIN setup time to SCK(9) SCK drive strength Very strong 25 pF 25.0 — Strong 50 pF 31.0 — Medium 50 pF 52.0 — –1.0 — SIN hold time 8 tHI CC D SIN hold time from SCK drive strength SCK(9) Very strong 0 pF Strong 0 pF –1.0 — Medium 0 pF –1.0 — D SOUT data valid SOUT and SCK drive strength time from SCK(10) Very strong 25 pF — 7.0 Strong 50 pF — 8.0 Medium 50 pF — 16.0 D SOUT data hold SOUT and SCK drive strength time after SCK(10) Very strong 25 pF –7.7 — Strong 50 pF –11.0 — Medium 50 pF –15.0 — ns SOUT data valid time (after SCK edge) 9 tSUO CC ns SOUT data hold time (after SCK edge) 10 tHO CC 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. All timing values for output signals in this table are measured to 50% of the output voltage. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 98/160 DocID023601 Rev 6 ns SPC574Kx Electrical characteristics 4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10 ns). 6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 8. PCSx and PCSS using same pad configuration. 9. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds. 10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. Figure 31. DSPI CMOS master mode – classic timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) SIN tSDC tSUI tHI First Data Data tSUO SOUT First Data Data DocID023601 Rev 6 Last Data tHO Last Data 99/160 159 Electrical characteristics SPC574Kx Figure 32. DSPI CMOS master mode – classic timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI tHI Data First Data SIN tSUO SOUT Data First Data Last Data tHO Last Data Figure 33. DSPI PCS strobe (PCSS) timing (master mode) tPCSC tPASC PCSS PCSx 3.19.2.1.2 DSPI CMOS Master Mode – Modified Timing Table 54. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1) Value(2) Condition # 1 Symbol tSCK 100/160 CC C D Characteristic SCK cycle time Pad drive(3) Unit Load (CL) Min Max SCK drive strength Very strong 25 pF 33.0 — Strong 50 pF 80.0 — Medium 50 pF 200.0 — DocID023601 Rev 6 ns SPC574Kx Electrical characteristics Table 54. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1)(Continued) Value(2) Condition # 2 3 4 Symbol tCSC tASC tSDC CC CC CC C D D D Characteristic Pad drive(3) Unit Load (CL) Min Max PCS to SCK delay SCK and PCS drive strength After SCK delay SCK duty cycle(7) Very strong 25 pF (N(4) × tSYS(5)) – 16 — Strong 50 pF (N(4) × tSYS(5)) – 16 — Medium 50 pF (N(4) × tSYS(5)) – 16 — PCS medium and SCK strong PCS = 50 pF SCK = 50 pF (N(4) × tSYS(5)) – 29 — ns SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — Medium PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — PCS medium and SCK strong PCS = 0 pF SCK = 50 pF (M(6) × tSYS(5)) – 35 — ns SCK drive strength Very strong Strong Medium 0 pF 1/ t 2 SCK 0 pF 1/ t 2 SCK 0 pF 1/ t 2 SCK –2 1/ t 2 SCK +2 –2 1/ t 2 SCK +2 –5 1/ t 2 SCK +5 ns PCS strobe timing 5 6 tPCSC tPASC CC CC D D PCSx to PCSS time(8) PCS and PCSS drive strength PCSS to PCSx time(8) PCS and PCSS drive strength Strong Strong 25 pF 25 pF 16.0 — ns 16.0 — ns SIN setup time DocID023601 Rev 6 101/160 159 Electrical characteristics SPC574Kx Table 54. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1)(Continued) Value(2) Condition # 7 Symbol tSUI CC C D Characteristic SIN setup time to SCK CPHA = 0(9) SIN setup time to SCK CPHA = 1(9) Pad drive(3) Unit Load (CL) Min Max SCK drive strength Very strong 25 pF 25 – (P(10) × tSYS(5)) — Strong 50 pF 31 – (P(10) × tSYS(5)) — Medium 50 pF 52 – (P(10) × tSYS(5)) — ns SCK drive strength Very strong 25 pF 25.0 — Strong 50 pF 31.0 — Medium 50 pF 52.0 — – 1 + (P(9) × tSYS(4) ) — ns SIN hold time 8 tHI CC D SIN hold time from SCK drive strength SCK Very strong 0 pF CPHA = 0(9) Strong 0 pF – 1 + (P(9) × tSYS(4) ) — Medium 0 pF – 1 + (P(9) × tSYS(4) ) — –1.0 — –1.0 — –1.0 — SIN hold time from SCK drive strength SCK Very strong 0 pF CPHA = 1(9) Strong 0 pF Medium 0 pF ns ns SOUT data valid time (after SCK edge) 9 tSUO CC D SOUT data valid time from SCK CPHA = 0(10) SOUT data valid time from SCK CPHA = 1(10) 102/160 SOUT and SCK drive strength Very strong 25 pF — 7.0 + tSYS(5) ns Strong 50 pF — 8.0 + tSYS(5) Medium 50 pF — 16.0 + tSYS( 5) SOUT and SCK drive strength Very strong 25 pF — 7.0 Strong 50 pF — 8.0 Medium 50 pF — 16.0 DocID023601 Rev 6 ns SPC574Kx Electrical characteristics Table 54. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1(1)(Continued) Value(2) Condition # Symbol C Characteristic Pad drive(3) Unit Load (CL) Min Max 25 pF –7.7 + tSYS(5) — Strong 50 pF –11.0 + tSYS(5) — Medium 50 pF –15.0 + tSYS(5) — SOUT data hold time (after SCK edge) 10 tHO CC D SOUT data hold time after SCK CPHA = 0(11) SOUT data hold time after SCK CPHA = 1(11) SOUT and SCK drive strength Very strong ns SOUT and SCK drive strength Very strong 25 pF –7.7 — Strong 50 pF –11.0 — Medium 50 pF –15.0 — ns 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. All timing values for output signals in this table are measured to 50% of the output voltage. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10 ns). 6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 8. PCSx and PCSS using same pad configuration. 9. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds. 10. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1. 11. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. DocID023601 Rev 6 103/160 159 Electrical characteristics SPC574Kx Figure 34. DSPI CMOS master mode – modified timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) SIN tSDC tSUI tHI First Data Data Last Data tSUO SOUT tHO Data First Data Last Data Figure 35. DSPI CMOS master mode – modified timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI SIN tHI tHI Data First Data tSUO SOUT 104/160 First Data Data DocID023601 Rev 6 Last Data tHO Last Data SPC574Kx Electrical characteristics Figure 36. DSPI PCS strobe (PCSS) timing (master mode) tPCSC tPASC PCSS PCSx 3.19.2.1.3 DSPI LVDS Master Mode – Modified Timing Table 55. DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1), CPHA = 0 or 1 Value(1) Condition # Symbol C Characteristic Unit Pad drive Load Min Max 15 pF to 25 pF differential 30.0 — ns 1 tSCK CC D SCK cycle time LVDS 2 tCSC CC D PCS to SCK delay (LVDS SCK) PCS drive strength 3 tASC CC D 4 tSDC CC D 7 tSUI CC D Very strong 25 pF (N(2) × tSYS(3)) – 10 — ns Strong 50 pF (N(2) × tSYS(3)) – 10 — ns Medium 50 pF (N(2) × tSYS(3)) – 32 — ns PCS = 0 pF SCK = 25 pF (M(4) × tSYS(3)) – 8 — ns Strong PCS = 0 pF SCK = 25 pF (M(4) × tSYS(3)) – 8 — ns Medium PCS = 0 pF SCK = 25 pF (M(4) × tSYS(3)) – 8 — ns After SCK delay Very strong (LVDS SCK) SCK duty cycle(5) LVDS 15 pF to 25 pF differential 1/ t 2 SCK –2 1/ 2tSCK +2 ns SIN setup time SIN setup time to SCK drive strength SCK LVDS 15 pF CPHA = 0(6) to 25 pF differential 23 – (P(7) × tSYS(3)) — ns SIN setup time to SCK drive strength SCK LVDS 15 pF CPHA = 1(6) to 25 pF differential 23 — ns DocID023601 Rev 6 105/160 159 Electrical characteristics SPC574Kx Table 55. DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1), CPHA = 0 or 1(Continued) Value(1) Condition # Symbol C Characteristic Unit Pad drive 8 9 10 tHI tSUO tHO CC CC CC Load D D D Min Max – 1 + (P(7) × tSYS(3)) — ns –1 — ns SIN Hold Time SIN hold time from SCK CPHA = 0(6) SCK drive strength SIN hold time from SCK CPHA = 1(6) SCK drive strength LVDS LVDS 0 pF differential 0 pF differential SOUT data valid time (after SCK edge) SOUT data valid SOUT and SCK drive strength time from SCK LVDS 15 pF CPHA = 0(8) to 25 pF differential — 7.0 + tSYS(3) ns SOUT data valid SOUT and SCK drive strength time from SCK LVDS 15 pF CPHA = 1(8) to 25 pF differential — 7.0 ns SOUT data hold time (after SCK edge) SOUT data hold SOUT and SCK drive strength time after SCK LVDS 15 pF CPHA = 0(8) to 25 pF differential –7.5 + tSYS(3) — ns SOUT data hold SOUT and SCK drive strength time after SCK LVDS 15 pF CPHA = 1(8) to 25 pF differential –7.5 — ns 1. All timing values for output signals in this table are measured to 50% of the output voltage. 2. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 3. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10 ns). 4. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn). 5. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 6. Input timing assumes an input slew rate of 1 ns (10% – 90%) and LVDS differential voltage = ±100 mV. 7. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1. 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. 106/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Figure 37. DSPI LVDS master mode – modified timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) SIN tSDC tSUI tHI First Data Data Last Data tSUO SOUT tHO Data First Data Last Data Figure 38. DSPI LVDS master mode – modified timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI SIN tHI tHI Data First Data tSUO SOUT First Data Data DocID023601 Rev 6 Last Data tHO Last Data 107/160 159 Electrical characteristics SPC574Kx 3.19.2.1.4 DSPI Master Mode – Output Only Table 56. DSPI LVDS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock(1)(2) Condition # Symbol C Value Characteristic Unit Pad drive Load Min Max 15 pF to 50 pF differential 25.0 — ns 1 tSCK CC D SCK cycle time 2 tCSV CC D PCS valid after Very strong SCK(3) Strong (SCK with 50 pF differential load cap.) 25 pF — 6.0 ns 50 pF — 10.5 ns PCS hold after Very strong SCK(3) Strong (SCK with 50 pF differential load cap.) 0 pF –4.0 — ns 0 pF –4.0 — ns SCK duty cycle LVDS (SCK with 50 pF differential load cap.) 15 pF to 50 pF differential 3 4 tCSH tSDC CC CC D D LVDS 1/ 2tSCK – 2 1/2tSCK + 2 ns SOUT data valid time (after SCK edge) 5 tSUO CC D SOUT data valid time from SCK(4) SOUT and SCK drive strength LVDS 15 pF to 50 pF differential — 3.5 ns –3.5 — ns SOUT data hold time (after SCK edge) 6 tHO CC D SOUT data hold time SOUT and SCK drive strength after SCK(4) LVDS 15 pF to 50 pF differential 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers. 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1. 3. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays. 4. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. 108/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 57. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock(1)(2) Value(3) Condition # 1 2 3 4 Symbol tSCK tCSV tCSH tSDC CC CC CC CC C D D D D Characteristic Pad drive(4) SCK cycle time Unit Load (CL) Min Max SCK drive strength PCS valid after SCK (5) PCS hold after SCK(5) SCK duty cycle(6) Very strong 25 pF 33.0 — ns Strong 50 pF 80.0 — ns Medium 50 pF 200.0 — ns SCK and PCS drive strength Very strong 25 pF 7 — ns Strong 50 pF 8 — ns Medium 50 pF 16 — ns PCS medium and SCK strong PCS = 50 pF SCK = 50 pF 29 — ns SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF –14 — ns Strong PCS = 0 pF SCK = 50 pF –14 — ns Medium PCS = 0 pF SCK = 50 pF –33 — ns PCS medium and SCK strong PCS = 0 pF SCK = 50 pF –35 — ns SCK drive strength Very strong 0 pF 1/ t 2 SCK – 2 1/2tSCK + 2 ns Strong 0 pF 1 /2tSCK – 2 1/2tSCK + 2 ns Medium 0 pF 1/ t 2 SCK – 5 1/2tSCK + 5 ns SOUT data valid time (after SCK edge) 9 tSUO CC D SOUT data valid time from SCK CPHA = 1(7) SOUT and SCK drive strength Very strong 25 pF — 7.0 ns Strong 50 pF — 8.0 ns Medium 50 pF — 16.0 ns SOUT data hold time (after SCK edge) 1 0 tHO CC D SOUT data hold time after SCK CPHA = 1(7) SOUT and SCK drive strength Very strong 25 pF –7.7 — ns Strong 50 pF –11.0 — ns Medium 50 pF –15.0 — ns 1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1. DocID023601 Rev 6 109/160 159 Electrical characteristics SPC574Kx 2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 3. All timing values for output signals in this table are measured to 50% of the output voltage. 4. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 5. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays. 6. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. Figure 39. DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1 PCSx tCSV tSCK tSDC tCSH SCK Output (CPOL = 0) tSUO First Data SOUT 3.19.2.2 tHO Last Data Data Slave Mode timing Table 58. DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)(1) Condition # Symbol C Characteristic Pad Drive 1 tSCK CC D 2 tCSC SR D D 3 tASC 4 tSDC 5 tA 6 110/160 tDIS SR CC CC SCK Cycle Time(2) Max Unit — — 62 — ns SS to SCK Delay(2) — — 16 — ns Delay(2) — — 16 — ns — — 30 — ns Very Strong 25 pF — 50 ns Strong 50 pF — 50 ns Medium 50 pF — 60 ns Slave SOUT Disable Very Time(2),(3),(4) Strong (SS inactive to SOUT High-Z Strong or invalid) Medium 25 pF — 5 ns 50 pF — 5 ns 50 pF — 10 ns SCK to SS Cycle(2) D SCK Duty D Slave Access Time(2),(3),(4) (SS active to SOUT driven) D Min Load DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 58. DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)(1)(Continued) Condition # Symbol C Characteristic Min Max Unit — 10 — ns — — 10 — ns Very Strong 25 pF — 30 ns Strong 50 pF — 30 ns Medium 50 pF — 50 ns Very Strong 25 pF 2.5 — ns Strong 50 pF 2.5 — ns Medium 50 pF 2.5 — ns Pad Drive 9 10 11 12 tSUI tHI tSUO tHO CC CC CC CC D D D D Data Setup Time for Inputs(2) — Data Hold Time for Inputs SOUT Valid Time (after SCK edge) (2) (2),(3),(4) SOUT Hold Time(2),(3),(4) (after SCK edge) Load 1. DSPI slave operation is only supported for a single master and single slave on the device. Timing is valid for that case only. 2. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL / Automotive voltage thresholds. 3. All timing values for output signals in this table, are measured to 50% of the output voltage. 4. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. Figure 40. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1)—CPHA = 0 tASC tCSC SS tSCK SCK Input (CPOL=0) tSDC tSDC SCK Input (CPOL=1) tSUO tA SOUT First Data Data tSUI SIN First Data tHO tDIS Last Data tHI Data DocID023601 Rev 6 Last Data 111/160 159 Electrical characteristics SPC574Kx Figure 41. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1)—CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) tSUO tA Data Last Data Data Last Data First Data SOUT tSUI tHI First Data SIN 3.19.3 tDIS tHO FEC timing The FEC provides RMII in the eLQFP176 and FusionQuad® packages. RMII signals can be configured for either CMOS or TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V. 3.19.3.1 RMII serial management channel timing (MDIO and MDC) The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 59. RMII serial management channel timing(1)(2) Value(3) Symbol C Characteristic Unit Min Max M10 CC D MDC falling edge to MDIO output invalid (minimum propagation delay) -10 — ns M11 CC D MDC falling edge to MDIO output valid (max prop delay) — 25 ns M12 CC D MDIO (input) to MDC rising edge setup 10 — ns M13 CC D MDIO (input) to MDC rising edge hold 10 — ns M14 CC D MDC pulse width high 40% 60% MDC period M15 CC D MDC pulse width low 40% 60% MDC period 1. All timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V (TTL levels). For 5 V operation, timing is referenced from MDC = 50% to 2.2 V/3.5 V input and output levels. 2. RMII timing is valid only up to a maximum of 150 oC junction temperature. 112/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics 3. Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package capacitance is accounted for, and need not be subtracted from the 25 pF value. Care should be taken to align external load on MDIO and MDC. Figure 42. RMII serial management channel timing diagram M14 M15 MDC (output) M10 MDIO (output) M11 MDIO (input) M12 3.19.3.2 M13 RMII receive signal timing (RXD[1:0], CRS_DV) The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK frequency. Table 60. RMII receive signal timing(1)(2) Value Symbol C Characteristic Unit Min Max R1 CC D RXD[1:0], CRS_DV to REF_CLK setup 4 — ns R2 CC D REF_CLK to RXD[1:0], CRS_DV hold 2 — ns R3 CC D REF_CLK pulse width high 35% 65% REF_CLK period R4 CC D REF_CLK pulse width low 35% 65% REF_CLK period 1. All timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V. 2. RMII timing is valid only up to a maximum of 150 oC junction temperature. DocID023601 Rev 6 113/160 159 Electrical characteristics SPC574Kx Figure 43. RMII receive signal timing diagram R3 REF_CLK (input) R4 RXD[1:0] (inputs) CRS_DV R2 R1 3.19.3.3 RMII transmit signal timing (TXD[1:0], TX_EN) The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK frequency. The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either the rising or falling edge of REF_CLK, and the timing is the same in either case. This options allows the use of non-compliant RMII PHYs. Table 61. RMII transmit signal timing(1)(2) Value(3) Symbol C Characteristic Unit Min Max R5 CC D REF_CLK to TXD[1:0], TX_EN invalid 2 — ns R6 CC D REF_CLK to TXD[1:0], TX_EN valid — 16 ns R7 CC D REF_CLK pulse width high 35% 65% REF_CLK period R8 CC D REF_CLK pulse width low 35% 65% REF_CLK period o 1. RMII timing is valid only up to a maximum of 150 C junction temperature. 2. CL = 25pF, VDD_HV_IO_FLEX = 3.3V +/- 5% and CMOS levels are required for the REF_CLK input. For CL = 15pF, VDD_HV_IO_FLEX = 3.3V +/- 10%, CMOS or TTL levels for the REF_CLK input. 3. CL is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value. 114/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Figure 44. RMII transmit signal timing diagram R7 REF_CLK (input) R5 R8 TXD[1:0] (outputs) TX_EN R6 3.19.4 FlexRay timing This section provides the FlexRay Interface timing characteristics for the input and output signals. These are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device. 3.19.4.1 TxEN Figure 45. TxEN signal TxEN 80 % 20 % dCCTxENFALL dCCTxENRISE Table 62. TxEN output characteristics(1) Value Symbol C Characteristic Unit Min Max dCCTxENRISE25 CC D Rise time of TxEN signal at CC — 9 ns dCCTxENFALL25 CC D Fall time of TxEN signal at CC — 9 ns DocID023601 Rev 6 115/160 159 Electrical characteristics SPC574Kx Table 62. TxEN output characteristics(1)(Continued) Value Symbol C Characteristic Unit Min Max dCCTxEN01 CC D Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge — 25 ns dCCTxEN10 CC D Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge — 25 ns 1. TxEN pin load maximum 25 pF Figure 46. TxEN signal propagation delays PE_Clk TxEN dCCTxEN10 116/160 dCCTxEN01 DocID023601 Rev 6 SPC574Kx 3.19.4.2 Electrical characteristics TxD Figure 47. TxD signal TxD dCCTxD50% 80 % 50 % 20 dCCTxDRISE dCCTxDFALL Table 63. TxD output characteristics(1)(2) Value Symbol dCCTxAsym C CC dCCTxDRISE25+dCCTxDFALL25 CC Characteristic D Asymmetry of sending CC at 25 pF load (= dCCTxD50% − 100 ns) D Sum of Rise and Fall time of TxD signal at the output pin(3),(4) D Unit Min Max –2.45 2.45 ns — 9(5) ns — 9(6) dCCTxD01 CC D Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge — 25 ns dCCTxD10 CC D Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge — 25 ns 1. TxD pin load maximum 25 pF. 2. Specifications valid according to FlexRay EPL 3.0.1 standard with 20%–80% levels and a 10pF load at the end of a 50 Ohm, 1 ns stripline. Please refer to the Very Strong I/O pad specifications. 3. Pad configured as VERY STRONG. 4. Sum of transition time simulation is performed according to Electrical Physical Layer Specification 3.0.1 and the entire temperature range of the device has been taken into account. 5. VDD_HV_IO = 5.0 V ± 10%, Transmission line Z = 50 ohms, tdelay = 1 ns, CL = 10 pF 6. VDD_HV_IO = 3.3 V ± 10%, Transmission line Z = 50 ohms, tdelay = 0.6 ns, CL = 10 pF DocID023601 Rev 6 117/160 159 Electrical characteristics SPC574Kx Figure 48. TxD Signal propagation delays PE_Clk* TxD dCCTxD10 dCCTxD01 * FlexRay Protocol Engine Clock 3.19.4.3 RxD Table 64. RxD input characteristics(1) Value Symbol C Characteristic Unit Min Max C_CCRxD CC D Input capacitance on RxD pin — 7 pF uCCLogic_1 CC D Threshold for detecting logic high 35 70 % uCCLogic_0 CC D Threshold for detecting logic low 30 65 % dCCRxD01 CC D Sum of delay from actual input to the D input of the first FF, rising edge — 10 ns dCCRxD10 CC D Sum of delay from actual input to the D input of the first FF, falling edge — 10 ns dCCRxAsymAccept15 CC D Acceptance of asymmetry at receiving CC with 15 pF load –31.5 44 ns dCCRxAsymAccept25 CC D Acceptance of asymmetry at receiving CC with 25 pF load –30.5 43 ns 1. FlexRay RxD timing is valid for CMOS input levels, hysteresis disabled, and 4.5 V ≤ VDD_HV_IO ≤ 5.5 V. 3.19.5 PSI5 timing The following table describes the PSI5 timing. 118/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Table 65. PSI5 timing Value Symbol C Parameter Unit Min Max tMSG_DLY CC D Delay from last bit of frame (CRC0) to assertion of new message received interrupt — 3 µs tSYNC_DLY CC D Delay from internal sync pulse to sync pulse trigger at the SDOUT_PSI5_n pin — 2 µs tMSG_JIT CC D Delay jitter from last bit of frame (CRC0) to assertion of new message received interrupt — 1 cycles(1) tSYNC_JIT CC D Delay jitter from internal sync pulse to sync pulse trigger at the SDOUT_PSI5_n pin — ±(1 PSI5_1µs_CLK + 1 PBRIDGEn_CLK) cycles 1. Measured in PSI5 clock cycles (PBRIDGEn_CLK on the device). Minimum PSI5 clock period is 20 ns. 3.19.6 UART timing UART channel frequency support is shown in the following table. Table 66. UART frequency support LINFlexD clock frequency LIN_CLK (MHz) Oversampling rate 80 16 Max usable frequency (Mbaud) Voting scheme 3:1 majority voting 5 8 10 6 Limited voting on one sample with configurable sampling point 5 13.33 16 4 100 20 16 3:1 majority voting 6.25 8 12.5 6 16.67 Limited voting on one sample with configurable sampling point 5 20 4 3.19.7 25 I2C timing The I2C AC timing specifications are provided in the following tables. Table 67. I2C input timing specifications — SCL and SDA(1) Value No. Symbol C Parameter Unit Min Max 1 — CC D Start condition hold time 2 — PER_CLK Cycle(2) 2 — CC D Clock low time 8 — PER_CLK Cycle DocID023601 Rev 6 119/160 159 Electrical characteristics SPC574Kx Table 67. I2C input timing specifications — SCL and SDA(1)(Continued) Value No. Symbol C Parameter Unit Min Max 3 — CC D Bus free time between Start and Stop condition 4.7 — µs 4 — CC D Data hold time 0.0 — ns 5 — CC D Clock high time 4 — PER_CLK Cycle 6 — CC D Data setup time 0.0 — ns 7 — CC D Start condition setup time (for repeated start condition only) 2 — PER_CLK Cycle — CC D Stop condition setup time 2 — PER_CLK Cycle 8 2 1. I C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than 1 ns (10% – 90%). 2. PER_CLK is the SoC peripheral clock, which drives the I2C BIU and module clock inputs. See the Clocking chapter in the device reference manual for more detail. Table 68. I2C output timing specifications — SCL and SDA(1)(2)(3)(4) Value No. Symbol C Parameter Unit Min Max 1 — CC D Start condition hold time 6 — PER_CLK Cycle(5) 2 — CC D Clock low time 10 — PER_CLK Cycle 3 — CC D Bus free time between Start and Stop condition 4.7 — µs 4 — CC D Data hold time 7 — PER_CLK Cycle 5 — CC D Clock high time 10 — PER_CLK Cycle 6 — CC D Data setup time 2 — PER_CLK Cycle 7 — CC D Start condition setup time (for repeated start condition only) 20 — PER_CLK Cycle 8 — CC D Stop condition setup time 10 — PER_CLK Cycle 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speedsand may cause incorrect operation. 4. Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register. 5. PER_CLK is the SoC peripheral clock, which drives the I2C BIU and module clock inputs. See the Clocking chapter in the device reference manual for more detail. 120/160 DocID023601 Rev 6 SPC574Kx Electrical characteristics Figure 49. I2C input/output timing 2 5 SCL 4 1 8 6 3 7 SDA 3.19.8 GPIO delay timing The GPIO delay timing specification is provided in the following table. Table 69. GPIO delay timing Value Symbol IO_delay C CC Parameter D Delay from MSCR bit update to pad function enable DocID023601 Rev 6 Unit Min Max 5 25 ns 121/160 159 Package characteristics 4 SPC574Kx Package characteristics The following table lists the case numbers for each available package for the device. Table 70. Package case numbers 4.1 Package Type Device Type Package reference eTQFP144 Production 7386636 FQ172 Emulation 8153717 eLQFP176 Production 8391697 FQ216 Emulation 8338897 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 122/160 DocID023601 Rev 6 SPC574Kx 4.2 Package characteristics eTQFP144 case drawing Figure 50. eTQFP144 – STMicroelectronics package mechanical drawing (1 of 2) MECHANICAL PACKAGE DRAWINGS TQFP 144L BODY 20x20x1.0 FOOT PRINT 1.0 EXPOSED PAD DOWN PACKAGE CODE : X6 REFERENCE : 7386636 JEDEC/EIAJ REFERENCE NUMBER : JEDEC MS-026-AFB-HD DocID023601 Rev 6 123/160 159 Package characteristics SPC574Kx Figure 51. eTQFP144 – STMicroelectronics package mechanical drawing (2 of 2) Dimensions Symbol Inches(1) Millimeters Min Typ Max Min Typ Max A — — 1.20 — — 0.047 A1 0.05 — 0.15 0.002 — 0.006 A2 0.95 1.00 1.05 0.037 0.039 0.041 b 0.17 0.22 0.27 0.007 0.009 0.011 c 0.09 — 0.20 0.004 — 0.008 D 21.80 22.00 22.20 0.858 0.866 0.874 D1 19.80 20.00 20.20 0.780 0.787 0.795 — 7.35 — — 0.289 — D3 — 17.50 — — 0.689 — E 21.80 22.00 22.20 0.858 0.866 0.874 E1 19.80 20.00 20.20 0.780 0.787 0.795 E2 — 7.35 — — 0.289 — E3 — 17.50 — — 0.689 — e — 0.50 — — 0.020 — L(3) 0.45 0.60 0.75 0.018 0.024 0.030 L1 — 1.00 — — 0.039 — k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° (2) D2 (2) ccc(4) 0.08 0.003 1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits. 2. The size of exposed pad is variable depending of leadframe design pad size. 3. L dimension is measured at gauge plane at 0.25 above the seating plane. 4. Tolerance 124/160 DocID023601 Rev 6 SPC574Kx 4.3 Package characteristics eLQFP176 case drawing Figure 52. eLQFP176 – STMicroelectronics package mechanical drawing (1 of 2) MECHANICAL PACKAGE DRAWINGS LQFP 176L BODY 24x24x1.4 FOOT PRINT 2.0 (2x1.0 mm) EXPOSED PAD DOWN PACKAGE CODE :A0A4 REFERENCE : 8153717 JEDEC/EIAJ REFERENCE NUMBER : JEDEC MS-026-BGA-HD DocID023601 Rev 6 125/160 159 Package characteristics SPC574Kx Figure 53. eLQFP176 – STMicroelectronics package mechanical drawing (2 of 2) Dimensions Symbol Inches(1) Millimeters Min Typ Max Min Typ Max A — — 1.60 — — 0.063 A1 0.05 — 0.15 0.002 — 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057 b 0.17 0.22 0.27 0.007 0.009 0.011 c 0.09 — 0.20 0.004 — 0.008 D 25.80 26.00 26.20 1.016 1.024 1.032 D1 23.90 24.00 24.10 0.941 0.945 0.949 — 7.35 — — 0.289 — D3 — 21.500 — — 0.847 — E 25.80 26.00 26.20 1.016 1.024 1.032 E1 23.90 24.00 24.10 0.941 0.945 0.949 E2(2) — 7.35 — — 0.289 — E3 — 21.50 — — 0.847 — e — 0.50 — — 0.020 — 0.45 0.60 0.75 0.018 0.024 0.030 L1 — 1.00 — — 0.039 — k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° (2) D2 (3) L ccc(4) 0.080 0.003 1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits. 2. The size of exposed pad is variable depending of leadframe design pad size. 3. L dimension is measured at gauge plane at 0.25 above the seating plane. 4. Tolerance 4.4 126/160 FusionQuad® case drawing DocID023601 Rev 6 MECHANICAL PACKAGE DRAWINGS Package characteristics 127/160 Figure 54. FusionQuad® QFP172 package mechanical drawing (1 of 2) DocID023601 Rev 6 PACKAGE CODE :A0SX REFERENCE : 8391697 SPC574Kx FusionQuad® 144+28L 20x20x1.0 0.5 mm Pitch Package characteristics SPC574Kx Figure 55. FusionQuad® QFP172 package mechanical drawing (2 of 2) MECHANICAL OUTLINE ASSEMBLY . NOTES: 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5-1982. 2 DATUM PLANE H LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE. 3 DATUMS A–B AND D TO BE DETERMINED AT CENTERLINE BETWEEN LEADS WHERE LEADS EXIT PLASTIC BODY AT DATUM PLANE H. 4 TO BE DETERMINED AT SEATING PLANE C. 5 DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON D1 AND E1 DIMENSIONS. 6. ‘N’ IS THE NUMBER OF TERMINALS FOR PERIPHERAL LEADS, AND ‘M’ IS THE NUMBER OF TERMINALS FOR BOTTOM LANDS ON BOTTOM SURFACE OF PACKAGE BODY. THE BOTTOM LANDS ARE IDENTIFIED BY ALPHANUMERICS | A1~A#. 7 THESE DIMENSIONS TO BE DETERMINED AT DATUM PLANE H. 8. THE TOP OF PACKAGE MAY BE SMALLER THAN THE BOTTOM OF PACKAGE BY 0.15 MM. 9 DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. 10. CONTROLLING DIMENSION | MILLIMETERS. 11. MAXIMUM ALLOWABLE DIE THICKNESS TO BE ASSEMBLED IN THIS PACKAGE FAMILY IS 0.38 MM. 12 SYMBOL A A1 A2 A3 A4 D D1 D2 D3 E E1 E2 E3 E4 L N e b c.c.c d.d.d MIN — 0.05 0.95 –0.05 8.32 8.20 0.45 0.17 VARIATIONS FUSION NOM — 0.10 1.00 0.00 0.152 REF 22.00 BSC 20.00 BSC 17.50 BSC 8.42 22.00 BSC 20.00 BSC 17.50 BSC 8.30 10.00 REF 0.60 144 0.50 BSC 0.22 0.08 0.08 MAX 1.20 0.15 1.05 0.05 NOTE 4 5 8.52 4 5 9.40 0.75 6 0.27 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. 13. DIMENSIONS D2 AND E2 REPRESENT THE SIZE OF THE EXPOSED PAD. THE ACTUAL DIMENSIONS ARE DETERMINED BY EACH INDIVIDUAL LEADFRAME DRAWING. THE EXPOSED PAD SIZE TOLERANCE IS 0.10 MAX. 14. EXPOSED PAD SHALL BE COPLANAR WITH BOTTOM OF PACKAGE WITHIN 0.05 MM. 15. UNILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 16. MECHANICAL CONNECT TABS ARE COUNTED FOR GROUND (VSS) SIGNAL PINS. THOSE ARE INCLUDED INTO PACKAGE TOTAL PIN COUNTS. 17 THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 MM AND 0.25 MM FROM THE LEAD TIP. 18 THESE DIMENSIONS APPLY TO ALL 4 SYMMETRIC LOCATIONS. 19 GATE PROTRUSION HEIGHT OR CHIP OUT DEPTH | 0.049 MM MAX 128/160 ALL DIMENSIONS IN MILLIMETERS SYMBOL eT eC M La f 999 PITCH VARIATIONS FUSION MIN NOM MAX 0.50 BSC 0.39 BSC 28 0.30 0.40 0.50 0.17 0.22 0.27 — 0.08 — NOTE 18 6 THE FusionQuad PACKAGE IS A REGISTERED TRADEMARK OF AMKOR TECHNOLOGIES. THE FusionQuad PACKAGE IS ASSEMBLED BY AMKOR TECHNOLOGIES. DocID023601 Rev 6 Package characteristics 129/160 Figure 56. FusionQuad® QFP216 package mechanical drawing (1 of 2) DocID023601 Rev 6 PACKAGE CODE: A0HX REFERENCE : 8338897 SPC574Kx FusionQuad® 176+40L 24x24x1.0 0.5 mm Pitch Package characteristics SPC574Kx Figure 57. FusionQuad® QFP216 package mechanical drawing (2 of 2) MECHANICAL OUTLINE ASSEMBLY NOTES: 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5-1982. 2 DATUM PLANE H LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE. 3 DATUMS A–B AND D TO BE DETERMINED AT CENTERLINE BETWEEN LEADS WHERE LEADS EXIT PLASTIC BODY AT DATUM PLANE H. 4 TO BE DETERMINED AT SEATING PLANE C. 5 DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON D1 AND E1 DIMENSIONS. 6. ‘N’ IS THE NUMBER OF TERMINALS FOR PERIPHERAL LEADS, AND ‘M’ IS THE NUMBER OF TERMINALS FOR BOTTOM LANDS ON BOTTOM SURFACE OF PACKAGE BODY. THE BOTTOM LANDS ARE IDENTIFIED BY ALPHANUMERICS | A1~A#. 7 THESE DIMENSIONS TO BE DETERMINED AT DATUM PLANE H. 8. THE TOP OF PACKAGE MAY BE SMALLER THAN THE BOTTOM OF PACKAGE BY 0.15 MM. 9 DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. 10. CONTROLLING DIMENSION | MILLIMETERS. ALL DIMENSIONS IN MILLIMETERS SYMBOL A A1 A2 D D1 D2 D3 E E1 E2 E3 E4 L N e b c.c.c d.d.d MIN — 0.00 0.95 9.58 9.40 0.45 0.17 VARIATIONS FUSION NOM — 0.051 1.00 26.00 BSC 24.00 BSC 17.50 BSC 9.68 26.00 BSC 24.00 BSC 21.00 BSC 9.50 11.20 REF 0.60 176 0.50 BSC 0.22 0.08 0.08 MAX 1.20 0.10 1.05 NOTE 4 5 9.78 4 5 9.60 0.75 6 0.27 11. MAXIMUM ALLOWABLE DIE THICKNESS TO BE ASSEMBLED IN THIS PACKAGE FAMILY IS 0.38 MM. 12 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. 13. DIMENSIONS D2 AND E2 REPRESENT THE SIZE OF THE EXPOSED PAD. THE ACTUAL DIMENSIONS ARE DETERMINED BY EACH INDIVIDUAL LEADFRAME DRAWING. THE EXPOSED PAD SIZE TOLERANCE IS 0.10 MAX. 14. EXPOSED PAD SHALL BE COPLANAR WITH BOTTOM OF PACKAGE WITHIN 0.05 MM. 15. UNILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 16. MECHANICAL CONNECT TABS ARE COUNTED FOR GROUND (VSS) SIGNAL PINS. THOSE ARE INCLUDED INTO PACKAGE TOTAL PIN COUNTS. 17 THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 MM AND 0.25 MM FROM THE LEAD TIP. 18 THESE DIMENSIONS APPLY TO ALL 4 SYMMETRIC LOCATIONS. 130/160 SYMBOL eT eC M La f 999 PITCH VARIATIONS FUSION MIN NOM MAX 0.50 BSC 0.39 BSC 40 0.30 0.40 0.50 0.17 0.22 0.27 — 0.08 — NOTE 18 6 THE FusionQuad PACKAGE IS A REGISTERED TRADEMARK OF AMKOR TECHNOLOGIES. THE FusionQuad PACKAGE IS ASSEMBLED BY AMKOR TECHNOLOGIES. DocID023601 Rev 6 SPC574Kx 4.5 Package characteristics Thermal characteristics The following tables describe the thermal characteristics of the device. Table 71. Thermal characteristics for eTQFP144(1) Value Symbol C Parameter Conditions Unit Min Max RθJA RθJMA RθJB RθJCtop CC D Junction-to-ambient, natural convection(2) Four layer board—2s2p 26 29 °C/W CC D Junction-to-moving-air, ambient(2) At 200 ft./min., four layer board—2s2p 19 23 °C/W CC D Junction-to-board(3) CC D Junction-to-case RθJCbottom CC D Junction-to-case — 12 16 °C/W top(4) — 10 13 °C/W bottom(5) — 1.5 4 °C/W Natural convection 3 5 °C/W Maximum power and voltage condition — 2 W top(6) ΨJT CC D Junction-to-package Pd CC D Device power dissipation 1. The lower number in the ranges specified in the ‘Value’ column are based on simulation; actual data may vary in the given range. The specified characteristics are subject to change per final device design and characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. 3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. DocID023601 Rev 6 131/160 159 Package characteristics SPC574Kx Table 72. Thermal characteristics for eLQFP176(1) Value Symbol C Parameter Conditions Unit Min Max RθJA RθJMA RθJB RθJCtop CC D Junction-to-ambient, natural convection(2) CC D Junction-to-moving-air, ambient (2) Four layer board—2s2p 25 28 °C/W At 200 ft./min., four layer board—2s2p 18 22 °C/W — 12 16 °C/W — 12 15 °C/W — 1.5 3.5 °C/W CC D Junction-to-board(3) CC D Junction-to-case top(4) (5) RθJCbottom CC D Junction-to-case bottom (6) ΨJT CC D Junction-to-package top Natural convection 3 4.5 °C/W Pd CC D Device power dissipation Maximum power and voltage condition — 2 W 1. The lower number in the ranges specified in the ‘Value’ column are based on simulation; actual data may vary in the given range. The specified characteristics are subject to change per final device design and characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. 3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 5. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 4.5.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from the equation: Equation 3 TJ = TA + (RθJA * PD) where: TA = ambient temperature for the package (°C) RθJA = junction-to-ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: 132/160 • Construction of the application board (number of planes) • Effective size of the board which cools the component • Quality of the thermal and electrical connections to the planes • Power dissipated by adjacent components DocID023601 Rev 6 SPC574Kx Package characteristics Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • One oz. (35 micron nominal thickness) internal planes • Components are well separated • Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: Equation 4 TJ = TB + (RθJB * PD) where: TB = board temperature for the package perimeter (°C) RθJB = junction-to-board thermal resistance (°C/W) per JESD51-8 PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: Equation 5 RθJA = RθJC + RθCA where: RθJA = junction-to-ambient thermal resistance (°C/W) RθJC = junction-to-case thermal resistance (°C/W) RθCA = case to ambient thermal resistance (°C/W) RθJC is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RθCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case DocID023601 Rev 6 133/160 159 Package characteristics SPC574Kx thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. More accurate compact Flotherm models can be generated upon request. To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (ΨJT) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation: Equation 6 TJ = TT + (ΨJT x PD) where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter (ΨJPB) to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed pad) using the following equation: Equation 7 TJ = TB + (ΨJPB x PD) where: TB= thermocouple temperature on bottom of the package (°C) ΨPB= thermal characterization parameter (°C/W) PD = power dissipation in the package (W) 134/160 DocID023601 Rev 6 SPC574Kx 5 Ordering information Ordering information Figure 58. Product code structure Example code: SPC57 4 K 72 C 6 F E5 R A Product identifier Core Product Memory Package Temperature Frequency Custom Reserved Packing vers. Y = Tray R = Tape and Reel 0 = No Options 1 = Up to ASIL-D SEooC 8 = add. computing e200z2 core with DSP F = All Options 6 = 160 MHz C = 125 ºC Ta E5 = eTQFP144 E7 = eLQFP176 70 = 2 MB 72 = 2.5 MB K = SPC574Kx family 4 = Single computing e200z4 core SPC57 = Power Architecture in 55 nm 1. Order on 2M-Byte part numbers can be entered upon ST’s acceptance conditioned by volumes. Please contact your ST sales office to ask for the availability of a particular commercial product. 2. Features (e.g. flash, RAM or peripherals) not included in the commercial product cannot be used. ST cannot be called to take any liability for features used outside the commercial product. DocID023601 Rev 6 135/160 159 Revision history 6 SPC574Kx Revision history Table 74. Revision history Revision Date 1 28 Oct 2011 2 30 Aug 2012 Editorial and formatting changes throughout SPC574Kxx Microcontroller Data Sheet title page: added chip part numbers Harmonized package naming Section 1.3, Device feature summary: modified title (was “Device comparison”) Replaced “Family comparison” table with Table 2 (MPC5744K/SPC574Kx device feature summary) Updated Figure 1 (Block diagram) Updated Figure 2 (Periphery allocation) Section 1.5, Feature overview: – Updated code flash memory size from 2048 KB code to 2560 KB – Updated BAF feature description – Updated BAM feature description – Replaced instance of “K2” with “MPC5744K/SPC574K72” Figure (): – Modified names of pins 10, 23, A15, A22, and 125 – Replaced “A1–A28 are the additional FQ172 FQ pins” with “VSS” in the middle box – Added notes 3 and 4 Figure 4 (176-pin QFP and 216-pin FQ configuration (top view)): – Changed name of pin A23, A40, 153, and 154 – Replaced “A1–A40” are the additional FQ172 FQ pins” with “VSS” in the middle box – Added notes 3 and 4 Removed Table “Power supply and reference pins” and added reference to the JPC5744M IO Signal Table.xlsx Table 3 (System pins): updated TESTMODE pin description Table 4 (LVDSM pin descriptions): updated pin number column header Table 5 (LVDSF pin descriptions): updated pin number column header Updated Section 2.2.4, Generic pins Section 3, Electrical characteristics: removed section “Thermal characteristics” (section transferred to Section 4, Package characteristics) Updated Section 3.1, Introduction – Following note removed: “All parameter values in this document are tested with nominal supply voltage values (VDD_LV = 1.25 V, VDD_HV = 5.0 V ± 10%, VDD_HV_IO = 5.0 V ± 10% or 3.3 V ± 10%) and TA = –40 to 125 °C unless otherwise specified.”. Operating conditions will appear elsewhere in the data sheet. – Following footnote on VDD_LV in above note removed: “Refer to the LVD specification.” – VDD_HV_OSC deleted from note (list of supply pins) Updated Table 6 (Absolute maximum ratings) Updated Table 8 (Radiated emissions testing specification,) Table 9 (Conducted emissions testing specifications): reworded footnote referencing effect of 25/50 MHz clocks on BISS port limits Added Table 10 (RF immunity—Direct Power Injection (DPI) test specifications) Table 11 (ESD ratings): Added classification column Table 14 (Temperature profile – Packaged parts): corrected temperature range in “Passenger cars - low end” (was TA = 80 to 95 °C, is TA = 80 to 85 °C); updated “Total operation time” value in “Passenger cars - low end” 136/160 Description of changes Initial release DocID023601 Rev 6 SPC574Kx Revision history Table 74. Revision history(Continued) Revision 2 (cont’d) Date Description of changes 30 Aug 2012 Table 15 (Unbiased temperature profile – Packaged parts): replaced instance of “–40 to – 60 °C” with “–40 to 60 °C” Updated Table 12 (Device operating conditions) Updated Table 16 (DC electrical specifications): – Updated the max values – Added condition values in IDDAPP row – Added second condition in TJ < 165 oC to IDDAPP row – Removed IINACT_D and TA (TL to TH) rows Revised Section 3.9, I/O pad specification Updated Section 3.9.1, I/O input DC characteristics Table 18 (I/O input DC electrical characteristics): – Added cross reference for SENT requirement to note 5 – Footnote moved to header of “INPUT CHARACTERISTICS” section: “For LFAST, microsecond bus and LVDS input characteristics, refer to dedicated communication module chapters.“ Updated Section 3.9.2, I/O output DC characteristics Added Section 3.10, I/O pad current specification Table 19 (I/O pull-up/pull-down DC electrical characteristics): – |IWPU| parameter description changed: “Weak pull-up/down current absolute value” (was “Weak pull-up current absolute value”) – |IWPU| specification condition changed: VDD_POR < VDD_HV_IO < 3.0 V (was VDD_POR < VDD < 3.0 V) Table 21 (MEDIUM configuration output buffer electrical characteristics) – New specification: IDCMAX_M (Maximum DC current) Table 20 (WEAK configuration output buffer electrical characteristics) – New specification: IDCMAX_W (Maximum DC current) Updated Table 22 (STRONG configuration output buffer electrical characteristics) Updated Table 23 (VERY STRONG configuration output buffer electrical characteristics) Updated Section 3.11, Reset pad (PORST, ESR0) electrical characteristics: – replaced instance of “bidirectional RESET pin” with “bidirectional reset pin (PORST)” – inserted note “PORST pin does not require active control. It is possible to implement an external pull-up to ensure correct reset exit sequence. Recommended value is 4.7 kohm” – replaced instances of “PORST” with “PORST” (overlined) – replaced instances of “VDDPOR” with “VDD_POR” Table 25 (Reset electrical characteristics): – New specification: WFNMI (ESR1 input filtered pulse) – WNFNMI (ESR1 input not filtered pulse) – |IWPU| and |IWPD| parameter rows moved to rows following IOL_R Table 26 (PLL0 electrical characteristics): – Note added to |ΔPLL0PHI1SPJIT| row – Updated “conditions” in rows |ΔPLL0PHI0SPJIT|, |ΔPLL0PHI1SPJIT|, and |ΔPLL0LTJIT| Figure 3.12 (Oscillator and FMPLL): – Clarification: VESR0 is also described by VPORST behavior shown in illustration. Table 27 (PLL1 electrical characteristics): modified title (was “FMPLL1 electrical characteristics”) – ΔTUE12 (TUE degradation due to VDD_HV_ADR offset with respect to VDD_HV_ADV) (VIN < VDD_HV_ADV; VDD_HV_ADR − VDD_HV_ADV ∈ [0:25 mV]): Max value changed to ±0.0 (was ±1.0) – TUE12 (Total unadjusted error in 12-bit configuration): Footnote added to “P” parameter (TJ < 150 °C; VDD_HV_ADV > 4 V; VDD_HV_ADR_S > 4 V): values are subject to change after characterization – Replaced the characteristics value from “P” to “T” for tPLL1JIT row DocID023601 Rev 6 137/160 159 Revision history SPC574Kx Table 74. Revision history(Continued) Revision 2 (cont’d) 138/160 Date Description of changes 30 Aug 2012 Updated Table 28 (External Oscillator electrical specifications) Updated Table 29 (Selectable load capacitance) Updated Table 26 (SARn ADC electrical specification) Updated Table 34 (SDn ADC electrical specification) Revised Section 3.13, ADC specifications Figure 19 (Power-down exit time): replaced symbol “Tsu” with “tPD2NM_TX” Table 35 (Temperature sensor electrical characteristics): – Following symbols added: TSENS, TACC, ITEMP_SENS – Following sentence removed from footnote: “All values above are comprehended in the IP test plan for 100% testing, except Power.” – Footnote deleted: “Temperature sensor continues to function between 150 °C and 165 °C but accuracy is degraded” Table 37 (LFAST interface electrical characteristics): removed redundant footnote Replaced section “DigRF electrical characteristics” with Section 3.15, LVDS Fast Asynchronous Serial Transmission (LFAST) pad electrical characteristics Updated Table 39 (LFAST PLL electrical characteristics) Updated Table 40 (Aurora LVDS electrical characteristics) – Specification change: RV_L (Terminating resistance): min value is 81 ohm (was 90); max value is 120 ohm (was 110). – Footnote added to |ΔVOD_LVDS| (Differential output voltage swing (terminated)): “The minimum value of 400 mV is only valid for differential terminating resistance (RV_L) = 99 ohm to 101 ohm. The differential output voltage swing tracks with the value of RV_L.“ – Updated and renamed specification fRX Receive Clock Rate (was Receive Data Rate) – Specification description changed from “|ΔVI_L| (Differential input voltage)” to “Differential input voltage (peak to peak)”. – Clarification: The maximum value of TLoss (Transmission Line Loss due to loading effects) is specified for the maximum drive level of the Aurora transmit pad. – Note added: “The Aurora interface is AC coupled, so there is no common-mode voltage specification.” – Footnote (applies to entire table) updated: “All Aurora electrical characteristics are valid from –40 °C to 165 °C, except where noted” Reorganized subsections of Section 3.17, Power management: PMC, POR/LVD, sequencing Table 41 (Device Power Supply Integration): – Replaced “TBD” with “—” in Typ column – Removed VSREG, ISREG, ILPREGINT Updated Table 42 (Voltage monitor electrical characteristics) Table 43 (Device supply relation during power-up/power-down sequence): – Replaced “VDD_HV_PMC” with VDD_HV_IO_JTAG/VDD_HV_IO_FLEX – Replaced “VDD_HV_PMU” with VDD_HV_IO_JTAG/VDD_HV_IO_FLEX – Replaced VDD_HV_ADR row value from 2 mA to 5 mA Changed instance of “Supply 1” to “Supply 2” in column header row Table 44 (Functional terminals state during power-up and reset): – Changed “Power-up pad state” column value from “High impedance” to “weak pull-up” in TDI row – Updated pad states in TMS row Section 3.17.3, Device voltage monitoring: added introductory text Updated Table 44 (Flash memory program and erase specifications (pending silicon characterization)) Revised Section 3.19.2, DSPI Timing with CMOS and LVDS Pads Table 48 (JTAG pin AC electrical characteristics): – Changed all parameters from “C” to “D” – Specification change: tTCYC (TCK cycle time) is 100 ns (was 40 ns). Boundary scan frequency is limited to 10 MHz or less. DocID023601 Rev 6 SPC574Kx Revision history Table 74. Revision history(Continued) Revision 2 (cont’d) Date Description of changes 30 Aug 2012 Updated Table 49 (Nexus debug port timing) Table 50 (Aurora LVDS interface timing specifications): – Specification change: Data rate Typ is undefined (was 1200) – Specification change: Data rate max is 1250 Mbps (was Typ + 0.1%) Table 51 (Aurora debug port timing): – Specification change: tREFCLK (Reference clock frequency) max value is 1250 MHz (was 1200) – Specification change: OUI (Aurora lane unit interval) is now specified by data rate – Characteristic vs. Requirement change: JD (Transmit lane deterministic jitter) is “SR” (was “CC”) – Characteristic vs. Requirement change: JT (Transmit lane total jitter) is “SR” (was “CC”) Table 57 (DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock): added “SOUT and SCK drive strength” to condition for tSUO Table 59 (RMII serial management channel timing): – Column added: SR/CC (system requirement or controller characteristic) – Column added: Classification (parameters are guaranteed by design) Table 62 (TxEN output characteristics): – Column added: SR/CC (system requirement or controller characteristic) – Column added: Classification (parameters are guaranteed by design) Updated Table 63 (TxD output characteristics) Updated Table 64 (RxD input characteristics) Table 66 (MII receive signal timing): – Column added: SR/CC (system requirement or controller characteristic) – Column added: Classification (parameters are guaranteed by design) Table 67 (MII transmit signal timing): – Column added: SR/CC (system requirement or controller characteristic) – Column added: Classification (parameters are guaranteed by design) – Output parameter footnote changed to, “Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value” (Previously, footnote stated CL included typical max internal capacitance of 2 pF) Table 68 (MII async inputs signal timing): – Column added: SR/CC (system requirement or controller characteristic) – Column added: Classification (parameters are guaranteed by design) Table 69 (MII serial management channel timing): – Column added: SR/CC (system requirement or controller characteristic) – Column added: Classification (parameters are guaranteed by design) Added Section 3.20.4, UART timing Section 4, Package characteristics: inserted Section 4.5, Thermal characteristics (was previously in Section 3, Electrical characteristics) Updated “conditions” in rows |ΔPLL0PHI0SPJIT|, |ΔPLL0PHI1SPJIT|, and |ΔPLL0LTJIT| Updated Section 4.2, 144 LQFP-EPeTQFP144 case drawing Updated Section 4.3, 176 LQFP-EPeLQFP176 case drawing Updated Section 4.4, FusionQuad® case drawing Added Section 6, Revision history DocID023601 Rev 6 139/160 159 Revision history SPC574Kx Table 74. Revision history(Continued) Revision Date Description of changes 3 31 Jan 2014 Table 2 (MPC5744K/SPC574Kx device feature summary): – MCAN is updated to M_CAN – TTCAN is updated to M_TTCAN – SIPI / LFAST interprocessor bus is updated to Zipwire (SIPI/LFAST) interprocessor bus. – Instances of ADC (SD) changed from 3 to 2 – removed row PSI5-S – removed footnote The main computational shell... – Replaced “4 × 256 bit” with “2 × 4 × 256-bit” for Flash memory fetch accelerator Figure 1 (Block diagram): – AIPS Bridge is updated to Peripheral Bridge – LFAST & SIPI is updated to Zipwire LFAST & SIPI. – DMACHMUX updated to read DMAMUX – changed LFAST & SIPI module name to Zipwire LFAST & SIPI – improved figure quality; changed “PBRIDGE_0” and “PBRIDGE_1” to “PBRIDGE_A” and “PBRIDGE_B” respectively Figure 2 (Periphery allocation): – PLL_DIG is updated to PLLDIG – OSC is updated to XOSC – RCOSC is updated to IRCOSC – Replaced single block DMAMUX with blocks DMACHMUX_0 to DMACHMUX_3 – SENT SRX_0 is updated to SRX_0 – SENT SRX_1 is updated to SRX_1 – Removed PSI5_S block from peripheral cluster B – Removed the instance of SD ADC_2 – Updated DMACHMUX_0, DMACHMUX_1, DMACHMUX_2, and DMACHMUX_3 to DMAMUX_0, DMAMUX_1, DMAMUX_2, and DMAMUX_3 respectively. – changed “PBRIDGE_0” to “PBRIDGE_A” – changed “PBRIDGE_1” to “PBRIDGE_B” – changed Successive Approximation Register Analog-to-Digital Converter instances from “SAR ADCx” to “SARADCx”. Figure 3 (144-pin QFP and 172-pin FQ configuration (top view)): – Pin A18 is now LVDS Test In+. – Pin A19 is now LVDS Test In–. – Pin 133 is now PC[15]. – Reworded note 2. – Replaced “eLQFP144” with “eLQFP144” (ST_Specific) Figure 4 (176-pin QFP and 216-pin FQ configuration (top view)): – Pin A27 is now LVDS Test In+. – Pin A28 is now LVDS Test In–. – Reworded note 2. Section 1.5, Feature overview: – Updated text “3 separate 16-bit Sigma-Delta analog converters” to read “2 separate 16bit Sigma-Delta analog converters” – Replaced “2 main CPUs” to “One main processor core and one checker core” Table 5 (LVDSF pin descriptions): – Replaced all instances of “N.C” with “—” – Removed table footnote 140/160 DocID023601 Rev 6 SPC574Kx Revision history Table 74. Revision history(Continued) Revision Date Description of changes 3 (cont’d) 31 Jan 2014 Table 6 (Absolute maximum ratings): – Parameter classification for Cycle is now “T” – In footnote: 1.32 – 1.375 V range allowed periodically... changed 1.275 V to 1.288 V – Added “VDD_HV_IO_BD” – Removed “VDD_HV_IO_JTAG” – Removed TJ – Removed table footnote “Three Screen done, 1 minute each. No change in device parameters during characterization of at least 10 devices at 30 minutes exposure of 150 KeV at maximum 5 mm” from tXRAY – Added VDD_HV_ADV to VIN – Added footnotes “VDD_HV_IO/VSS_HV_IO refers to supply pins and corresponding grounds: VDD_HV_IO_MAIN, VDD_HV_IO_FLEX, VDD_HV_IO_JTAG, VDD_HV_OSC, VDD_HV_FLA” and “Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameters IINJD and IINJA)” to “Relative to VSS_HV_IO” and “Relative to VDD_HV_IO” in VIN Table 8 (Radiated emissions testing specification,): Splited “BISS radiated emissions limit” column into four rows to have clear figures for each function Table 10 (RF immunity—Direct Power Injection (DPI) test specifications): Changed the location of the table and placed it above Section 3.6, Operating conditions Table 11 (ESD ratings): – Classification parameter for ESD for Human Body Model is now T Table 12 (Device operating conditions): – In row VDD_HV_ADV Low Voltage Detector symbol changed to LVD295 – VDDSTBY added new footnote: The VDDSTBY pin should be connected to ground or an HV I/O supply in the application when the standby RAM feature is not used. When connected to an HV I/O supply, there will be leakage on the VDDSTBY pin, which is given in the DC electrical specifications. – Changed VRAMP to VRAMP_LV, changed parameter to 'slew rate on core power supply pins. – Add VRAMP_HV specification, parameter “Slew rate on HV power supply pins”, max value 100 V/ms. – Add a second VRAMP specification VRAMP_HV, parameter “Slew rate on HV power supply pins”, max value 500 V/ms. – Moved VREF_BG_T, VREF_BG_TC and VREF_BG_LR specifications from ADC pin specification table to Device operating conditions table. – VDD_HV_IO_FLEXE added specification. – VREF_BG_T, VREF_BG_TC, and VREF_BG_LR moved to the DC electrical specifications table. – VSTBY_BO and VDD_LV_STBY_SW moved to the DC electrical specifications table. – In rows fSYS and TJ removed 165 °C content – In row fSYS changed the first value in the Conditions column to -40 °C – Added fLBIST – Added note “VDD_HV_IO_JTAG supply is shorted with VDD_HV_OSC supply within package” to VDD_HV_IO_JTAG – Added VIN DocID023601 Rev 6 141/160 159 Revision history SPC574Kx Table 74. Revision history(Continued) Revision Date Description of changes 3 (cont’d) 31 Jan 2014 Table 16 (DC electrical specifications): – In row IDDAPP Condition fSYS changed to 160 MHz, Condition TJ changed to 144 °C, Max Value changed to 260. – Footnote fMAX as specified...application specific pattern changed to application with maximum consumption... – Footnote fMAX as specified...with active flash... changed to Application with maximum consumption...with active flash... – Parameter classification of “IDDPE” changed to “C”. – Parameter classification of “ISPIKE” changed to “T”. – Parameter classification of “dl” changed to “T”. – Parameter classification of “ISR” changed to “D”. – 3 new parameters “IDD_MAIN_CORE_AC”, “IDD_CHKR_CORE_AC” and “IDD_HV_IO_BD” added. – Parameter “IDD_BD” updated to “IDD_LV_BD”. Also modified Parameter description, added new condition “TJ = 150/165 C” and value. – Added note “Moving window, measured on application specific pattern” to “ISPIKE”. – Description of parameter “ISR” modified from “Current variation during power up/down” to “Current variation during boot/shut-down”. – Added note “Current variation is considered during boot or during shut-down sequence. – Progressive clock switching should be use to guarantee low current variation. This does not include current requested for the loading of the capacitances on the VDD_LV domain. Please refer to Power management section, Iclamp specification” to the max value of ISR. – Moved IDD_HV_IO_BD before IDD_LV_BD – Updated the parameter, conditions column of IDDAR and replaced the max value “10” with “30” – Added IDDOFF, VREF_BG_T, VREF_BG_TC, and VREF_BG_LR – Updated Table footnote 4 and 8 Section 3.17.2, Main voltage regulator electrical characteristics: Updated the section Table 18 (I/O input DC electrical characteristics): – VIHTTL condition is 4.5 V < VDD_HV_IO < 5.5 V – VILTTL condition is 4.5 V < VDD_HV_IO < 5.5 V – VHYSTTL condition is 4.5 V < VDD_HV_IO < 5.5 V – VIHCMOS_H condition is 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V – VIHCMOS condition is 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V – VILCMOS_H condition is 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V – VILCMOS condition is 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V – VHYSCMOS condition is 2.7 V < VDD_HV_IO < 3.0 V and 4.0 V < VDD_HV_IO < 4.5 V – Updated the conditions and values for parameter ILKG – The conditions “3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V” split into 2 rows for the parameters VIHCMOS_H, VIHCMOS, VILCMOS_H, VILCMOS and VHYSCMOS. – Added reference of Note 6 to VIHTTL, VILTTL, and VHYSTTL. – VDDE replaced by VDD_HV_IO. – VDRFTAUT specification, conditions column, added “4.5 V < VDD_HV_IO < 5.5 V”. – VDRFTCMOS specification, added 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V conditions. – ILKG_EBI specification: changed “2.5 uA” Max value to “1 uA” and added condition “0.1*VDD_HV VIH” with “VIN < VIH” and “VIN < VIH” with “VIN > VIH” in the first two rows of |IWPD| – Replaced VDD with VDD_HV_IO in the conditions column of IWPU and IWPD Section 3.9.2, I/O output DC characteristics: – Removed references to EBI in document. Table 20 (WEAK configuration output buffer electrical characteristics): – Added footnote All VDD_HV_IO conditions for 4.5V to 5.9V... – Added footnote Only for VDD_HV_IO_JTAG segment... – Added new parameter “Propagation delay”. Table 21 (MEDIUM configuration output buffer electrical characteristics): – ROH_M condition is 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 2 mA – ROL_M condition is 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 2 mA – tTR_M condition is CL = 25 pF, 4.5 V < VDD_HV_IO < 5.9 V – tTR_M condition is CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V – tTR_M condition is CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V – Added footnotes: All VDD_HV_IO... and Only for VDD_HV_IO_JTAG... – Added new parameter “Propagation delay”. Table 22 (STRONG configuration output buffer electrical characteristics): – ROH_S condition is 4.5 V < VDD_HV_IO < 5.9 V, Push pull, IOH < 8 mA; – ROL_S condition is 4.5 V < VDD_HV_IO < 5.9 V, Push pull – IOH < 8 mA; tTR_S condition changed to CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V – tTR_S condition changed to CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V – tTR_S condition CL = 25 pF, 4.0 V < VDD_HV_IO < 5.9 V changed to CL = 50 pF, 4.5 V < VDD_HV_IO < 5.9 V – Added footnotes: All VDD_HV_IO conditions for 4.5V to 5.9V... and Only for VDD_HV_IO_JTAG segment... – Added new parameter “Propagation delay” Table 23 (VERY STRONG configuration output buffer electrical characteristics): – In rows ROH_V and ROL_V: Conditions for C Parameter changed to VSIO[VSIO_xx] = 1, Push pull, IOH < 7 mA, Value Min is 30, TYP is 50, Max is 75. – In row fSYS: Conditions for C Parameter changed to VSIO[VSIO_xx] = 1, CL = 15 pF – Added footnote: All VDD_HV_IO conditions for 4.5V to 5.9V... DocID023601 Rev 6 143/160 159 Revision history SPC574Kx Table 74. Revision history(Continued) Revision Date 3 (cont’d) 31 Jan 2014 Description of changes – Removed the parameter IDCMAX_V from the table. – Added new parameter “Propagation delay”. – Updated the rows pertaining to ROH_V, ROL_V, fMAX_V, tTR_V, tTR20-80, ΣtTR20-80, and |tSKEW_V| Section 3.10, I/O pad current specification: – In Note: In order to ensure...remain below 10%. changed to ...below 50% – Changed the first note: from “In order to ensure correct functionality for SENT, the sum of all pad usage ratio within the SENT segment should remain below 50%.” to “In order to maintain the required input thresholds for the SENT interface, the sum of all I/O pad output percent IR drop as defined in the I/O Signal Description table, must be below 100%. See the I/O Signal Description attachment.” – In second note, changed must be below “100%” to must be below “50 %. Table 24 (I/O consumption): – Removed footnote: Data based on simulation results... – Removed all VSIO conditions (VSIO[VSIO_xx] = 1 and VSIO[VSIO_xx] = 0) from conditions column and added footnote to I/O consumption table title: “I/O current consumption specifications for the 4.5 V
SPC574K72E5C6FAR 价格&库存

很抱歉,暂时无法提供与“SPC574K72E5C6FAR”相匹配的价格&库存,您可以联系我们找货

免费人工找货