0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC574S60E3CE0AR

SPC574S60E3CE0AR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TQFP100

  • 描述:

    IC MCU 32BIT 1MB FLASH 100ETQFP

  • 数据手册
  • 价格&库存
SPC574S60E3CE0AR 数据手册
SPC574S60E3, SPC574S64E3 32-bit Power Architecture microcontroller for automotive ASILD applications Datasheet - production data – Cyclic redundancy check (CRC) unit • 8 enhanced 12-bit SAR analog converters – 2 sets of: 3 ADCs and one supervisor ADC – 1.5 µs conversion time at 12 MHz – Up to 32 physical channels – Dual Programmable CTU eTQFP100 (14 x 14 x 1.0 mm) Features • AEC-Q100 qualified • High performance e200z4d dual core – 32-bit Power Architecture technology CPU – Core frequency as high as 140 MHz – Dual issue 5-stage pipeline in-order execution core – Variable Length Encoding (VLE) – Core MPU – Floating Point, End-to-End Error Correction – 8 KB instruction cache with error detection code – 32 KB local data RAM and 4 KB data cache along with 8 KB instruction cache • 1600 KB (1.5 MB code + 64 KB data) on-chip flash memory: supports read during program and erase operations, and multiple blocks allowing EEPROM emulation • 128 KB on-chip RAM (96 KB on chip RAM + 32 KB local data RAM) • Multi-channel direct memory access controller (eDMA) with 32 channels • Comprehensive new generation ASILD safety concept – ASILD SEooC approach (Safety Element out of Context) – FCCU for collection and reaction to failure notifications – Memory Error Management Unit (MEMU) for collection and reporting of error events in memories – End-to-end Error Correction Code (e2eECC) logic February 2020 This is information on a product in full production. • 4 general purpose eTimer units (6 channels each) • 4 FlexPWM units – 2 (4 channels each) used for motor control with hardware synchronization between the control systems – 2 (2 channels each) used for SWG emulation • Communication interfaces – 4 LINFlexD modules – 4 deserial serial peripheral interface (DSPI) modules – 2 MCAN interfaces with advanced shared memory scheme (808 x 32-bit words for MCAN0 and 520 x 32-bit words for MCAN1) and CAN-FD support – 1 FlexRay module with 2 channels, 128 message buffers – 2 SENT interfaces (3 channels each) • Dual phase-locked loops with stable clock domain for peripherals and FM modulation domain for computational shell • Nexus Class 3 debug and trace interface • On-chip CAN/UART Bootstrap loader with BAF. Physical Interface (PHY) can be UART • Advanced and flexible supply scheme – On-chip voltage regulator for 1.2 V core logic supply. Bypass mode supported for external 1.2 V core logic supply – 3.3 V or 5 V IO and ADC supply (2 independent power domains available) • Junction temperature range -40 °C to 150 °C DS10601 Rev 6 1/77 www.st.com Contents SPC574Sx Contents 1 2 3 2/77 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Feature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Package pads/pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.7.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.7.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.8 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.9 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.9.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.9.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.9.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.10 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.11 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.11.2 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 39 3.11.3 Power Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.11.4 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 DS10601 Rev 6 SPC574Sx Contents 3.11.5 3.12 4 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . 47 PMU monitor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.12.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.12.2 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.13 Platform Flash controller configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.14 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.15 PLL0/PLL1 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.16 External oscillator (XOSC) electrical characteristics . . . . . . . . . . . . . . . . 54 3.17 Internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . 57 3.18 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.18.2 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.19 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.20 JTAG interface timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.21 Nexus interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.22 DSPI CMOS master mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.22.1 Classic timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.22.2 Modified timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1 eTQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 eTQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 DS10601 Rev 6 3/77 3 Introduction SPC574Sx 1 Introduction 1.1 Document overview This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet. 1.2 Description The SPC574Sx is a family of next generation microcontrollers built on the Power Architecture embedded category. The SPC574Sx family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of Chassis and Safety electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 140 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. Table 1. SPC574Sx device feature summary (superset configuration) Feature Description Main Core e200z420n3 Checker core e200z419 Local data RAM Processor 32 KB Data VLE Yes Main processor frequency 140 MHz Instruction cache 8 KB Data cache 4 KB Interrupt controller (including interrupt controller checker) 1 Software watchdog timer 1 1 AUTOSAR® STM 1 PIT with eight 16-bit channels System timers DMA (including DMA checker) 1 DMA channels 32 SMPU Yes (8 regions) System SRAM (in addition to core local data RAM) 96 KB Code Flash memory 1.5 MB 4/77 DS10601 Rev 6 SPC574Sx Introduction Table 1. SPC574Sx device feature summary (superset configuration) (continued) Feature Description Data Flash memory (EEPROM) 64 KB UTEST Flash memory 16 KB Boot assist Flash (BAF) 16 KB CRC 1 LINFlexD 4 DSPI 4 MCAN 2 FlexRay 1 (128 MB) SENT 2 x 3 channels 2 x 4 channels (for motor control) + 2 x 2 channels (for SWG emulation via PWM) FlexPWM eTimer 4 x 6 channels ADC (SAR) 8 CTU (Cross Triggering Unit) 2 Temperature sensor 2 Self-test control unit (memory and logic BIST) 1 FCCU 1 MEMU 1 RCOSC 1 XOSC 1 PIT 1 x 8 channels STM 1 PLL Dual PLL with FM 3(1) Nexus Sequence processing unit (SPU) 1 External power supplies Single supply mode: 3.3 V or 5 V Junction temperature -40 °C to 150 °C Package eTQFP100 1. Including trace for the crossbar masters (data & instruction trace on core and data trace on eDMA). 4 MDO pins Nexus trace port. Table 2. SPC574S60Ex, SPC574S64Ex device configuration differences SPC574S60 SPC574S64 (full option configuration) (full option configuration) Flash 1 MB(1) 1.5 MB RAM (2) 128 KB 96 KB DS10601 Rev 6 5/77 76 Introduction SPC574Sx Table 2. SPC574S60Ex, SPC574S64Ex device configuration differences (continued) FlexRay Others SPC574S60 SPC574S64 (full option configuration) (full option configuration) — 1 Aligned to Table 1: SPC574Sx device feature summary (superset configuration). 1. Flash blocks excluded on SPC574S60: 256K Block B0F12 [0x010C_0000 … 0x010F_FFFF] 256K Block B0F13 [0x0110_0000 … 0x0113_FFFF] 2. SRAM area excluded on SPC574S60 [0x4001_0000…0x4001_7FFF] 6/77 DS10601 Rev 6 SPC574Sx 1.3 Introduction Feature overview On-chip modules within the SPC574Sx include the following features: • • • • • • Operating parameters – Fully static operation, up to 140 MHz – Up to -40 °C to 150 °C junction temperature operating range Power management features – HALT mode — core clocks are stopped but the PLL is configurable – STOP mode — all clocks are stopped including the PLLs – Software-controlled clock gating of peripherals High performance, low cost e200z420 core processor – 32-bit CPU core complex (e200z420n3) – Compliant with the Power Architecture® embedded category – Includes an instruction set enhancement allowing variable length encoding (VLE) for code size footprint reduction. Optional encoding of mixed 16-bit and 32-bit instructions makes it possible to achieve significant code size footprint reduction. Advanced and flexible supply scheme – Internal or External regulator mode for 1.2 V supply – 3.3 V +/- 5% or 5 V +/- 5% – Up to 2 power rails for GPIOs and 2 power rails for analog/input pins enabling supply redundancy concept. – The 4 power rails can be supplied in independent way (depending on selected package and device configuration) Designed with EMI reduction techniques – Internal phase-locked loop – Frequency modulation of system clock frequency – On-chip regulator – Controlled I/O slew rate Advanced microcontroller bus architecture (AMBA) crossbar switch (XBAR) providing concurrent access to peripherals, Flash memory and SRAM – 4 master ports: FlexRay, DMA, CPU instruction bus and CPU data bus – 5 slave ports: Flash Controller, TCM Back-door (Port to local Data RAM), RAM controller, PBRIDGE0 and PBRIDGE1 • 32-bit internal address bus, 32-bit internal data bus • ECC (Error Correction Code) Flash memory with Flash controller – Up to 1.5 MB Code Flash—single module with prefetch buffer and 256-bit data access port – 64 KB Data Flash—single module with prefetch buffer and 256-bit data access port • Up to 96 KB ECC SRAM with RAM controller (in addition to 32 KB core local data RAM) • 16 KB dedicated OTP Flash for embedded boot code – Boot Assisted Flash (BAF) – Supports internal Flash programming via a serial link (UART and MCAN) DS10601 Rev 6 7/77 76 Introduction • • SPC574Sx System timers: – 1 x STM (AUTOSAR®) (4 compare channels) 1 x PIT (8 channels) 4 x eTimers (6 channels each) – System watchdog timer (SWT) 32-bit timer Oscillator clock for timer operation Programmable selection of reset or interrupt on an initial time-out Enabled out of reset Safety and integrity features: – Clock Monitor Unit (CMU) for safe oscillator/PLL control using internal RC oscillator reference – Watchdog with time window for reload – Memory Protection Unit (MPU): 8 regions with 32-bit granularity – Register protected accesses to critical peripherals • Interrupt controller (INTC) with dedicated interrupt source channels, including software interrupts and 32 priority levels • 12-bit analog-to-digital converter (ADC) with a conversion time of 1.5 µs at maximum operating frequency – Note: 8/77 16 high-precision channels for each group of 4 ADCs • 4 general purpose eTimer units, with 6 channels each • 4 FlexPWM units (2 units with 4 channels each and 2 units with 2 channels each) • Up to 4 Local Interconnect Network (LIN) controller modules capable of autonomous message handling (master), autonomous header handling (slave mode), and UART support. Compliant with LIN protocol rev. 2.1 • 4 DSPI (Deserial Serial Peripheral Interface) modules for full-duplex, synchronous, communications with external devices • 2 MCAN (with CAN-FD support) • Frequency-modulated phase-locked loop (FMPLL) • Configurable general purpose pins supporting input and output operations: 62 GPIO + 17 GPI/ADC input only (eTQFP100 - default bonding option) and 64 GPIO + 15 GPI/ADC input only (eTQFP100 - bonding option upon demand) • Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class 3 • Device/board boundary scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) • SPC574Sx family members are offered in the 100-pin eTQFP, 0.5 mm pitch, 14 mm × 14 mm outline package type. One of four sources can be used as the system clock for this device: • External crystal oscillator 4–40 MHz (XOSC) • Internal RC oscillator 16 MHz (IRCOSC) • Primary PLL • Secondary PLL DS10601 Rev 6 SPC574Sx 1.4 Introduction Block diagram Figure 1 shows the top-level block diagram. Figure 1. Block diagram JTAGM JTAGC RCCU DMA Mux 0/1 (lockstep) PowerPC e200z420 ICache FlexRay DMA RCCU DMA (lockstep) SPU NPC RCCU Nexus 3 DMA Mux 0/1 DCI INTC RCCU Nexus 3 PowerPC e200z419 (lockstep) INTC (lockstep) DMEM CMPU CMPU e2eECC e2eECC XBAR PBRIDGE_0 PBRIDGE_1 FlexPWM 0 FlexPWM 1 SENT 0 INTC FlexPWM 2 SENT 1 PRAMC eTimer 0 PFLASHC eTimer 1 DSPI 0 DMA regs FlexPWM 3 DSPI 2 DSPI 1 DMA Mux 0 eTimer 2 DSPI 3 XBAR MCAN 0 CCCU_0 DMA Mux 1 eTimer 3 LinFlexD_1 MC_PMC MC_RGM MC_ME MC_CGM ADC 3 LinFlexD_3 ADC 0 ADC 1 ADC 2 ADC spv 0 ADC 4 CMU 1 STCU2 CTU 0 CRC STM ADC 5 CMU 2 WKPU LinFlexD_0 LinFlexD_2 CMU 0 ADC spv 1 CMU 3 SMPU SWT PIT SIUL MCAN 1 CTU 1 PLL dig RCOSC dig XOSC dig Flash reg IF PWM Sync CCCU_1 MEMU FCCU JDC SSCM XBIC Temperature sensor FlexRay regs JTAGM MC_PCU PASS PWM Sync RAM controller Flash controller RAM Flash Table 3 summarizes the functions of all blocks present in the SPC574Sx series of microcontrollers. Please note that the presence and number of blocks vary by device and package. Table 3. SPC574Sx series block summary Block e200z4 CPU Function Allows single clock instruction execution Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to-digital converter Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the PIT DS10601 Rev 6 9/77 76 Introduction SPC574Sx Table 3. SPC574Sx series block summary (continued) Block Function Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Direct Memory Access (DMA) Performs complex data transfers with minimal intervention from a host processor via 32 programmable channels. DMACHMUX Allows to route a defined number of DMA peripheral sources to the DMA channels Flash memory Provides non-volatile storage for program code, constants and variables Frequency-modulated phase locked loop (PLL0) Output independent of core clock frequency Frequency-modulated phaselocked loop (PLL1) Generates high-speed system clocks and supports programmable frequency modulation Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests PBRIDGE System bus to peripheral bus interface RAM controller Acts as an interface between the system bus and the integrated system RAM System RAM Supports read/write accesses mapped to the SRAM memory from any master Flash memory controller Acts as an interface between the system bus and the Flash memory module Flash memory Up to 1.5 M of programmable, non-volatile Flash memory for code and 32 KB for data IRCOSC Controls the internal 16 MHz RC oscillator system XOSC Controls the on-chip oscillator (XOSC) and provides the register interface for the programmable features JTAG Master Provides software the option to write data for driving JTAG JTAG Data Communication Module (JDC) Provides the capability to move register data between the IPS and JTAG domains PASS Programs a set of Flash memory access protections, based on user programmable passwords Sequence Processing Unit (SPU) Provides on-device trigger functions similar to those found on a logic analyzer LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications MC_PMC Contains registers that enable/disable the various voltage monitors Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Memory protection unit (MPU) Provides hardware access control for all memory references generated in a device 10/77 DS10601 Rev 6 SPC574Sx Introduction Table 3. SPC574Sx series block summary (continued) Block Function eTimer Has six 16-bit general purpose counters, where each counter can be used as an input capture or output compare function FCCU Collects fault event notifications from the rest of the system and translates them into internal and/or external system reactions RCCU Compares input signals and issues an alarm in the case of a mismatch MEMU Collects and reports error events associated with ECC (Error Correction Code) logic used on SRAM, DMA RAM and Flash memory XBIC Verifies the integrity of the attribute information for crossbar transfers and signals the Fault Collection and Control Unit (FCCU) when an error is detected STCU2 Handles the BIST procedure CRC Controls the computation of CRC, off-loading this work from the CPU RegProt Protects several registers against accidental writing, locking their value till the next reset phase Temperature sensor Monitors the device temperature Debug Control Interface Provides debug features for the MCU Nexus Port Controller Monitors a variety of signals including addresses, data, control signals, status signals, etc. Nexus Multimaster Trace Client Monitors the system bus and provides real-time trace information to debug or development tools Periodic interrupt timer (PIT) Produces periodic interrupts and triggers System integration unit (SIUL) Provides control over all the electrical pad controls and up to 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR and operating system tasks System watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) The wakeup unit supports up to 18 external sources that can generate interrupts or wakeup events, of which one can cause non-maskable interrupt requests or wakeup events. Crossbar (XBAR) switch Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. Decorated Storage Memory Controller (DSMC) Decorated Storage Memory Controller CMU Used to validate the target clock within a specific frequency range and to measure the clock frequency. Power Management Controller (MC_PMC) Contains registers that enable/disable the various voltage monitors DS10601 Rev 6 11/77 76 Introduction SPC574Sx Table 3. SPC574Sx series block summary (continued) Block Function FlexPWM Comprises a set of PWM sub-modules where each sub-module drives three PWM output signals. PWMSync Synchronizes the FlexPWM IPs during the motor control operation. MCAN Filters the incoming messages, using dedicated filter structures organized in an external Message RAM. SENT Enable the SENT protocol transmission. 12/77 DS10601 Rev 6 SPC574Sx Package pinouts and signal descriptions 2 Package pinouts and signal descriptions 2.1 Package pinouts The eTQFP100 pinout is provided in the following figure. For pin signal descriptions, please refer to the device reference manual. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PE[15] PE[14] PE[13] PE[12] PE[11] VDD_HV_IO_MAIN PE[10] PE[9] PE[8] PE[7] PE[6] PE[5] PE[4] PE[3] PE[2] VDD_HV_IO_MAIN PE[1] PE[0] PD[15] PD[14] PD[13] PD[12] PD[11] PD[10] PD[9] Figure 2. eTQFP 100-pin configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 eTQFP100 Top view 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PD[8] PD[7] PD[6] PD[5] PD[4] PD[3] PD[2] VDD_LV PD[1] PORST PD[0] TESTMODE TCK PC[15] TDO TMS TDI PC[14] PC[13] PC[12] VDD_HV_OSC XTAL EXTAL VDD_LV VDD_HV_IO PB[6] PB[7] PB[8] PC[0] PC[1] PB[10] PB[11] PB[12] PB[13] PB[14] PB[15] VREFH_ADC VREFL_ADC VDD_HV_ADC_TSENS PI[1] PI[2] PC[4] PC[5] PC[6] PC[7] PC[8] PC[9] PC[10] PC[11] FCCU_F1S 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 FCCU_F0 PA[0] PA[1] PA[2] PA[3] PA[4] PA[5] PA[6] PA[7] PA[8] PA[9] PA[10] PA[11] PA[12] PA[13] PA[14] PA[15] PB[0] VDD_LV VDD_HV_IO_MAIN PB[1] PB[2] PB[3] PB[4] PB[5] Note: Availability of port pin alternate functions depends on product selection. 2.2 Pin descriptions The following sections provide signal descriptions and related information about the functionality and configuration of the SPC574Sx devices. For information on the signal descriptions and related information about the functionality and configuration of the SPC574Sx devices, refer to the “Signal description” chapter in the devices’ reference manual. 2.3 Package pads/pins Table 4 shows the cross-mapping between pads and the eTQFP100 pinout. DS10601 Rev 6 13/77 76 Package pinouts and signal descriptions SPC574Sx Table 4. Cross-mapping between pads and package pins 14/77 PAD Port pin name eTQFP 100 pin PAD_FCCU_F0 FCCU_F0 1 PAD[0] PA[0] 2 PAD[1] PA[1] 3 PAD[2] PA[2] 4 PAD[3] PA[3] 5 PAD[4] PA[4] 6 PAD[5] PA[5] 7 PAD[6] PA[6] 8 PAD[7] PA[7] 9 PAD[8] PA[8] 10 PAD[9] PA[9] 11 PAD[10] PA[10] 12 PAD[11] PA[11] 13 PAD[12] PA[12] 14 PAD[13] PA[13] 15 PAD[14] PA[14] 16 PAD[15] PA[15] 17 PAD[16] PB[0] 18 PAD[17] PB[1] 21 PAD[18] PB[2] 22 PAD[19] PB[3] 23 PAD[20] PB[4] 24 PAD[21] PB[5] 25 PAD[22] PB[6] 26 PAD[23] PB[7] 27 PAD[24] PB[8] 28 PAD[25] PB[9] — PAD[26] PB[10] 31 PAD[27] PB[11] 32 PAD[28] PB[12] 33 PAD[29] PB[13] 34 PAD[30] PB[14] 35 PAD[31] PB[15] 36 PAD[32] PC[0] 29 PAD[33] PC[1] 30 DS10601 Rev 6 SPC574Sx Package pinouts and signal descriptions Table 4. Cross-mapping between pads and package pins (continued) PAD Port pin name eTQFP 100 pin PAD[34] PC[2] — PAD[35] PC[3] — PAD[36] PC[4] 42 PAD[37] PC[5] 43 PAD[38] PC[6] 44 PAD[39] PC[7] 45 PAD[40] PC[8] 46 PAD[41] PC[9] 47 PAD[42] PC[10] 48 PAD[43] PC[11] 49 PAD_FCCU_F1S FCCU_F1S 50 PAD[44] PC[12] 56 PAD_FCCU_F1E FCCU_F1E — PAD[45] PC[13] 57 PAD[46] PC[14] 58 PAD_TDI TDI 59 PAD_TMS TMS 60 PAD_TDO TDO 61 PAD[47] PC[15] 62 PAD_TCK TCK 63 PAD_JCOMP JCOMP — PAD[48] PD[0] 65 PAD[49] PD[1] 67 PAD[50] PD[2] 69 PAD[51] PD[3] 70 PAD[52] PD[4] 71 PAD[53] PD[5] 72 PAD[54] PD[6] 73 PAD[55] PD[7] 74 PAD[56] PD[8] 75 PAD[57] PD[9] 76 PAD[58] PD[10] 77 PAD[59] PD[11] 78 PAD[60] PD[12] 79 PAD[61] PD[13] 80 DS10601 Rev 6 15/77 76 Package pinouts and signal descriptions SPC574Sx Table 4. Cross-mapping between pads and package pins (continued) 16/77 PAD Port pin name eTQFP 100 pin PAD[62] PD[14] 81 PAD[63] PD[15] 82 PAD[64] PE[0] 83 PAD[65] PE[1] 84 PAD[66] PE[2] 86 PAD[67] PE[3] 87 PAD[68] PE[4] 88 PAD[69] PE[5] 89 PAD[70] PE[6] 90 PAD[71] PE[7] 91 PAD[72] PE[8] 92 PAD[73] PE[9] 93 PAD[74] PE[10] 94 PAD[75] PE[11] 96 PAD[76] PE[12] 97 PAD[77] PE[13] 98 PAD[78] PE[14] 99 PAD[79] PE[15] 100 PAD[80] PF[0] — PAD[81] PF[1] — PAD[82] PF[2] — PAD[83] PF[3] — PAD[84] PF[4] — PAD[85] PF[5] — PAD[86] PF[6] — PAD[87] PF[7] — PAD[88] PF[8] — PAD[89] PF[9] — PAD[90] PF[10] — PAD[91] PF[11] — PAD[92] PF[12] — PAD[93] PF[13] — PAD[94] PF[14] — PAD[95] PF[15] — PAD[96] PG[0] — DS10601 Rev 6 SPC574Sx Package pinouts and signal descriptions Table 4. Cross-mapping between pads and package pins (continued) PAD Port pin name eTQFP 100 pin PAD[97] PG[1] — PAD[98] PG[2] — PAD[99] PG[3] — PAD[100] PG[4] — PAD[101] PG[5] — PAD[102] PG[6] — PAD[103] PG[7] — PAD[104] PG[8] — PAD[105] PG[9] — PAD[106] PG[10] — PAD[107] PG[11] — PAD[108] PG[12] — PAD[109] PG[13] — PAD[110] PG[14] — PAD[111] PG[15] — PAD[112] PH[0] — PAD[113] PH[1] — PAD[114] PH[2] — PAD[115] PH[3] — PAD[116] PH[4] — PAD[117] PH[5] — PAD[118] PH[6] — PAD[119] PH[7] — PAD[120] PH[8] — PAD[121] PH[9] — PAD[122] PH[10] — PAD[123] PH[11] — PAD[124] PH[12] — PAD[125] PH[13] — PAD[126] PH[14] — PAD[127] PH[15] — PAD[128] PI[0] — PAD[129] PI[1] 40 PAD[130] PI[2] 41 PAD[131] PI[3] — DS10601 Rev 6 17/77 76 Electrical characteristics SPC574Sx 3 Electrical characteristics 3.1 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 5 are used and the parameters are tagged accordingly in the tables where appropriate. Table 5. Parameter classifications Classification tag Note: 18/77 Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. DS10601 Rev 6 SPC574Sx 3.3 Electrical characteristics Absolute maximum ratings Table 6. Absolute maximum ratings(1) Value Symbol Parameter Cycle T Lifetime power cycles VSS C Ground voltage Conditions Unit Min Max — — 1000k — — — — — (2) — -0.3 1.5 V VDD_LV C 1.2 V core supply voltage VDD_HV_IO C I/O and power management unit supply voltage(3) — -0.3 6.0 V VDD_HV_OSC C OSC power supply — -0.3 6.0 V VDD_HV_ADC_TSENS C ADC & TSENS power supply — -0.3 6.0 V VREFH_ADC C ADC reference supply — 0 VDD_HV_ADC_TSENS V — -0.3 6.0 -0.3 — Relative to VDD_HV_IO — 0.3 VIN C I/O input voltage range(4) Relative to VSS V IINJD T Maximum DC injection current for digital pad during overload condition Per pin, applies to all digital pins -3 3 mA IINJA T Maximum DC injection Per pin, applies to all current for analog pad during analog pins overload condition -3 3 mA -7 8 -10 10 -11 11 IMAXD Medium Maximum output DC current SR Fast when driven Very fast mA IMAXSEG (IO rail #0) SR Maximum current per power segment(5) — -90 90 mA IMAXSEG (IO rail #1) SR Maximum current per power segment(5) — -90 90 mA Storage temperature range and non-operating times — -55 175 °C Maximum storage time, No supply; storage SR assembled part programmed temperature in range in ECU -40 °C to 85 °C — 20 years TSDR Maximum solder (6) SR temperature Pb-free package — — 260 °C MSL SR Moisture sensitivity level(7) — — 3 — Range for x-rays source during inspection: 80÷130 KV; 20÷50 µA — 1 Grey TSTG STORAGE X-rays dose SR T Maximum cumulated dose allowable DS10601 Rev 6 19/77 76 Electrical characteristics SPC574Sx 1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability or cause permanent damage to the device. During overload conditions (VIN > VDD_HV_IO or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. 2. External regulator mode. 3. Allowed 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, TJ =°C remaining time at or below 5.5 V. 4. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3V can be used for nominal calculations. 5. Analog and digital controller pins must not exceed mA. A VDD_HV_IO power segment is defined as one or more GPIO pins located between two VDD_HV_IO supply pins. 6. Solder profile per IPC/JEDEC J-STD-020D. 7. Moisture sensitivity per JEDEC test method A112. 3.4 Electromagnetic compatibility (EMC) Information about EMC performance is available from STMicroelectronics on request. 3.5 Electrostatic discharge (ESD) Table 7 describes the ESD ratings of the device. Table 7. ESD ratings(1),(2) Parameter ESD for Human Body Model (HBM)(3) ESD for field induced Charged Device Model (CDM) (4) C Conditions Value Unit T All pins 2000 V T All pins 500 V 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature. Maximum DC parametrics variation within 10% of maximum specification”. 3. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing. 4. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level. 3.6 Operating conditions Table 8. Device operating conditions(1) Value Symbol C Parameter Conditions Unit Min Typ Max — — 140 Frequency fSYS SR Device operating frequency(2) TJ -40 °C to 150 °C Temperature 20/77 DS10601 Rev 6 MHz SPC574Sx Electrical characteristics Table 8. Device operating conditions(1) (continued) Value Symbol C Parameter Conditions Unit Min Typ Max TJ Operating temperature SR P range junction — -40.0 — 150.0 °C TA (TL to TH) Ambient operating SR P temperature range(3) — -40.0 — 125.0(4) °C 1.19 1.255 1.32 V 2.99 — 3.6 V I/O rail #0 and PMC supply LVD400_IOL0 enabled 4.305 voltage (with NOMINAL supply = 5 V) — 5.5 V 2.99 — 3.6 V I/O rail #1 supply voltage (with LVD400_IOL1 enabled 4.305 NOMINAL supply = 5 V) — 5.5 V XOSC supply LVD290_XOSC voltage enabled — 5.5 V Voltage VDD_LV VDD_HV_IO_L0(6),(7) VDD_HV_IO_L1(6),(7) VDD_HV_XOSC(6),(7) 1.2 V core C supply voltage(5) I/O rail #0(8) and PMC supply voltage (with NOMINAL supply = SR D 3.3 V) I/O rail #1 supply voltage (with NOMINAL supply = SR D 3.3 V) SR D LVD290_C/HVD400_C enabled LVD290_L1 enabled DS10601 Rev 6 2.99 21/77 76 Electrical characteristics SPC574Sx Table 8. Device operating conditions(1) (continued) Value Symbol C Parameter Conditions Typ Max 2.99 — 3.6 V 4.305 — 5.5 V 2.99 — 3.6 V 4.305 — 5.5 V — 3.0 — 5.5 — 2.0 — 3.0 SAR ADC reference SR D differential voltage — — — 25 mV Slew rate on SR D power supply pins — — — 0.5 V/us I/O input SR C voltage range — 0 — 5.5 V -3 — 3 mA SAR ADC rail #0 supply voltage (with LVD290_ADL0 NOMINAL enabled supply = VDD_HV_ADC_TSENS_L0 SR D 3.3 V) SAR ADC rail #0 supply LVD400_ADL0 voltage (with enabled NOMINAL supply = 5 V) SAR ADC rail #1 supply voltage (with LVD290_ADL1 NOMINAL enabled supply = VDD_HV_ADC_TSENS_L1 SR D 3.3 V) SAR ADC rail #1 supply LVD400_ADL1 voltage (with enabled NOMINAL supply = 5 V) VREFH_ADC VREFH_ADC - VDD_HV_ADC_TSENS VRAMP VIN Unit Min SR P SAR ADC reference C voltage V Injection current IIC DC injection Digital pins and analog SR T current (per pins pin)(9),(10),(11) 1. The ranges in this table are design targets and actual data may vary in the given range. 2. Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the SPC574Sx Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device. 3. This value depends on the thermal resistance RθJA and power consumption for the device. 4. Depending on the thermal features of the package and PCB. 5. Applicable in external regulator mode. 22/77 DS10601 Rev 6 SPC574Sx Electrical characteristics 6. Core voltage as measured on device pin to guarantee published silicon performance. 7. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor external supply voltage may result in erroneous operation of the device. 8. The IO rail #0 and #1 are independent only in external regulator mode. In internal regulator mode a single unique IO rail is applicable. In the QFP100 package only the internal regulator mode is supported. 9. Full device lifetime without performance degradation. 10. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See Table 6: Absolute maximum ratings for maximum input current for reliability requirements. 11. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. For more information, see the device characterization report. 3.7 Thermal characteristics 3.7.1 Package thermal characteristics Table 9. Thermal characteristics for eTQFP100 Symbol C Parameter Boundary Conditions Value RθJA Junction to ambient, natural convection(1) Four layer board 2s2p board 28 RθJB Junction to board(2) Four layer board 2s2p board 11 1s board Top cold plate 13 Bottom cold plate 1.1 Operating conditions 0.6 D RθJCtop RθJCbottom ΨJT Junction to top case(3) Junction to bottom case(4) PSI j-top-case, natural convection(5) Unit °C/W 1. JESD51-7 2. JESD51-8, ring cold plate 3. Thermal resistance between the die and the case top surface as measured by the cold plate best practice guidelines (JESD51) 4. Thermal resistance between the die and the case bottom surface as measured by the cold plate best practice guidelines (JESD51) without any interface resistance 5. Thermal characterization parameter, not properly a thermal resistance, indicating the temperature difference between package top and the junction in operating conditions as per JESD51-2 3.7.2 Power considerations An estimation of the chip junction temperature, TJ can be obtained from the equation: Equation 1: TJ = TA + (RθJA × PD) where: TA = ambient temperature for the package (°C) RθJA = junction-to-ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the DS10601 Rev 6 23/77 76 Electrical characteristics SPC574Sx values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: • Construction of the application board (number of planes) • Effective size of the board which cools the component • Quality of the thermal and electrical connections to the planes • Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • One oz. (35 micron nominal thickness) internal planes • Components are well separated • Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: Equation 2: TJ = TB + (RqJB × PD) where: TB = board temperature for the package perimeter (°C) RqJB = junction-to-board thermal resistance (°C/W) per JESD51-8 PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: Equation 3: RqJA = RqJC + RqCA where: RqJA = junction-to-ambient thermal resistance (°C/W) RqJC = junction-to-case thermal resistance (°C/W) RqCA = case to ambient thermal resistance (°C/W) RqJC is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RqCA. For example, change 24/77 DS10601 Rev 6 SPC574Sx Electrical characteristics the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. More accurate compact Flotherm models can be generated upon request. To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (YJT) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation: Equation 4: TJ = TT + (ΨJT x PD) where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter (ΨJPB) to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed pad) using the following equation: Equation 5: TJ = TB + (ΨJPB x PD) where: TB = thermocouple temperature on bottom of the package (°C) ΨJPB = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) 3.8 Current consumption The following table describes the consumption figures. DS10601 Rev 6 25/77 76 Electrical characteristics SPC574Sx Table 10. Current consumption Use Case(1) Conditions Regulator Mode C Internal P External P Internal T External T Internal T External T Internal C External C Internal C External C Internal C External C F1(3) (system clock freq) = 140 MHz F0(4) (motor clock freq) = 120 MHz F1(3) (system clock freq) = 100 MHz F0(4) (motor clock freq) = 84 MHz Full function(2) F1(3) (system clock freq) = 70 MHz F0(4) (motor clock freq) = 60 MHz Stop mode — Full Self test (semi-parallel) LBIST configuration = L0//L1 + L2//L3 MBIST configuration = parallel Freq = 35 MHz (PLL) Full Self test (parallel) LBIST configuration = parallel MBIST configuration = parallel Freq = 16 MHz (RCOSC) IDD_LV 265 210 175 100 230 205 IDD_HV Unit 310 mA 55 mA 265 mA 55 mA 230 mA 55 mA 110 mA 30 mA 240 mA 15 mA 215 mA 15 mA 1. The IDD values are based on the following operating conditions: TJ = 150 °C, HV = 5.5 V, LV = 1.32 (external regulator mode). 2. Values are based on typical application code executing from Flash memory, where the DMA is running in continuous mode, the ADC is in continuous conversion, the timers are running to maximum counter values and communication IPs are in loopback or transmitting mode. IOs are unloaded. 3. F1 stands for System clock frequency. 4. F0 stands for Motor clock frequency. 3.9 I/O pad electrical characteristics 3.9.1 I/O pad types Table 11 describes the different pad type configurations. Table 11. I/O pad specification descriptions Pad type Description Slow configuration Provides a good compromise between transition time and low electromagnetic emission. Pad impedance is centered around 800 Ω Medium configuration Provides transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Pad impedance is centered around 200 Ω Fast configuration Provides fast transition speed; used for fast interface. Pad impedance is centered around 50 Ω Very fast configuration Provides maximum speed and controlled symmetric behavior for rise and fall transition. Used for fast interfaces, like FlexRay, requiring fine control of rising/falling edge jitter. Pad impedance is centered around 40 Ω Input only pads These pads are associated to ADC channels and the external 8-40 MHz crystal oscillator (XOSC) providing low input leakage 26/77 DS10601 Rev 6 SPC574Sx 3.9.2 Electrical characteristics I/O input DC characteristics Table 12 provides input DC electrical characteristics as described in Figure 3. Figure 3. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Table 12. I/O input DC electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max 2.0(1) — — — — 0.8 0.3(2) — — 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V 0.65 × VDD_HV_IO — VDD_HV_IO + 0.3 V 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V 0.6 × VDD_HV_IO — VDD_HV_IO + 0.3 V 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V -0.3 — 0.35 × VDD_HV_IO V TTL VIH 3.0 V < VDD_HV_IO < 3.6 V SR P Input high level TTL and 4.5 V < VDD_HV_IO < 5.5 V VIL SR P Input low level TTL VHYST 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V 3.0 V < VDD_HV_IO < 3.6 V — C Input hysteresis TTL and 4.5 V < VDD_HV_IO < 5.5 V V CMOS VIHCMOS_H (3) Input high level SR P CMOS (with hysteresis) Input high level VIHCMOS(3) SR P CMOS (without hysteresis) VILCMOS_H (3) Input low level SR P CMOS (with hysteresis) DS10601 Rev 6 27/77 76 Electrical characteristics SPC574Sx Table 12. I/O input DC electrical characteristics (continued) Value Symbol C Parameter Input low level VILCMOS(3) SR P CMOS (without hysteresis) VHYSCMOS — C Input hysteresis CMOS Conditions Unit Min Typ Max 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V -0.3 — 0.4 × VDD_HV_IO V 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V 0.1 × VDD_HV_IO — — V 3.8 — VDD_HV_IO + 0.3 — VDD_HV_IO + 0.3 Automotive VIH(3) VIL VHYST SR P Input high level Automotive Input low level SR P Automotive — C Input hysteresis Automotive 4.5 V < VDD_HV_IO < 5.5 V 3.0 V < VDD_HV_IO < 3.6 V 0.75× VDD_HV_IO V 4.5 V < VDD_HV_IO < 5.5 V -0.3 — 2.2 3.0 V < VDD_HV_IO < 3.6 V -0.3 — 0.35 × VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 0.5 — — 0.11 × — — — — 1 µA — — 10 pF 3.0 V < VDD_HV_IO < 3.6 V VDD_HV_IO V V Input Characteristics ILKG CIN CC P Digital input leakage — C D Digital input capacitance GPIO input pins 1. At 5.5 V and -40 °C, VIH for PA[0], PA[1], and PA[2] is 2.11 V. 2. Minimum hysteresis at 4.0 V 3. VSIO[VSIO_xx] = 0 in the range 3.0 V < VDD_HV_IO < 4.0 V, VSIO[VSIO_xx] = 1 in the range 4.0 V < VDD_HV_IO < 5.9 V. Table 13 provides weak pull figures. Both pull-up and pull-down current specifications are provided. 28/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Table 13. I/O pull-up/pull-down DC electrical characteristics Value Symbol C Parameter Conditions CC P |IWP U| Weak pull-up current absolute value(1) CC T CC P |IWP D| Weak pull-down current absolute value CC T Min Typ Max VIN = 0.69 × VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 23 — — VIN = 0.49 × VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V — — 82 VIN > VIL = 1.1 V (TTL) 4.5 V < VDD_HV_IO < 5.5 V — — 130 VIN = 0.75 × VDD_HV_IO 3.0 V < VDD_HV_IO < 3.6 V 10 — — VIN = 0.35 × VDD_HV_IO 3.0 V < VDD_HV_IO < 3.6 V — — 70 VIN > VIL = 1.1 V (TTL) 3.0 V < VDD_HV_IO < 3.6 V — — 75 VIN = 0.69 × VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V — — 130 VIN = 0.49 × VDD_HV_IO 4.5 V < VDD_HV_IO < 5.5 V 40 — — VIN > VIL = 0.9 V (TTL) 4.5 V < VDD_HV_IO < 5.5 V 16 — — VIN = 0.75 × VDD_HV_IO 3.0 V < VDD_HV_IO < 3.6 V — — 92 VIN = 0.35 × VDD_HV_IO 3.0 V < VDD_HV_IO < 3.6 V 19 — — VIN > VIL = 0.9 V (TTL) 3.0 V < VDD_HV_IO < 3.6 V 16 — — Uni t µA µA 1. Weak pull-up is enabled within tWK_PU = 1 µs after internal/external reset has been asserted. Output voltage will depend on the amount of capacitance connected to the pin. 3.9.3 I/O output DC characteristics Table 14: Slow configuration I/O output DC characteristics provides DC characteristics for bidirectional pads in the following configurations: • Slow • Medium • Fast • Very Fast DS10601 Rev 6 29/77 76 Electrical characteristics SPC574Sx Table 14. Slow configuration I/O output DC characteristics(1) Value Symbol ROH_S ROL_S Parameter PMOS output impedance slow configuration NMOS output impedance slow configuration fmax_S Output frequency slow configuration tTR_S Transition time output pin slow configuration tSKEW_S Conditions Unit Min Typ Max 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOH < 0.5 mA 560 800 1040 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 0.5 mA 560 800 1040 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOL < 0.5 mA 560 800 1040 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 0.5 mA 560 800 1040 CL = 25 pF — — 2 CL = 50 pF — — 1 CL = 25 pF — — 120 CL = 50 pF — — 240 — — 28 Difference between rise time and fall time — Ω Ω MHz ns % 1. The above mentioned values are different for pads PAD[4], PAD[9], PAD[11], PAD[16], PAD[47], PAD[55], PAD[56], PAD[62] and PAD_FCCU_F1E. Please refer to Table 18 for these pads’ values. Table 15. Medium configuration I/O output DC characteristics(1) Value Symbol ROH_M Parameter Conditions Typ Max 140 200 260 140 200 260 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOL < 2 mA 140 200 260 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 2 mA 140 200 260 CL = 25 pF — — 12 3.0 V < VDD_HV_IO < 3.6 V PMOS output impedance Push pull, IOH < 2 mA medium configuration < 5.5 V 4.5 V < V DD_HV_IO Push pull, IOH < 2 mA ROL_M NMOS output impedance medium configuration Unit Min Ω Ω fmax_M Output frequency medium configuration CL = 50 pF — — 6 tTR_M Transition time output pin CL = 25 pF medium configuration CL = 50 pF — — 35 — — 70 — — 28 tSKEW_M Difference between rise time and fall time — 1. The above mentioned values are different for pads PAD[4], PAD[9], PAD[11], PAD[16], PAD[47], PAD[55], PAD[56], PAD[62] and PAD_FCCU_F1E. Please refer to Table 18 for these pads’ values. 30/77 DS10601 Rev 6 MHz ns % SPC574Sx Electrical characteristics Table 16. Fast configuration I/O output DC characteristics Value Symbol ROH_F ROL_F Parameter PMOS output impedance fast configuration NMOS output impedance fast configuration fmax_F Output frequency fast configuration tTR_F Transition time output pin fast configuration tSKEW_F Conditions Unit Min Typ Max 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOH < 6 mA 44 — 90 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 8 mA 35 50 65 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOL< 6 mA 44 — 90 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 8 mA 35 50 65 CL = 25 pF — — 50 CL = 50 pF — — 25 CL = 25 pF — — 12 CL = 50 pF — — 20 — — 28 Difference between rise time and fall time — Ω Ω MHz ns % Table 17. Very Fast configuration I/O output DC characteristics Value Symbol ROH_V ROL_V Parameter PMOS output impedance very fast configuration NMOS output impedance very fast configuration Conditions Unit Min Typ Max 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOH < 7 mA 44 — 85 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOH < 9 mA 20 — 60 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOL < 7 mA 44 — 85 4.5 V < VDD_HV_IO < 5.5 V Push pull, IOL < 9 mA 20 — 60 Ω Ω fmax_V Output frequency very fast configuration CL = 25 pF — — 50 CL = 50 pF — — 25 Transition time output pin very fast configuration CL = 25 pF — — 9 tTR_V CL = 50 pF — — 15 — — 28 tSKEW_V Difference between rise time and fall time — MHz ns % For PAD[4], PAD[9], PAD[11], PAD[16], PAD[47], PAD[55], PAD[56], PAD[62] and PAD_FCCU_F1E, the following values hold true. DS10601 Rev 6 31/77 76 Electrical characteristics SPC574Sx Table 18. I/O output DC characteristics for PAD[4], PAD[9], PAD[11], PAD[16], PAD[47], PAD[55], PAD[56], PAD[62] and PAD_FCCU_F1E Value Functionality Symbol Slow Medium Conditions Unit Min Typ Max ROH_S PMOS output impedance slow configuration 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOH < 0.5 mA 539 — 1600 Ω ROL_S NMOS output impedance slow configuration 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOL < 0.5 mA 534 — 1896 Ω fmax_S Output frequency slow configuration CL = 25 pF — — 2 CL = 50 pF — — 1 tTR_S Transition time output pin slow configuration CL = 25 pF — — 152 CL = 50 pF — — 279 — — — 50 % MHz ns tSKEW_S Difference between rise time and fall time ROH_M PMOS output impedance slow configuration 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOH < 0.5 mA 135 — 405 Ω ROL_M NMOS output impedance slow configuration 3.0 V < VDD_HV_IO < 3.6 V Push pull, IOL < 0.5 mA 131 — 495 Ω fmax_M Output frequency slow configuration CL = 25 pF — — 12 CL = 50 pF — — 6 tTR_M Transition time output pin slow configuration CL = 25 pF — — 45 CL = 50 pF — — 77 — — 46 tSKEW_M 3.10 Parameter Difference between rise time and fall time — MHz ns % RESET electrical characteristics The device implements a dedicated bidirectional reset pin (PORST). Note: 32/77 PORST pin does not require active control. It is possible to implement an external pull-up to ensure the correct reset exit sequence. The recommended value is 4.7 Kohm. DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 4. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 5 describes the device behavior depending on the supply signal on PORST: 1. PORST does not go low enough: it is filtered by input buffer hysteresis. The device remains in the current state. 2. PORST goes low enough, but not for long enough: it is filtered by a low pass filter. The device remains in the current state. 3. The PORST generates a reset: a) PORST low but initially filtered during at least WFRST. Device remains initially in current state. b) PORST potentially filtered until WNFRST. Device state is unknown. It may either be reset or remains in current state depending on extra condition (PVT — process, voltage, temperature). c) PORST asserted for longer than WNFRST. The device is under hardware reset. DS10601 Rev 6 33/77 76 Electrical characteristics SPC574Sx Figure 5. Noise filtering on reset signal VPORST VDD VIH VHYS VIL internal reset filtered by hysteresis filtered by lowpass filter filtered by lowpass filter WFRST WFRST 1 2 unknown reset state device under hardware reset 3a WNFRST 3b 3c Table 19. Reset electrical characteristics Value Symbol C Parameter VIH SR P Input high level TTL (Schmitt trigger) VIL SR P Input low level TTL (Schmitt trigger) VHYS CC C Input hysteresis TTL (Schmitt trigger) 34/77 Conditions Unit Min Typ Max 2.0 — — 3.0 V < VDD_HV_IO < 3.6 V — — 0.6 4.5 V < VDD_HV_IO < 5.5 V — — 0.8 300 — — — — DS10601 Rev 6 V V mV SPC574Sx Electrical characteristics Table 19. Reset electrical characteristics (continued) Value Symbol C Parameter Conditions Typ Max — — — 1.2 V Device under power-on reset 3.0V 1.0V 0.2 — — mA Device under power-on reset VDD_HV_IO = 4.0 V, VOL = VIL 12 — — mA ESR0 pin VIN = 0.69 × VDD_HV_IO 23 — — ESR0 pin VIN = 0.49 × VDD_HV_IO — — 82 PORST pin VIN = 0.69 × VDD_HV_IO — — 130 PORST pin VIN = 0.49 × VDD_HV_IO 40 — — Minimum supply for VDD_POR CC C strong pull-down activation IOL_R |IWPU| |IWPD| CC P Strong pull-down current Weak pull-up current CC P absolute value Weak pull-down current CC P absolute value Unit Min µA µA WFRST SR P PORST input filtered pulse — — — 500 ns WNFRST SR P PORST input not filtered pulse — 2000 — — ns 3.11 Power management 3.11.1 Overview Figure 6 shows an overview of the power management infrastructure. It consists of: • Note: a power control unit (PCU) consists of: – the digital submodules PMC_dig – the analogue submodules PMC_ana • a clock generation module (MC_CGM) • a mode entry module (MC_ME) For detailed information on these modules please refer to the respective chapters of the reference manual. DS10601 Rev 6 35/77 76 Electrical characteristics SPC574Sx Figure 6. Power management infrastructure PCU 3.11.2 PMC_dig MC_CGM PMC_ana MC_ME Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_HV_IO. The regulator itself is supplied by VDD_HV_IO. The following supplies are involved: • HV—High voltage external power supply for the voltage regulator module. This must be provided externally through the VDD_HV_OSC power pin. • BV—High voltage external power supply for the internal ballast module. This must be provided externally through the VDD_HV_IO power pins. Voltage values should be aligned with VDD_HV_OSC. • LV—Low voltage internal power supply for the core, PLL0 and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is split into three further domains to ensure noise isolation between critical LV modules within the device: – LV_COR—Low voltage supply for the core. It is also used to provide supply for PLL1 through double bonding. – LV_FLA—Low voltage supply for the code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. – LV_PLL—Low voltage supply for PLL1. It is shorted to LV_COR through double bonding. The concept scheme of the power connections is shown below in Figure 7. 36/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 7. Concept scheme of the power connections Concept scheme with EXT REGULATOR VDD_HV_IO_W0 FLASH VDD_HV_IOF_W1 VDD_HV_IOF_W2 IO pads (rail #0) VDD_HV_IOF_N2 RCOSC VDD_HV_IO_N1 PMU VDD_HV_IO_E1 VDD_HV_IO_E2 IO pads (rail #1) VDD_HV_IO_E3 VDD_HV_IO_N0 XOSC VDD_HV_OSC ADC, AMUX, TSENS (cluster #0) VDD_HV_ADC_S0 VREFH_ADC_S0 ADC, AMUX, TSENS (cluster #1) VDD_HV_ADC_E0 VREFH_ADC_S1 PLL, FMPLL VDD_LV_PLL_ADC VDD_LV_W0 VDD_LV_W1 VDD_LV_S1 VDD_LV_S2 DIGITAL CORE, SRAMs VDD_LV_E0 VDD_LV_E2 VDD_LV_E1 VDD_LV_N0 VDD_LV_N1 DS10601 Rev 6 37/77 76 Electrical characteristics 3.11.3 SPC574Sx Power Schemes The power scheme for the eTQFP100 package is shown in Figure 8. 9''B+9B,2B1 ,2 ,2 (;3 &25( (;3 &25( ,2 ,2 6B%$//$67 6B%$//$67 &87 6B%$//$67 'B%$//$67 'B%$//$67 'B%$//$67 6B%$//$67 6B%$//$67 'B%$//$67 6B%$//$67 ,2 (;3 (;3 9''B+9B,2B1 9''B+9B,2B1 Figure 8. Power supply scheme for eTQFP100 (;3 (;3 ,2  & >  ^ , 9''B)',* 9''B)$1$ (;3 ^sZ' sZ' WDh ,2 9''B+9B,2B: 6B%$//$67 9''B+9B,2B( 6B%$//$67 (;3 ,2 6B%$//$67 9''B+9B,2B( 6B%$//$67 &25( 9''B)$1$ (;3 (;3 &25( (;3 &>^, &25( 'B%$//$67 9''B+9B,2B: 9''B/9B(  6B%$//$67 ,2 ,s ,2 65$0 (;3 6B%$//$67 9''B+9B,2B( 6B%$//$67 *1'B)$1$ 65$0 (;3 &87 &25( 9''B/9B: 9'' 9''B+9B26& ZK^  966 (;3 (;3 'B%$//$67 &87 d^E^ 9'' /^ &87 966     Dϴ Dϴ 95()/ 95()+ &DW>>ϭ 9''  9''B/9B(  966 (;3 9''B+9B$'&B(  &25( &25( (;3 966B+9B$'&B6 9''B+9B$'&B6 The HV ring is divided into 5 different physical domains: • ADC group #0 and Temperature Sensor • ADC group #1 • IO rail #0, Flash, PMU and RCOSC • IO rail #1 • XOSC DS10601 Rev 6 (;3   95()+B$'&B6 &25( 9'' &87 95()/B$'&B6 (;3 W>>Ϭ Dϭϲ (;3 'W ,2 W W W W Dϴ 6B%$//$67 9''B+9B,2B: 38/77 (;3 yK^ SPC574Sx Electrical characteristics Table 20. HV supply schemes Internal regulator Number of HV supplies HV supply domains Number of LV supplies 2 ADC group #0 IO rail #0 + XOSC + PMU + Flash + IO rail #1 NA Mandatory The LV voltage is organized as one single domain. The LV can be generated internally (with internal ballast) or externally, depending on a pin setting. The exposed pad is used to connect the ground ring. The ballasts are circuits placed in the padring, similarly as other pad circuits (supply or input/output functions). The S_BALLASTs are controlled by the digital regulator to source the static current. Total current capability for the S_BALLAST on the LV domain is 325mA. The D_BALLASTs are controlled by the linear regulator to source the dynamic current to support the transient load response. Total current capability for all the D_BALLAST on the LV domain is 100mA. Transient time for the dynamic regulation is 20 µs for maximum 100mA on the LV. The S_BALLASTs are enabled only in INTERNAL regulator mode (PWMODE = 1). The D_BALLASTs are always enabled in INTERNAL regulator mode (PWMODE = 1). The D_BALLASTs are enabled in EXTERNAL regulator mode (PWMODE = 0) only if the LV supply is out of specs (+/- 5%) as tentative to avoid the device reset. Figure 9. PMU concept scheme VDD_HV PMOS + VREF1 - FEEDBACK VDD_LV NMOS VREF2 + MIRROR DYNAMIC BALLAST (linear) A/D IREF DIG REGULATOR VDD_HV VDD_HV VDD_HV LEVEL SHIFTER PMOS [14:0] DIODE STATIC BALLAST (digital) DS10601 Rev 6 VDD_LV 39/77 76 Electrical characteristics 3.11.4 SPC574Sx Decoupling capacitors Table 21. eTQFP100 HV/LV supply decoupling capacitances Ballast PAD Pin Minimum Minimum (Internal (External Regulation) Regulation) Suggested Configuration Note — VDD_LV_W0 — — — — — — VDD_LV_W1 19 2.2 µF + 100 nF 2.2 µF + 100 nF 2.2 µF + 100 nF + 10 nF LV Buffer capacitance + EMC protection — VDD_LV_S1 — — — — — — VDD_LV_S2 — — — — — — VDD_LV_PLL_ADC 52 — — — — — VDD_LV_E0 52 100 nF 100 nF 100 nF + 10 nF LV Buffer capacitance + EMC protection — VDD_LV_E2 — — — — — — VDD_LV_E1 68 100 nF 100 nF 100 nF LV Buffer capacitance — VDD_LV_N0 — — — — — — VDD_LV_N1 — — — — — — VDD_HV_IO_W0 20 — — — — Dynamic Ballast VDD_HV_IO_W1 20 — — — — Dynamic Ballast VDD_HV_IO_W2 20 2.2 µF 2.2 µF 2.2 µF + 4.7 µF + 10 nF NM(1) HV Buffer capacitance + EMC protection — VDD_HV_OSC 55 100 nF 100 nF 100 nF HV Buffer capacitance Static Ballast VDD_HV_IO_E1 51 — — — — Static Ballast VDD_HV_IO_E2 51 — — — — Static Ballast VDD_HV_IO_E3 51 — — — — Static Ballast VDD_HV_IO_N0 85 — — — — Dynamic Ballast VDD_HV_IO_N1 85 100 nF — 100 nF + 10 nF NM(1) HV Buffer capacitance + EMC protection Dynamic Ballast VDD_HV_IO_N2 95 100 nF — 100 nF + 10 nF NM(1) HV Buffer capacitance + EMC protection 1. NM = not mounted 40/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 10. ADC decoupling capacitance/resistance scheme DEVICE VHV_ADC VREF_ADC 2 2 32 C1 C2 R2 VHV_ADC[1:0] INPUT CHANNEL VREF_ADC[1:0] Ce Re ADC channel[31:0] Table 22. ADC decoupling capacitance/resistance values Label Instances Value Recommended commercial components based on PVT/aging degradation C1 2 470 nF min 1 µF R2 2 5 to 8 Ω max 8 Ω C2 2 1 µF min 2.2 µF Ce Re 32 32 (1) ≥ 8192 VDD_POR and maintained until supply crosses the power-on reset thresholds VPORUP_LV for LV supply and VPORUP_HV for high voltage supply. 3. Before software configuration 4. Pull-down and pull-up strengths are provided in Table 13: I/O pull-up/pull-down DC electrical characteristics 5. Unlike ESR0, ESR1 is provided as a normal GPIO and implements weak pull-up during power-up. 6. An internal pull-down is implemented on the TESTMODE pin to prevent the device from entering test mode if the package TESTMODE pin is not connected. It is recommended to connect the TESTMODE pin to VSS_HV_IO on the board for maximum robustness, but not required. The value of TESTMODE is latched at the negation of reset and has no affect afterward. The device will not exit functional reset with the TESTMODE pin asserted during power-up. The TESTMODE pin can be connected externally directly to ground without any other components. 3.13 Platform Flash controller configuration Table 27. Wait states versus system clock frequency(1) Read Wait State Control (RWSC) System clock frequency (MHz)(2) 0b00000 0 - 30 MHz 0b00001 30 - 60 MHz 0b00010 60 - 90 MHz 0b00011 90 - 121 MHz 0b00100 121 - 140 MHz 1. RWSC is a field in the Flash memory of the PFCR register used to specify the wait states for address pipelining and read/write accesses. 2. Values to be confirmed by silicon validation. 3.14 Flash memory electrical characteristics Table 28 shows the program and erase characteristics. 44/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Table 28. Flash memory program and erase specifications Value Symbol Characteristics(1)(2) Lifetime Initial max Typ(3) C (6) All temp C 25 °C (7) Typical end of life(4) max(5) Unit C < 1 K < 100 K cycles cycles tdwprogram Double Word (64 bits) program time [Packaged part] 43 C 130 — — 140 500 C µs tpprogram Page (256 bits) program time 72 C 240 — — 240 1000 C µs tpprogrameep Page (256 bits) program time Data Flash - EEPROM (partition 1) [Packaged part] 83 C 264 — — 276 1000 C µs Quad Page (1024 bits) program time 263 C 1040 1200 P 850 2000 C µs tqprogrameep Quad Page (1024 bits) program time Data Flash EEPROM (partition 1) [Packaged part] 285 C 1140 1320 P 978 2000 C µs t16kpperase 16 KB block pre-program and erase time 150 C 1000 1000 P 190 2000 — C ms t32kpperase 32 KB block pre-program and erase time 200 C 1000 1000 P 230 2000 — C ms t64kpperase 64 KB block pre-program and erase time 300 C 1000 1000 P 420 2000 — C ms t256kpperase 256 KB block pre-program and erase time 900 C 2000 3000 P 1600 5000 — C ms t16kprogram 16 KB block program time 34 C 45 50 P 40 1000 — C ms t32kprogram 32 KB block program time 67 C 90 100 P 75 2000 — C ms t64kprogram 64 KB block program time 135 C 175 200 P 150 3000 — C ms t256kprogram 256 KB block program time 540 C 700 850 P 590 4000 — C ms 39 C 52 58 P 64 1000 C ms Erase 16 KB Data Flash EEPROM (partition 1) [Packaged part] 160 C 1000 1000 P 400 5000 C ms ttr Program rate(8) 2.2 C 2.8 3.40 C 2.4 — C s/M B tpr Erase rate(8) 3.5 C 8.0 12.0 C 6.4 — C s/M B Full flash programming time(9) 3.3 C 4.2 5.2 P 3.0 16 — C s Full flash erasing time(9) 6.0 C 15.0 19.0 P 6.8 20 — C s tqprogram Program 16 KB Data Flash t16kprogrameep EEPROM (partition 1) [Packaged part] t16keraseeep tffprogram tfferase DS10601 Rev 6 45/77 76 Electrical characteristics SPC574Sx Table 28. Flash memory program and erase specifications (continued) Value Symbol Characteristics Lifetime Initial max (1)(2) Typ(3) C (6) All temp C 25 °C (7) Typical end of life(4) max(5) Unit C < 1 K < 100 K cycles cycles tESRT Erase suspend request rate(10) 500 T — — — — — — µs tPSRT Program suspend request rate(10) 30 T — — — — — — µs tAMRT Array Integrity Check - Margin Read suspend request rate 15 T — — — — — — µs tPSUS Program suspend latency(11) — — — — — — 15 T µs — — — — — — 30 T µs latency(11) tESUS Erase suspend tAIC0S Array Integrity Check (1.5 MB, sequential)(12) 15 T — — — — — — — ms Array Integrity Check (256 KB, sequential)(12) 2.5 T — — — — — — — ms tAIC0P Array Integrity Check (1.5 MB, proprietary)(12) 2.0 T — — — — — — — tMR0S Margin Read (1.5 MB, sequential)(12) 75 T — — — — — — — ms tMR256KS Margin Read (256 KB, sequential)(12) 12.5 T — — — — — — — ms tAIC256KS 1. Characteristics are valid both for Data Flash and Code Flash, unless specified in the characteristics column. 2. Actual hardware programming times; this does not include software overhead. 3. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 4. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. These values are characteristic, but not tested. 5. Lifetime maximum program & erase times apply across the voltages and temperatures and occur after the specified number of program/erase cycles. These maximum values are characterized but not tested or guaranteed. 6. Initial factory condition: < 100 program/erase cycles, 20 °C < TJ < 30 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing. 7. Initial maximum “All temp” program and erase times provide guidance for time-out limits used in the factory and apply for less than or equal to 100 program or erase cycles, –40 °C < TJ < 150 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing. 8. Rate computed based on 256 KB sectors. 9. Only code sectors, not including EEPROM. 10. Time between suspend resume and next suspend. Value stated actually represents Min value specification. 11. Timings guaranteed by design. 12. AIC is done using system clock, thus all timing is dependent on system frequency and number of wait states. Timing in the table is calculated at max frequency. 46/77 DS10601 Rev 6 s SPC574Sx Electrical characteristics All the Flash operations require the presence of the system clock for internal synchronization. About 50 synchronization cycles are needed: this means that the timings of the previous table can be longer if a low frequency system clock is used. Table 29. Flash memory Life Specification Value Characteristics(1) Symbol Unit Min C Typ C NCER16K 16 KB CODE Flash endurance 10 — 100 — Kcycles NCER32K 32 KB CODE Flash endurance 10 — 100 — Kcycles NCER64K 64 KB CODE Flash endurance 10 — 100 — Kcycles NCER256K 256 KB CODE Flash endurance 1 — 100 — Kcycles 100 — — Kcycles NDER16K 16 KB EEPROM Flash endurance tDR1k Minimum data retention Blocks with 0 - 1,000 P/E cycles 25 — — Years tDR10k Minimum data retention Blocks with 1,001 - 10,000 P/E cycles 15 — — Years tDR100k Minimum data retention Blocks with 10,001 - 100,000 P/E cycles 15 — — Years 1. Program and erase cycles supported across specified temperature specs. 3.15 PLL0/PLL1 electrical characteristics The device provides a phase-locked loop (PLL0) as well as a frequency-modulated phaselocked loop (PLL1) module to generate a fast system clock from the main oscillator driver. Table 30. PLL1 electrical characteristics Symbol C Parameter Value Conditions(1) Unit Min Typ — 37.5 — — 35 — 65 % fPLLOUT CC D PLL1 output clock frequency — 4.762 — 625 MHz fVCO(3) CC P VCO frequency — 600 — 1250 MHz Stable oscillator (fPLLIN = 16 MHz) — — 50 µs fPLLIN = 16 MHz (resonator), fPLLCLK @ 64 MHz — — 1.8 ns TA = 25 °C — — 5 mA fPLLIN SR — PLL1 reference clock(2) ΔPLLIN SR — tLOCK PLL1 reference clock duty cycle(2) CC P PLL1 lock time ΔtSTJIT CC T PLL1 short term jitter IPLL CC C PLL1 consumption Max 78.125 MHz 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified. 2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN. 3. Frequency modulation is considered ±2%. DS10601 Rev 6 47/77 76 Electrical characteristics SPC574Sx Table 31. PLL0 electrical characteristics Symbol C fPLLIN SR — PLL0 reference clock(2) ΔPLLIN SR — Value Conditions(1) Parameter PLL0 reference clock duty cycle(2) fPLLOUT CC D PLL0 output clock frequency Unit Min Typ Max — 8 — 56 MHz — 30 — 70 % — 4.762 — 625 MHz fVCO CC P VCO frequency — 600 — 1250 MHz tLOCK CC P PLL0 lock time Stable oscillator (fPLLIN = 16 MHz) — — 100 µs –150 — 150 ps ΔtSTJIT CC T PLL0 short term jitter fsys maximum ΔtLTJIT CC T PLL0 long term jitter fPLLIN = 16 MHz (resonator), fPLLCLK @ 64 MHz –1 — 1 ns TA = 25 °C — — 5 mA IPLL CC C PLL0 consumption 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified. 2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN. 3.16 External oscillator (XOSC) electrical characteristics Table 32. External Oscillator electrical specifications(1) Value Symbol fXTAL C CC D Parameter Crystal Frequency Conditions Max — 4 8 — >8 20 — >20 40 TJ = 150 °C — 5 ms — — 0.5 ms Range(2) Crystal start-up time (3),(4) Unit Min MHz tcst CC T trec CC — Crystal recovery time(5) VIHEXT CC D EXTAL input high voltage (External Reference) VREF = 0.28 × VDD_HV_IO VREF + 0.6 — V VILEXT CC D EXTAL input low voltage(6),(7) VREF = 0.28 × VDD_HV_IO — VREF - 0.6 V CS_EXTAL CC T Total on-chip stray capacitance on EXTAL pin(8) QFP 6.0 8.0 pF CS_XTAL CC T Total on-chip stray capacitance on XTAL pin(8) QFP 6.0 8.0 pF 48/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Table 32. External Oscillator electrical specifications(1) (continued) Value Symbol C Parameter Conditions Max fXTAL ≤ 8 MHz 2.2 12.1 fXTAL ≤ 20 MHz 7 28.6 fXTAL ≤ 40 MHz 9.7 37.4 fXTAL ≤ 8 MHz 2.6 11.0 fXTAL ≤ 20 MHz 7.9 26.0 fXTAL ≤ 40 MHz 10.4 34.0 TJ = –40 °C to 150 °C 0.5 1.6 V P CC D Oscillator Transconductance (3.3 V) TJ = -40 °C to 150 °C D gm P CC D Oscillator Transconductance (5 V) Unit Min TJ = -40 °C to 150 °C D mA/V mA/V VEXTAL CC D Oscillation Amplitude on the EXTAL pin after startup(9) VHYS CC D Comparator Hysteresis TJ = 150 °C 0.1 1.0 V D XTAL current(10) TJ = 150 °C — 14 mA IXTAL CC 1. All oscillator specifications are valid for VDD_HV_IO = 3.0 V – 5.5 V. 2. The range is selectable by UTEST miscellaneous DCF clients XOSC_LF_EN and XOSC_EN_40MHZ. 3. This value is determined by the crystal manufacturer and board design. 4. Proper PC board layout procedures must be followed to achieve specifications. 5. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load capacitor value. 6. This parameter is guaranteed by design rather than 100% tested. 7. Applies to an external clock input and not to crystal mode. 8. See crystal manufacturer’s specification for recommended load capacitor (CL) values.The external oscillator requires external load capacitors when operating from 8 MHz to 16 MHz. Account for on-chip stray capacitance (CS_EXTAL/CS_XTAL) and PCB capacitance when selecting a load capacitor value. When operating at 20 MHz/40 MHz, the integrated load capacitor value is selected via S/W to match the crystal manufacturer’s specification, while accounting for on-chip and PCB capacitance. 9. Amplitude on the EXTAL pin after startup is determined by the ALC block, i.e., the Automatic Level Control Circuit. The function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to reduce power, distortion, and RFI, and to avoid over-driving the crystal. The operating point of the ALC is dependent on the crystal value and loading conditions. 10. IXTAL is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum current during startup of the oscillator. The current after oscillation is typically in the 2-3 mA range and is dependent on the load and series resistance of the crystal. Test circuit is shown in Figure 12. The ALC block is the Automatic Level Control Circuit. The function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to reduce power, distortion, and RFI, and to avoid overdriving the crystal. DS10601 Rev 6 49/77 76 Electrical characteristics SPC574Sx Figure 11. Crystal/Resonator Connections 8-40MHz EXTERNAL OSCILLATOR (XOSC) DRIVER On chip Cx Cy vsssyn Off chip EXTAL XTAL Crystal or Resonator Table 33. Selectable load capacitance load_cap_sel[4:0] from DCF record Capacitance offered on EXTAL/XTAL (Cx and Cy)(1) (pF) 00000 1.032 00001 1.976 00010 2.898 00011 3.823 00100 4.751 00101 5.679 00110 6.605 00111 7.536 01000 8.460 01001 9.390 01010 10.317 01011 11.245 01100 12.173 01101 13.101 01110 14.029 01111 14.957 1. Values are determined from simulation with a tolerance of ±15%. 50/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 12. Test circuit VDDOSC Bias current ALC IXTAL XTAL EXTAL Comparator + A OFF VSSOSC V VSS Tester 3.17 Conditions Z = R + jωL VEXTAL = 0 V VXTAL = 0 V ALC INACTIVE PCB GND Internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz internal RC oscillator. This is used as the default clock at the power-up of the device. Table 34. Internal RC oscillator electrical specifications Value Symbol fTarget C δfvar_SW Conditions CC T Typ Max — — 16 — MHz — –8 — +8 % TJ < 150 °C –2 — +2 % Trimming temperature –1 — +1 % Factory trimming already applied — — 5 µs IRC frequency variation without temperature compensation IRC frequency variation with temperature compensation — T IRC software trimming accuracy tstart_noT CC T Startup time to reach within fvar_noT Unit Min CC D IRC target frequency δfvar_noT CC P δfvar_T Parameter tstart_T CC T Startup time to reach within fvar_T Factory trimming already applied — — 120 µs IAVDD5 CC T Current consumption on 5 V power supply After tstart_T — — 400 µA After tstart_T — — 175 µA IDVDD12 CC T Current consumption on 1.2 V power supply DS10601 Rev 6 51/77 76 Electrical characteristics SPC574Sx 3.18 ADC electrical characteristics 3.18.1 Introduction The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter. Figure 13. ADC characteristic and error definitions Offset error (EO) Gain error (EG) 4095 4094 4093 4092 4091 1 LSB ideal = VDD_ADC / 4096 4090 (2) code out 7 (1) 6 5 (1) Example of an actual transfer curve (5) (2) The ideal transfer curve 4 (3) Differential non-linearity error (DNL) (4) (4) Integral non-linearity error (INL) 3 (5) Center of a step of the actual transfer curve (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 4089 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Offset error (EO) 52/77 DS10601 Rev 6 SPC574Sx 3.18.2 Electrical characteristics ADC electrical characteristics Table 35. ADC input leakage current Value Symbol ILKG CC Parameter Conditions Input leakage current, two ADC channels input TJ < 40 °C No current injection with weak pull-up and weak pull-down TJ < 150 °C on adjacent pin DS10601 Rev 6 Unit Min Max — 70 — 220 nA 53/77 76 Electrical characteristics SPC574Sx Table 36. ADC conversion characteristics Value Symbol C Parameter Conditions Unit Min VIN fADCK SR ADC input signal ΔVINTREF 7.5 12 MHz ADC precharge time — 83 — ns — — 0.25 V -0.20 0.20 V 0.5 — µs 12-bit configuration (12 clock cycles) 1.000 — 10-bit configuration (10 clock cycles) 0.833 — — 15 Power Down mode — 1 VDD_HV_ADC_TS Run mode CC P ENS power supply Power Down mode current — 4.0 — 0.03 -6 6 SR D Precharge voltage Internal reference voltage precision CC P SR D ADC evaluation time Applies to all internal reference points (VSS_HV_ADR, 1/3 × VREFH_ADC, 2/3 × VREFH_ADC, VREFH_ADC) SAR – 12-bit configuration ADC high reference current Run mode (2) CC C (average across all IADCREFH codes) TUE12 54/77 V — tADCSAMPLE SR P ADC sample time tADCEVAL VSS_HV_ADR(1) VREFH_ADC SR P Clock frequency tADCPRECH SR T VPRECH 0 < VIN < VDD_HV_IO Max CC T Total unadjusted error in 12-bit configuration VREFH_ADC > 3 V µs µA mA LSB (12b) DS10601 Rev 6 SPC574Sx Electrical characteristics Table 36. ADC conversion characteristics (continued) Value Symbol ΔTUE12 DNL C Parameter Conditions Unit Min Max D VIN < VDD_HV_ADC_TSENS VREFH_ADC − VDD_HV_ADC_TSENS ∈ [0:25 mV] — ±1 D VIN < VDD_HV_ADC_TSENS VREFH_ADC − VDD_HV_ADC_TSENS ∈ [25:50 mV] — ±2.0 D VIN < VDD_HV_ADC_TSENS VREFH_ADC − VDD_HV_ADC_TSENS ∈ [50:75 mV] — ±3.5 D VIN < VDD_HV_ADC_TSENS VREFH_ADC − VDD_HV_ADC_TSENS ∈ [75:100 mV] — ±6.0 VDD_HV_ADC_TSENS < VIN < VREFH_ADC VREFH_ADC − VDD_HV_ADC_TSENS ∈ [0:25 mV] — ±2.5 D VDD_HV_ADC_TSENS < VIN < VREFH_ADC VREFH_ADC − VDD_HV_ADC_TSENS ∈ [25:50 mV] — ±4.0 D VDD_HV_ADC_TSENS < VIN < VREFH_ADC VREFH_ADC − VDD_HV_ADC_TSENS ∈ [50:75 mV] — ±7.0 D VDD_HV_ADC_TSENS < VIN < VREFH_ADC VREFH_ADC − VDD_HV_ADC_TSENS ∈ [75:100 mV] — ±12.0 -1 2 TUE degradation due to VREFH_ADC CC D offset with respect to VDD_HV_ADC_TSENS CC P Differential nonlinearity — LSB (12b) LSB (12b) 1. VSS_HV_ADR is connected to exposed pad for the device. 2. The consumption values are given after power-up when steady state is reached. Extra consumption of up to 2 mA can be required during internal circuitry setup. DS10601 Rev 6 55/77 76 Electrical characteristics SPC574Sx Figure 14. ADC analog input circuit CP1 Pad capacitance -10 pF CP2 Internal routing capacitance SARn channels 2 pF CS SAR ADC sampling capacitance - 3 pF RSW1 Analog switches resistance SARn channels 1.8 kΩ RAD ADC input analog switches resistance - 800 Ω RCM Common mode resistance - 8 kΩ 56/77 DS10601 Rev 6 SPC574Sx 3.19 Electrical characteristics Temperature sensor The following table describes the temperature sensor electrical characteristics. Table 37. Temperature sensor electrical characteristics Value Symbol C Parameter Conditions Unit Min Typ Max TSENS CC P Sensitivity — — 5.18 — mV/°C TACC CC P Accuracy TJ < 150 °C –3 — 3 °C ITEMP_SENS CC C VDD_HV_ADC_TSENS power supply current — — — 700 µA 3.20 JTAG interface timings Table 38. JTAG pin AC electrical characteristics No. Symbol Parameter Conditions Min Max Unit 1 tJCYC D TCK cycle time — 100 — ns 2 tJDC D TCK clock pulse width (measured at VDDC/2) — 40 60 % 3 tTCKRISE D TCK rise and fall times (40%-70%) — — 3 ns 4 tTMSS, tTDIS D TMS, TDI data setup time — 5 — ns 5 tTMSH, tTDIH D TMS, TDI data hold time — 5 — ns 6 tDOV D TCK low to TDO data valid — — 30 ns 7 tTDOI D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ D TCK low to TDO high impedance — — 30 ns 9 tBSDV D TCK falling edge to output valid — — 50 ns 10 tBSDVZ D TCK falling edge to output valid out of high impedance — — 50 ns 11 tBSDHZ D TCK falling edge to output high impedance — — 50 ns 12 tBSDST D Boundary scan input valid to TCK rising edge — 50 — ns 13 tBSDHT D TCK rising edge to boundary scan input invalid — 50 — ns DS10601 Rev 6 57/77 76 Electrical characteristics SPC574Sx Figure 15. JTAG test clock input timing TCK 2 3 2 1 3 Figure 16. JTAG test access port timing TCK 4 5 TMS, TDI 6 7 8 TDO 58/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 17. JTAG boundary scan timing TCK 9 11 Output Signals 10 Output Signals 12 13 Input Signals 3.21 Nexus interface timing Table 39. Nexus debug port timing(1) Value # Symbol C Characteristic CC P EVTI pulse width 7 tEVTIPW 8 tEVTOPW CC P EVTO pulse width Unit Min Max 4 — tCYC(2) 40 — ns 2(3),(4) — tCYC(2) 9 tTCYC CC D TCK cycle time 11 tNTDIS CC D TDI data setup time 5 — ns 12 tNTDIH CC D TDI data hold time 5 — ns 13 tNTMSS CC D TMS data setup time 5 — ns 14 tNTMSH CC D TMS data hold time 5 — ns DS10601 Rev 6 59/77 76 Electrical characteristics SPC574Sx Table 39. Nexus debug port timing(1) (continued) Value # Symbol C Characteristic 15 — CC D TDO propagation delay from falling edge of TCK(5) 16 — CC D 1. TDO hold time with respect to TCK falling edge (minimum TDO propagation delay) Unit Min Max — 16 ns 2.25 — ns Nexus timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O section of the data sheet. 2. tCYC is system clock period. 3. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number greater than or equal to that specified here. 4. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute minimum TCK period specification. 5. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay. Figure 18. Nexus event trigger and test clock timings TCK EVTI EVTO 60/77 9 DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 19. Nexus TDI, TMS, TDO timing TCK 11 13 12 14 TMS, TDI 15 16 TDO 3.22 DSPI CMOS master mode timing 3.22.1 Classic timing Table 40. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0(1) Value(2) Condition # Symbol C Characteristic 1 tSCK CC D SCK cycle time 2 tCSC CC D PCS to SCK delay 3 tASC CC D After SCK delay Unit Pad drive(3) Load (CL) Min Max 25 pF 75 — ns 50 — ns 53 — ns SCK drive strength Very strong SCK and PCS drive strength Very strong 25 pF SCK and PCS drive strength Very strong PCS = 0 pF SCK = 50 pF DS10601 Rev 6 61/77 76 Electrical characteristics SPC574Sx Table 40. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0(1) (continued) Value(2) Condition # Symbol 4 tSDC C Characteristic Pad drive(3) CC D SCK duty cycle(4) Unit Load (CL) Min Max SCK drive strength Very strong 0 pF 1 /2tSCK - 2 1 /2tSCK + 2 ns 25 — ns 25 — ns 32 — ns 0 — ns — 5 ns 2 — ns PCS strobe timing 5 tPCSC CC D PCSx to PCSS time(5) PCS and PCSS drive strength 6 tPASC CC D PCSS to PCSx time(5) PCS and PCSS drive strength Very strong Very strong 25 pF 25 pF SIN setup time 7 tSUI CC D SIN setup time to SCK(6) SCK drive strength Very strong 25 pF SIN hold time 8 tHI CC D SIN hold time from SCK drive strength SCK(6) Very strong 0 pF SOUT data valid time (after SCK edge) 9 tSUO CC D SOUT data valid time from SCK(7) SOUT and SCK drive strength Very strong 25 pF SOUT data hold time (after SCK edge) 10 tHO CC D SOUT data hold time after SCK(7) SOUT and SCK drive strength Very strong 25 pF 1. Protocol clock is 40 MHz and all pads are configured as very strong. 2. All timing values for output signals in this table are measured to 50% of the output voltage. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 4. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 5. PCSx and PCSS using same pad configuration. 6. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds. 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value. 62/77 DS10601 Rev 6 SPC574Sx Electrical characteristics Figure 20. DSPI CMOS master mode – classic timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSDC tSUI tHI First Data SIN Data Last Data tSUO SOUT tHO Data First Data Last Data Figure 21. DSPI CMOS master mode – classic timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI SIN tHI First Data Data tSUO SOUT First Data Data DS10601 Rev 6 Last Data tHO Last Data 63/77 76 Electrical characteristics SPC574Sx Figure 22. DSPI PCS strobe (PCSS) timing (master mode) tPCSC tPASC PCSS PCSx 3.22.2 Modified timing Table 41. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1(1) Value(2) Condition # Symbol C Characteristic Unit Pad drive(3) Load (CL) Min Max 25 pF 50 — ns 50 — ns 53 — ns SCK drive strength 1 tSCK CC D SCK cycle time 2 tCSC CC D PCS to SCK delay Very strong SCK and PCS drive strength Very strong 25 pF SCK and PCS drive strength 3 tASC CC D After SCK delay 4 tSDC CC D SCK duty cycle(4) Very strong PCS = 0 pF SCK = 50 pF SCK drive strength Very strong 0 pF 1/ t 2 SCK -2 1/ 2tSCK +2 ns PCS strobe timing 5 tPCSC CC D PCSx to PCSS time(5) PCS and PCSS drive strength 6 tPASC PCSS to PCSx time(5) PCS and PCSS drive strength CC D Very strong Very strong 25 pF 25 pF 25 — ns 25 — ns 20 — ns 0 — ns — 6 ns SIN setup time 7 tSUI CC D SIN setup time to SCK SCK drive strength Very strong 25 pF SIN hold time 8 tHI CC D SIN hold time from SCK drive strength SCK Very strong 0 pF SOUT data valid time (after SCK edge) 9 64/77 tSUO CC D SOUT data valid time from SCK SOUT and SCK drive strength Very strong 25 pF DS10601 Rev 6 SPC574Sx Electrical characteristics Table 41. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1(1) (continued) Value(2) Condition # Symbol C Characteristic Unit Pad drive(3) Load (CL) Min Max 2 — SOUT data hold time (after SCK edge) 10 tHO CC D SOUT and SCK drive strength SOUT data hold time after SCK Very strong 25 pF ns 1. Protocol clock is 40 MHz and all pads are configured as very strong. 2. All timing values for output signals in this table are measured to 50% of the output voltage. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation. 4. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time. 5. PCSx and PCSS using same pad configuration. Figure 23. DSPI CMOS master mode – modified timing, CPHA = 0 tCSC tASC PCSx tSCK tSDC SCK Output (CPOL = 0) SCK Output (CPOL = 1) SIN tSDC tSUI tHI First Data Data tSUO SOUT First Data Data DS10601 Rev 6 Last Data tHO Last Data 65/77 76 Electrical characteristics SPC574Sx Figure 24. DSPI CMOS master mode – modified timing, CPHA = 1 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) tSUI tHI tHI Data First Data SIN tSUO SOUT First Data Data Last Data tHO Last Data Figure 25. DSPI PCS strobe (PCSS) timing (master mode) tPCSC tPASC PCSS PCSx 66/77 DS10601 Rev 6 SPC574Sx 4 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 4.1 eTQFP100 package information DS10601 Rev 6 67/77 76 Package information SPC574Sx Figure 26. eTQFP100 package outline 68/77 DS10601 Rev 6 SPC574Sx Package information Table 42. eTQFP100 mechanical data Dimensions Ref. Inches(1) Millimeters Min Typ Max Min Typ Max θ 0ο 3.5ο 7ο 0ο 3.5ο 7ο θ1 0ο — — 0ο — — θ2 10ο 12ο 14ο 10ο 12ο 14ο θ3 10ο 12ο 14ο 10ο 12ο 14ο A(2) — — 1.20 — — 0.0472 A1(3) 0.05 — 0.15 0.0020 — 0.0059 A2(2) 0.95 1.00 1.05 0.0374 0.0394 0.0413 (4),(5) 0.17 0.22 0.27 0.0067 0.0087 0.0106 b1(5) 0.17 0.20 0.23 0.0067 0.0078 0.0091 0.09 — 0.20 0.0035 — 0.0079 0.09 — 0.16 0.0035 — 0.0063 b c (5) c1(5) D (6) (7),(8) D1 16.00 0.6299 14.00 0.5512 D2(9) — — 6.57 — — 0.259 D3(10) 4.9 — — 0.193 — — e 0.50 0.0197 E(6) 16.00 0.6299 14.00 0.5512 (7),(8) E1 E2(9) — — 6.57 — — 0.259 E3(10) 4.9 — — 0.193 — — L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 1.00 0.0394 N(11) 100 3.937 R1 0.08 — — 0.0031 — — R2 0.08 — — 0.0031 — — S 0.20 — — 0.0079 — — aaa(12),(13),(14) 0.20 0.0079 bbb 0.20 0.0079 ccc 0.08 0.0031 ddd 0.08 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface. DS10601 Rev 6 69/77 76 Package information SPC574Sx 3. A1 is defined as the distance from the seating plane to the lowest point on the package body. 4. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 6. To be determined at seating datum plane C. 7. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 8. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 9. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. 10. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove. 11. “N” is the number of terminal positions for the specified body size. 12. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994. 13. All Dimensions are in millimeters. 14. For Symbols, Recommended Values and Tolerances see Table below: Symbol Definition Notes aaa The tolerance that controls the position of the terminal pattern with respect to Datum A and B. The center of the tolerance zone for each terminal is defined by basic dimension e as related to Datum A and B. For flange-molded packages, this tolerance also applies for basic dimensions D1 and E1. For packages tooled with intentional terminal tip protrusions, aaa does not apply to those protrusions. bbb The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E. ccc The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located. This tolerance is commonly know as the “coplanarity” of the package terminals. ddd The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension e. This tolerance is normally compounded with tolerance zone defined by “b”. 70/77 DS10601 Rev 6 SPC574Sx 5 Ordering information Ordering information Figure 27. Ordering information scheme Example code: SPC57 4 S 64 E3 C XXX Product identifier Core Family Memory Package Temperature Custom vers. Y Packing Y = Tray R = Tape and Reel X = Tape and Reel 90° XXX = Custom version* B = -40 to 105 °C C = -40 to 125 °C E3 = eTQFP100 exposed pad* 64 = 1.5 MB 60 = 1 MB* S = SPC57S family 4 = Single core e2004zd functional core SPC57 = Power architecture in 55 nm *: Only a limited number of configurations and packages are supported. Some configuration may not be available. Please refer to your sales representatives for more information” DS10601 Rev 6 71/77 76 Revision history 6 SPC574Sx Revision history Table 43. Document revision history Date Revision 22-Sep-2014 1 Initial release 2 Throughout the document: – Editorial and formatting updates – Changed device name from SPC574S60xx, to SPC574Sx – Replaced all occurrences of PLL by PLL0 and FMPLL by PLL1 – Renamed VDD_HV_PMC_OSC and VDD_HV_OSC_PMC as VDD_HV_OSC – Renamed VDD_HV_ADV and VDD_ADC_TSENS as VDD_HV_ADC_TSENS – Renamed VDD_HV_IO_MAIN and VDD_HV_IO_JTAG as VDD_HV_IO – Renamed VDD_HV_ADR as VREFH_ADC – Renamed VSS_HV_IO as VSS Added Figure 3: 244-ball BGA pinout (top view) and the LFBGA 244 column to Table 3: Cross-mapping between pads and package pins Table 1: SPC574S60Ex, SPC574S60C2 device feature summary (superset configuration) – For SMPU, description updated to “Yes (8 Regions)” – Footnote 1 “SMPU with process ID support extension” removed Table 3: SPC574Sx series block summary – Updated function description for Cross triggering unit (CTU) Added footnote 1 to Table 3: Cross-mapping between pads and package pins Table 6: Absolute maximum ratings – Added: VDD_HV_OSC, VDD_HV_ADC_TSENS, VREFH_ADC – Removed TJ – Changed IMAXSEG to IMAXSEG (IO rail #0) and IMAXSEG (IO rail #1) – Updated values of: Cycle, VSS, VDD_LV, VDD_HV_IO, VIN, IMAXD, TSDR, TXRAY – Updated footnote 1. and added footnote 2. – Updated parameter descriptions for VDD_HV_IO, VDD_HV_OSC, IINJD and IINJA Table 8: Device operating conditions: – Added: VDD_LV, VDD_HV_XOSC(6),(7), VREFH_ADC - VDD_HV_ADC_TSENS, VIN – Added footnotes 3., 4., 5. and 8. Updated “Very fast configuration” description in Table 11: I/O pad specification descriptions Added Input Characteristics section to Table 12: I/O input DC electrical characteristics Renamed Table 18: I/O output DC characteristics for PAD[4], PAD[9], PAD[11], PAD[16], PAD[47], PAD[55], PAD[56], PAD[62] and PAD_FCCU_F1E to include the pad numbers Removed CMOS parameters from Table 19: Reset electrical characteristics Added Table 20: HV supply schemes Added Table 21: eTQFP100 HV/LV supply decoupling capacitances Added Table 25: eTQFP144 HV/LV supply decoupling capacitances Added Table 26: BGA244 HV/LV supply decoupling capacitances Added Table 28: Package ADC supply decoupling capacitance Changed values of dfvar_T in Table 34: Internal RC oscillator electrical specifications 13-Apr-2015 72/77 Changes DS10601 Rev 6 SPC574Sx Revision history Table 43. Document revision history (continued) Date 13-Apr-2015 11-Jan-2016 Revision Changes 2 Updated Table 35: ADC input leakage current Table 36: ADC conversion characteristics – Changed values for IADCVDDIADV_S – Added footnotes for VSS_HV_ADR and IADCREFH Removed IADCREFL, TUE10 Renamed Figure 10 to include BGA244 Added Figure 10: ADC decoupling capacitance/resistance scheme Added Section : Removed subsections of Section 2.2: Pin descriptions with referral to the “Signal description” chapter in the devices’ reference manual Added Section 3.4: Electromagnetic compatibility (EMC) Added Section 3.5: Electrostatic discharge (ESD) Updated the tables in Section 3.7: Thermal characteristics Updated Section 3.11: Power management Added Section 3.12: PMU monitor specifications Added Section 3.16: External oscillator (XOSC) electrical characteristics Added Section 3.19: Temperature sensor Added Section 3.20: JTAG interface timings Added Section 3.21: Nexus interface timing 3 Figure 1: Block diagram: added missing CMU4 block. Figure 3: 244-ball BGA pinout (top view): updated pin names for A10, A11, A13, B12, B16, C18, D4, D15, D18, E18, F18, and K18 Table 21: eTQFP100 HV/LV supply decoupling capacitances, Table 25: eTQFP144 HV/LV supply decoupling capacitances and Table 26: BGA244 HV/LV supply decoupling capacitances: correction for VDD_LV_S2 pad name Table 30: Flash memory program and erase specifications and Table 29: Flash memory Life Specification: removed the mention “(pending silicon Qualification)” Figure 42: eTQFP100 mechanical data and Figure 49: eTQFP144 mechanical data: updated D2 and E2 values DS10601 Rev 6 73/77 76 Revision history SPC574Sx Table 43. Document revision history (continued) Date Revision Changes Updated RPNs on the cover page to “SPC574S60E3, SPC574S60E5, SPC574S64E3, SPC574S64E5” Removed references of package “BGA244” throughout the document. Number of LinFlexD instances updated from 2 to 4 Table 1: SPC574S60Ex, SPC574S60C2 device feature summary (superset configuration): – System SRAM updated from “64 KB” to “96 KB” – Code flash memory updated from “1 MB” to “1.5 MB” Updated Section : Updated Figure 1: Block diagram Updated Table 3: SPC574Sx series block summary: – “PLL0” updated to “Frequency-modulated phase-locked loop (PLL0)” – “AIPS” updated to “PBRIDGE” – For Flash memory, “1M” updated to “1.5M” – For WKPU, external sources updated from “18” to “4” 11-Oct-2017 4 Updated Figure 2: eTQFP 100-pin configuration: – Pin 29 updated from “VREFH_ADC” to “PC[0]” – Pin 30 updated from “PB[9]” to “PC[1]” – Pin 37 updated from “PC[0]” to “VREFH_ADC” – Pin 38 updated from “PC[1]” to “VREFL_ADC” Updated Figure 2.2: Pin descriptions: – Pin 6 updated from “VREFH_ADC” to “PC[0]” – Pin 7 updated from “PB[9]” to “PC[1]” – Pin 16 updated from “PC[0]” to “VREFH_ADC” – Pin 17 updated from “PC[1]” to “VREFL_ADC” – Pin 18 updated from “VDD_HV_ADC_TSENS” to “VDD_HV_ADC_TSENS_0” – Pin 28 updated from “PG[9]” to “PH[0]” – Pin 29 updated from “VREFH_ADC” to “PH[1]” – Pin 36 updated from “PH[0]” to “VREFH_ADC_1” – Pin 37 updated from “PH[1]” to “VREFL_ADC_1” – Pin 38 updated from “VDD_HV_ADC_TSENS” to “VDD_HV_ADC_TSENS_1” Removed figure “244-ball BGA pinout (top view)” Updated Table 4: Cross-mapping between pads and package pins: – Removed PAD[116] – Added PAD[115] – For PAD[105], pin value for eTQFP144 updated from “28” to “-” Updated Figure 8: Power supply scheme for eTQFP100 74/77 DS10601 Rev 6 SPC574Sx Revision history Table 43. Document revision history (continued) Date Revision Changes Section 3.11.3: Power Schemes: “QFP100” and “QFP144” updated to “eTQFP100” and “eTQFP144” respectively. Table 10: Current consumption: – Updated IDD_LV and IDD_HV values for use case “Full function”. – Added footnote “Values as seen on ... result are available.” – Updated IDD_LV and IDD_HV values for Self test parallel and semi-parallel Table 23: Package ADC supply decoupling capacitance: – Value for Pad “VREFH_ADC_S0” for package “eTQFP100” updated from “29” to “36” – Value for Pad “VREFH_ADC_S0” for package “eTQFP144” updated from “6” to “16” – Value for Pad “VREFH_ADC_S1” for package “eTQFP144” updated from “29” to “36” Table 24: Voltage regulator electrical characteristics: Added footnote “All 1.2V pins...0.5nH inductance” 11-Oct-2017 4 (cont’d) Table 26: Functional terminals state during power-up and reset: For “GPIO”, all “Weak pull-up” values changed to “High impedance”. Updated Table 28: Flash memory program and erase specifications Added Figure 14: ADC analog input circuit Table 42: eTQFP100 mechanical data, – D2 and D3 value updated to “6.57” – E2 and E3 value updated to “4.9” Table 49: eTQFP144 mechanical data: Min value of D2 and E2 updated to 5.0 Figure 27: Ordering information scheme: – Memory “60” updated to “64” – Package “E4” updated to “E3” – In temperature classification , removed “D = 4 to 140 oC – Removed package LFBGA244 – Memory updated from “60 = 1MB” to “64 = 1.5MB and 60 = 1MB” DS10601 Rev 6 75/77 76 Revision history SPC574Sx Table 43. Document revision history (continued) Date Revision Changes Following are the changes in this release of the document: 25-Jul-2018 5 Updated the cover page. Table 1: SPC574Sx device feature summary (superset configuration): Updated the table. Table 2: SPC574S60Ex, SPC574S64Ex device configuration differences: Added this table. Section 1.3: Feature overview: Updated the list. Figure 2.2: Pin descriptions: Updated the figure. Table 6: Absolute maximum ratings: Updated the table. Table 8: Device operating conditions: Updated the table. Table 12: I/O input DC electrical characteristics: Added a note to minimum value of VIH. Table 10: Current consumption: Updated the table. Table 13: I/O pull-up/pull-down DC electrical characteristics: Updated the table. Table 19: Reset electrical characteristics: Removed note from below the table. Section 3.4: Electromagnetic compatibility (EMC): Updated this section. Section 3.22: DSPI CMOS master mode timing: Added this section. Figure 27: Ordering information scheme: Updated the figure. Table 25: Trimmed (PVT) values: Lower limit for POR200 is updated to 1.820 V. Changes from rev 5 to rev 6 are listed below: 14-Feb-2020 76/77 6 Deleted all data related to eTQFP144 package including RPN SPC574S60E5 and SPC574S64E5. Removed MCAN2 throughout the document. Table 8: Device operating conditions: Updated conditions and values for VREFH_ADC symbol Table 12: I/O input DC electrical characteristics: Updated conditions to be compliant with production tests. Table 14: Slow configuration I/O output DC characteristics: updated condition from 4.0 V < VDD_HV_IO < 5.5 V to 4.5 V < VDD_HV_IO < 5.5 V for ROH_S and ROL_S Table 15: Medium configuration I/O output DC characteristics: updated condition from 4.0 V < VDD_HV_IO < 5.5 V to 4.5 V < VDD_HV_IO < 5.5 V for ROH_M and ROL_M Table 16: Fast configuration I/O output DC characteristics: updated condition from 4.0 V < VDD_HV_IO < 5.5 V to 4.5 V < VDD_HV_IO < 5.5 V for ROH_F and ROL_F Table 17: Very Fast configuration I/O output DC characteristics: updated condition from 4.0 V < VDD_HV_IO < 5.5 V to 4.5 V < VDD_HV_IO < 5.5 V for ROH_V and ROL_V Table 19: Reset electrical characteristics: – Updated conditions to 3.0V < VDD_HV_IO < 3.6 V and to 4.5 V < VDD_HV_IO < 5.5 V for VIL – Updated condition to 3.0V 1.0V and value to 0.2 for IOL_R 1st condition and updated value to 12 for IOL_R 2nd condition. Table 23: Package ADC supply decoupling capacitance: Removed the table footnote and added its content under the table since it provides general information. Table 32: External Oscillator electrical specifications: updated the ”C” column for gm DS10601 Rev 6 SPC574Sx IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS10601 Rev 6 77/77 77
SPC574S60E3CE0AR 价格&库存

很抱歉,暂时无法提供与“SPC574S60E3CE0AR”相匹配的价格&库存,您可以联系我们找货

免费人工找货