0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F070C6T6

STM32F070C6T6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    IC MCU 32BIT 32KB FLASH 48LQFP

  • 数据手册
  • 价格&库存
STM32F070C6T6 数据手册
STM32F070CB STM32F070RB STM32F070C6 STM32F070F6 ARM®-based 32-bit MCU, up to 128 KB Flash, USB FS 2.0, 11 timers, ADC, communication interfaces, 2.4 - 3.6 V Datasheet - production data Features • Core: ARM® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz • Memories – 32 to 128 Kbytes of Flash memory – 6 to 16 Kbytes of SRAM with HW parity • CRC calculation unit LQFP64 10x10 mm LQFP48 7x7 mm • Communication interfaces – Up to two I2C interfaces – • Reset and power management – Digital & I/Os supply: VDD = 2.4 V to 3.6 V – Analog supply: VDDA = VDD to 3.6 V – Power-on/Power down reset (POR/PDR) – Low power modes: Sleep, Stop, Standby • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator • Up to 51 fast I/Os – All mappable on external interrupt vectors – Up to 51 I/Os with 5V tolerant capability TSSOP20 Fast Mode Plus (1 Mbit/s) support, with 20 mA current sink – SMBus/PMBus support (on single I/F) – Up to four USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection – Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frames – USB 2.0 full-speed interface with BCD and LPM support • Serial wire debug (SWD) • All packages ECOPACK®2 • 5-channel DMA controller • One 12-bit, 1.0 µs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V • Calendar RTC with alarm and periodic wakeup from Stop/Standby • 11 timers – One 16-bit advanced-control timer for six-channel PWM output – Up to seven 16-bit timers, with up to four IC/OC, OCN, usable for IR control decoding – Independent and system watchdog timers – SysTick timer February 2017 This is information on a product in full production. DocID027114 Rev 3 1/83 www.st.com Contents STM32F070CB/RB/C6/F6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10 3.11 2/83 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19 3.11.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 21 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Contents 3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 40 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 40 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 DocID027114 Rev 3 3/83 4 Contents STM32F070CB/RB/C6/F6 6.3.19 7 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.3 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. STM32F070CB/RB/C6/F6 family device features and peripheral counts . . . . . . . . . . . . . . 10 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F070CB/RB/C6/F6 I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F70x0 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F070CB/RB/C6/F6 SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F070xB/6 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 30 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 31 Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 32 Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 32 Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 32 STM32F070CB/RB/C6/F6 peripheral register boundary addresses. . . . . . . . . . . . . . . . . . 34 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 40 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 42 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 42 Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 43 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 DocID027114 Rev 3 5/83 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 6/83 STM32F070CB/RB/C6/F6 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 TSSOP20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LQFP64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F070CB/RB/C6/F6 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LQFP48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 TSSOP20 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 TSSOP20 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 DocID027114 Rev 3 7/83 7 Introduction 1 STM32F070CB/RB/C6/F6 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F070CB/RB/C6/F6 microcontrollers. This document should be read in conjunction with the STM32F0x0xx reference manual (RM0360). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical Reference Manual, available from the www.arm.com website. 8/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 2 Description Description The STM32F070CB/RB/C6/F6 microcontrollers incorporate the high-performance ARM® Cortex®-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 128 Kbytes of Flash memory and up to 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I2Cs, up to two SPIs and up to four USARTs), one USB Full speed device, one 12-bit ADC, seven general-purpose 16-bit timers and an advancedcontrol PWM timer. The STM32F070CB/RB/C6/F6 microcontrollers operate in the -40 to +85 °C temperature range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F070CB/RB/C6/F6 microcontrollers include devices in three different packages ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F070CB/RB/C6/F6 peripherals proposed. These features make the STM32F070CB/RB/C6/F6 microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. DocID027114 Rev 3 9/83 23 Description STM32F070CB/RB/C6/F6 Table 1. STM32F070CB/RB/C6/F6 family device features and peripheral counts Peripheral STM32F070F6 STM32F070C6 STM32F070RB Flash (Kbytes) 32 128 SRAM (Kbytes) 6 16 Advanced control Timers Comm. interfaces 1 (16-bit) General purpose 4 (16-bit) 5 (16-bit) Basic - 2 (16-bit) SPI 1 2 2C 1 2 2 4 I USART USB 12-bit ADC (number of channels) GPIOs 1 1 (9 ext. + 2 int.) 1 (10 ext. + 2 int.) 1 (10 ext. + 2 int.) 1 (16 ext. + 2 int.) 15 37 37 51 Max. CPU frequency 48 MHz Operating voltage Operating temperature Packages 10/83 STM32F070CB 2.4 to 3.6 V Ambient operating temperature: -40°C to 85°C Junction temperature: -40°C to 105°C TSSOP20 LQFP48 DocID027114 Rev 3 LQFP48 LQFP64 STM32F070CB/RB/C6/F6 Description Figure 1. Block diagram 32:(5 6HULDO:LUH 'HEXJ 2EO )ODVK PHPRU\ LQWHUIDFH 6:&/. 6:',2 DV$) 19,& 65$0 FRQWUROOHU %XVPDWUL[ &257(;0&38 I0$; 0+] 9'' )ODVK*3/ .%.% ELW #9''$ +6, 3//&/. /6, *3'0$ FKDQQHOV 9'' WR9 966 #9'' 65$0 .%.% +6, 92/75(* 9WR9 325 5HVHW ,QW 6833/@ *3,2SRUW% 3&>@ *3,2SRUW& 3' *3,2SRUW' 3)>@ *3,2SRUW) 5(6(7 &/2&. &21752/ $+%GHFRGHU 3$>@ 6\VWHPDQGSHULSKHUDO FORFNV 3RZHU &RQWUROOHU ;7$/N+] 57& 26&B,1 26&B287 7$03(557& $/$50287 57&LQWHUIDFH &5& 3:07,0(5 FKDQQHOV FRPSOFKDQQHOV %5.(75LQSXWDV$) $+% $3% $) '' 7,0(5 FK(75DV$) 7,0(5 FKDQQHODV$) 7,0(5 FKDQQHOV FRPSO%5.DV$) 7,0(5 FKDQQHO FRPSO%5.DV$) 7,0(5 FKDQQHO FRPSO%5.DV$) (;7,7:.83 86% 3+< 86% #9'' :LQGRZ:'* 65$0 % ,5B287DV$) '%*0&8 026,0,62 6&.166 DV$) 026,0,62 6&.166 DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 7,0(5 ,& 6&/6'$60%$ P$)0 DV$) 7,0(5 ,& 6&/6'$DV$) 63, 63, 63$@   9''        966 3%    3$ 3$ 3$ %227  3)26&B,1  3)26&B287 1567 9''$ 3$ 3$ 3$ 3$ 3$ 069 Table 9. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3 V I/O B RST Notes Pin functions Definition Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID027114 Rev 3 25/83 29 Pinouts and pin descriptions STM32F070CB/RB/C6/F6 Table 10. STM32F070xB/6 pin definitions TSSOP20 1 - Pin name (function after reset) Pin type Notes LQFP48 1 Pin functions I/O structure LQFP64 Pin numbers VDD S - - Alternate functions Additional functions Digital power supply - WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT - OSC32_IN (2) - OSC32_OUT FT - I2C1_SDA(3) OSC_IN I/O FT - I2C1_SCL(3) OSC_OUT NRST I/O RST - - PC0 I/O TTa - EVENTOUT ADC_IN10 - - PC1 I/O TTa - EVENTOUT ADC_IN11 10 - - PC2 I/O TTa - SPI2_MISO, EVENTOUT ADC_IN12 11 - - PC3 I/O TTa - SPI2_MOSI, EVENTOUT ADC_IN13 12 8 - VSSA S - - Analog ground 13 9 5 VDDA S - - Analog power supply 14 10 6 PA0 I/O TTa (4) USART2_CTS, USART4_TX RTC_ TAMP2, WKUP1, ADC_IN0, 15 11 7 PA1 I/O TTa (4) USART2_RTS, TIM15_CH1N, USART4_RX, EVENTOUT ADC_IN1 16 12 8 PA2 I/O TTa (4) USART2_TX, TIM15_CH1 ADC_IN2, WKUP4 USART2_RX, TIM15_CH2 ADC_IN3 2 2 - PC13 I/O TC 3 3 - PC14-OSC32_IN (PC14) I/O TC 4 4 - PC15OSC32_OUT (PC15) I/O TC 5 5 2 PF0-OSC_IN (PF0) I/O 6 6 3 PF1-OSC_OUT (PF1) 7 7 4 8 - 9 (1) (2) (1) (2) (1) Device reset input / internal reset output (active low) 17 13 9 PA3 I/O TTa (4) 18 - - VSS S - - Ground 19 - - VDD S - - Digital power supply 20 14 10 PA4 I/O TTa - SPI1_NSS, TIM14_CH1, USART2_CK, USB_NOE(3) ADC_IN4 21 15 11 PA5 I/O TTa - SPI1_SCK ADC_IN5 26/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Pinouts and pin descriptions Table 10. STM32F070xB/6 pin definitions (continued) TSSOP20 12 PA6 Pin type I/O Notes 16 Pin name (function after reset) Pin functions I/O structure 22 LQFP48 LQFP64 Pin numbers Alternate functions Additional functions TTa (4) SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT, USART3_CTS ADC_IN6 ADC_IN7 23 17 13 PA7 I/O TTa - SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT 24 - - PC4 I/O TTa (4) EVENTOUT, USART3_TX ADC_IN14 USART3_RX ADC_IN15, WKUP5 25 - - PC5 I/O TTa (4) 26 18 - PB0 I/O TTa (4) TIM3_CH3, TIM1_CH2N, EVENTOUT, USART3_CK ADC_IN8 27 19 14 PB1 I/O TTa (4) TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N ADC_IN9 28 20 - PB2 I/O FT - - - SPI2_SCK, USART3_TX - USART3_RX, EVENTOUT, I2C2_SDA - 29 21 - PB10 I/O FT (4) 30 22 - PB11 I/O FT (4) 31 23 15 VSS S - - Ground 32 24 16 VDD S - - Digital power supply 33 25 - PB12 I/O FT (4) TIM1_BKIN, TIM15_BKIN, SPI2_NSS, EVENTOUT, USART3_CK - 34 26 - PB13 I/O FTf (4) SPI2_SCK, I2C2_SCL, TIM1_CH1N, USART3_CTS - 35 27 - PB14 I/O FTf (4) SPI2_MISO, I2C2_SDA, TIM1_CH2N, TIM15_CH1, USART3_RTS - 36 28 - PB15 I/O FT (4) SPI2_MOSI, TIM1_CH3N, TIM15_CH1N, TIM15_CH2 WKUP7, RTC_REFIN 37 - - PC6 I/O FT - TIM3_CH1 - 38 - - PC7 I/O FT - TIM3_CH2 - 39 - - PC8 I/O FT - TIM3_CH3 - 40 - - PC9 I/O FT - TIM3_CH4 - DocID027114 Rev 3 27/83 29 Pinouts and pin descriptions STM32F070CB/RB/C6/F6 Table 10. STM32F070xB/6 pin definitions (continued) LQFP48 TSSOP20 I/O structure Notes Pin functions LQFP64 Pin numbers 41 29 - PA8 I/O FT - USART1_CK, TIM1_CH1, EVENTOUT, MCO - 42 30 17 PA9 I/O FT (4) USART1_TX, TIM1_CH2, TIM15_BKIN, I2C1_SCL(3) - 43 31 18 PA10 I/O FT - USART1_RX, TIM1_CH3, TIM17_BKIN, I2C1_SDA(3) - 44 32 17(5) PA11 I/O FT - USART1_CTS, TIM1_CH4, EVENTOUT USB_DM 45 33 18(5) PA12 I/O FT - USART1_RTS, TIM1_ETR, EVENTOUT USB_DP 46 34 19 PA13 I/O FT (6) IR_OUT, SWDIO, USB_NOE - 47 35 - VSS S - - Ground 48 36 - VDD S - - Digital power supply 49 37 20 PA14 I/O FT - USART2_TX, SWCLK - 50 38 - PA15 I/O FT (4) SPI1_NSS, USART2_RX, USART4_RTS, EVENTOUT - 51 - - PC10 I/O FT (4) USART3_TX, USART4_TX - 52 - - PC11 I/O FT (4) USART3_RX, USART4_RX - 53 - - PC12 I/O FT (4) USART3_CK, USART4_CK - 54 - - PD2 I/O FT (4) TIM3_ETR, USART3_RTS - 55 39 - PB3 I/O FT - SPI1_SCK, EVENTOUT - 56 40 - PB4 I/O FT - SPI1_MISO, TIM17_BKIN, TIM3_CH1, EVENTOUT - 57 41 - PB5 I/O FT (4) SPI1_MOSI, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 WKUP6 58 42 - PB6 I/O FTf - I2C1_SCL, USART1_TX, TIM16_CH1N - 28/83 Pin name (function after reset) Pin type Alternate functions Additional functions DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Pinouts and pin descriptions Table 10. STM32F070xB/6 pin definitions (continued) LQFP48 TSSOP20 I/O structure Notes Pin functions LQFP64 Pin numbers 59 43 - PB7 I/O FTf (4) 60 44 1 BOOT0 I B - 61 45 - PB8 I/O FTf - I2C1_SCL, TIM16_CH1 - 62 46 - PB9 I/O FTf (4) SPI2_NSS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - 63 47 - VSS S - - Ground 64 48 - VDD S - - Digital power supply Pin name (function after reset) Pin type Alternate functions Additional functions I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N - Boot memory selection 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual. 3. Available on STM32F070C6/F6 devices only. 4. TIM15, I2C2, WKUP4, WKUP5, WKUP6, WKUP7, SPI2, USART3 and USART4 are available on STM32F070CB/RB devices only. 5. On STM32F070C6/F6 devices, pin pair PA11/12 can be remapped instead of pin pair PA9/10 using SYSCFG_CFGR1 register. 6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. DocID027114 Rev 3 29/83 29 30/83 Table 11. Alternate functions selected through GPIOA_AFR registers for port A Pin name AF0 AF1 AF2 AF3 AF4 AF5 PA0 - USART2_CTS - - USART4_TX(1) - - - - - USART2_RTS - - PA2 (1) TIM15_CH1 USART2_TX - - - - - - PA3 TIM15_CH2(1) USART2_RX - - - - - - - TIM14_CH1 - - - - - - - - EVENTOUT PA4 SPI1_NSS USART2_CK USB_NOE(2) PA5 SPI1_SCK - - (1) TIM15_CH1N DocID027114 Rev 3 PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - USART3_CTS TIM16_CH1 EVENTOUT - PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT - PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - PA9 (1) TIM15_BKIN USART1_TX TIM1_CH2 - - - - I2C1_SCL (2) - - - I2C1_SDA (2) - - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 - PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - - PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - - PA13 SWDIO IR_OUT USB_NOE - - - - - PA14 SWCLK USART2_TX - - - - - - PA15 SPI1_NSS USART2_RX - EVENTOUT USART4_RTS(1) - - - Available on STM32F070C6/F6 devices only. STM32F070CB/RB/C6/F6 1. Available on STM32F070CB/RB devices only. 2. AF7 USART4_RX(1) PA1 (1) AF6 Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - USART3_CK(1) - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - USART3_RTS(1) PB2 - - - - - - PB3 SPI1_SCK EVENTOUT - - - - PB4 SPI1_MISO TIM3_CH1 EVENTOUT - - TIM17_BKIN PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA - - PB6 USART1_TX I2C1_SCL TIM16_CH1N - - (1) DocID027114 Rev 3 USART1_RX I2C1_SDA TIM17_CH1N - PB8 - I2C1_SCL TIM16_CH1 - - - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT - SPI2_NSS(1) PB10 - I2C2_SCL(1) - - USART3_TX(1) SPI2_SCK(1) PB11 EVENTOUT I2C2_SDA(1) - - USART3_RX(1) - PB12 SPI2_NSS(1) EVENTOUT TIM1_BKIN - USART3_CK(1) TIM15_BKIN(1) PB13 SPI2_SCK(1) - TIM1_CH1N - USART3_CTS(1) I2C2_SCL(1) PB14 SPI2_MISO(1) TIM15_CH1 TIM1_CH2N - USART3_RTS(1) I2C2_SDA(1) PB15 SPI2_MOSI(1) TIM15_CH2 TIM1_CH3N TIM15_CH1N(1) - - 1. Available on STM32F070xB devices only. USART4_CTS - PB7 STM32F070CB/RB/C6/F6 Table 12. Alternate functions selected through GPIOB_AFR registers for port B 31/83 STM32F070CB/RB/C6/F6 Table 13. Alternate functions selected through GPIOC_AFR registers for port C Pin name AF0(1) AF1(1) PC0 EVENTOUT(1) - PC1 EVENTOUT(1) - PC2 (1) EVENTOUT SPI2_MISO(1) PC3 EVENTOUT(1) SPI2_MOSI(1) PC4 EVENTOUT(1) USART3_TX(1) PC5 - USART3_RX(1) PC6 TIM3_CH1(1) - PC7 TIM3_CH2(1) - PC8 (1) TIM3_CH3 - PC9 TIM3_CH4(1) - PC10 USART4_TX (1) USART3_TX(1) PC11 USART4_RX(1) USART3_RX(1) PC12 USART4_CK(1) USART3_CK(1) PC13 - - PC14 - - PC15 - - 1. Available on STM32F070xB devices only. Table 14. Alternate functions selected through GPIOD_AFR registers for port D Pin name AF0(1) AF1(1) PD2 TIM3_ETR(1) - 1. Available on STM32F070xB devices only. Table 15. Alternate functions selected through GPIOF_AFR registers for port F Pin name AF0 AF1 PF0 - I2C1_SDA(1) PF1 - I2C1_SCL(1) 1. Available on STM32F070x6 devices only. 32/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 5 Memory mapping Memory mapping Figure 6. STM32F070CB/RB/C6/F6 memory map [)))))))) [)) 2ESERVED !("  [( [(  [ &RUWH[0LQWHUQDO SHULSKHUDOV 2ESERVED 2ESERVED [& [))  !(" 2ESERVED [ 2ESERVED [$ [  2ESERVED [))))))) [))))& [)))) [ !0" 2ESERVED 2SWLRQ%\WHV [ 2ESERVED 6\VWHPPHPRU\  2ESERVED [ [)))&[  !0" [  [ [ 2ESERVED 2ESERVED 3HULSKHUDOV [ 2ESERVED  )ODVKPHPRU\ [ 65$0 [ 2ESERVED  &2'( [ &LASH SYSTEM MEMORYOR32!- DEPENDINGON"//4 CONFIGURATION [ [ 06Y9 1. The start address of the system memory is 0x1FFF C800 on STM32F070xB devices and 0x1FFF C400 on STM32F070x6 devices. DocID027114 Rev 3 33/83 35 Memory mapping STM32F070CB/RB/C6/F6 Table 16. STM32F070CB/RB/C6/F6 peripheral register boundary addresses Bus Boundary address Size Peripheral - 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB Reserved 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 3400 - 0x4002 43FF 4 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG 0x4000 8000 - 0x4000 FFFF 32 KB Reserved AHB2 - AHB1 - APB - 34/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Memory mapping Table 16. STM32F070CB/RB/C6/F6 peripheral register boundary addresses (continued) Bus APB Boundary address Size Peripheral 0x4000 7400 - 0x4000 7FFF 3 KB Reserved 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6C00 - 0x4000 6FFF 1 KB Reserved 0x4000 6400 - 0x4000 67FF 2 KB Reserved 0x4000 6000 - 0x4000 63FF 1 KB USB RAM 0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1) 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 5000 - 0x4000 53FF 3 KB Reserved 0x4000 4C00 - 0x4000 4FFF 1 KB USART4(1) 0x4000 4800 - 0x4000 4BFF 1 KB USART3(1) 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1) 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1800 - 0x4000 1FFF 2 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB Reserved 1. Available on STM32F070CB/RB devices only. DocID027114 Rev 3 35/83 35 Electrical characteristics STM32F070CB/RB/C6/F6 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. Figure 7. Pin loading conditions Figure 8. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 36/83 DocID027114 Rev 3 069 STM32F070CB/RB/C6/F6 6.1.6 Electrical characteristics Power supply scheme Figure 9. Power supply scheme /6(57& :DNHXSORJLF 3RZHUVZLWFK 9'' 9&25( [9'' 5HJXODWRU 287 [Q) *3,2V ,1 [—) /HYHOVKLIWHU 9'',2 ,2 ORJLF .HUQHOORJLF &38'LJLWDO 0HPRULHV [966 9''$ 9''$ Q) —) 95() 95() $'& $QDORJ 5&V3//« 966$ 06Y9 Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DocID027114 Rev 3 37/83 69 Electrical characteristics 6.1.7 STM32F070CB/RB/C6/F6 Current consumption measurement Figure 10. Current consumption measurement scheme ,'' 9'' ,''$ 9''$ 069 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 17: Voltage characteristics, Table 18: Current characteristics and Table 19: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 17. Voltage characteristics(1) Symbol Ratings Min Max Unit VDD–VSS External main supply voltage -0.3 4.0 V VDDA–VSS External analog supply voltage -0.3 4.0 V VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 VIN(2) Input voltage on FT and FTf pins VSS −0.3 Input voltage on TTa pins VSS −0.3 BOOT0 0 VDDIOx + 4.0 V (3) V 4.0 VDDIOx + 4.0 V (3) V VSS − 0.3 4.0 V Variations between different VDD power pins - 50 mV |VSSx − VSS| Variations between all the different ground pins - 50 mV VESD(HBM) Electrostatic discharge voltage (human body model) Input voltage on any other pin |ΔVDDx| see Section 6.3.12: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 18: Current characteristics for the maximum allowed injected current values. 3. VDDIOx is internally connected with VDD pin. 38/83 DocID027114 Rev 3 - STM32F070CB/RB/C6/F6 Electrical characteristics Table 18. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) 120 ΣIVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) Maximum current into each VDD power pin (source) (1) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 Output current sunk by any I/O and control pin IIO(PIN) 25 Output current source by any I/O and control pin ΣIIO(PIN) IINJ(PIN)(3) Total output current sunk by sum of all I/Os and control pins ΣIINJ(PIN) -25 (2) mA 80 Total output current sourced by sum of all I/Os and control pins(2) -80 Injected current on FT and FTf pins -5/+0(4) Injected current on TC and RST pin ±5 Injected current on TTa pins Unit (5) ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 17: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 51: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 19. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Value Unit –65 to +150 °C 150 °C Maximum junction temperature 6.3 Operating conditions 6.3.1 General operating conditions Table 20. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 48 fPCLK Internal APB clock frequency - 0 48 VDD Standard operating voltage - 2.4 3.6 DocID027114 Rev 3 Unit MHz V 39/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 20. General operating conditions (continued) Symbol VDDA VIN Parameter Analog operating voltage I/O input voltage Conditions Min Max Unit Must have a potential equal to or higher than VDD 2.4 3.6 V TC and RST I/O -0.3 VDDIOx+0.3 TTa I/O -0.3 VDDA+0.3(2) FT and FTf I/O -0.3 5.5(2) BOOT0 0 5.5 LQFP64 - 455 PD Power dissipation at TA = 85 °C for suffix 6 (1) LQFP48 - 364 TSSOP20 - 263 TA Ambient temperature for the suffix 6 version Maximum power dissipation -40 85 -40 105 TJ Junction temperature range Suffix 6 version -40 105 Low power dissipation (2) V mW °C °C 1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. 2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.4: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 21 are derived from tests performed under the ambient temperature condition summarized in Table 20. Table 21. Operating conditions at power-up / power-down Symbol Parameter VDD rise time rate tVDD - VDD fall time rate VDDA rise time rate tVDDA 6.3.3 Conditions - VDDA fall time rate Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit µs/V Embedded reset and power control block characteristics The parameters given in Table 22 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. Table 22. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) 40/83 Parameter Power on/power down reset threshold Conditions Min Typ Max Unit Falling edge(2) 1.80 1.88 1.96(3) V 1.84(3) 1.92 2.00 V Rising edge DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Table 22. Embedded reset and power control block characteristics (continued) Symbol VPDRhyst tRSTTEMPO(4) Parameter Conditions Min Typ Max Unit PDR hysteresis - - 40 - mV Reset temporization - 1.50 2.50 4.50 ms 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Data based on characterization results, not tested in production. 4. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 23 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. Table 23. Embedded internal reference voltage Symbol Parameter VREFINT Internal reference voltage Conditions Min Typ Max Unit -40°C < TA < +85°C 1.2 1.23 1.25 V tSTART ADC_IN17 buffer startup time - - - 10(1) µs tS_vrefint ADC sampling time when reading the internal reference voltage - 4 (1) - - µs ΔVREFINT Internal reference voltage spread over the temperature range VDDA = 3 V - - 10(1) mV TCoeff Temperature coefficient - -100(1) - 100(1) ppm/°C 1. Guaranteed by design, not tested in production. 6.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. DocID027114 Rev 3 41/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • • The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 24 to Table 26 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. Table 24. Typical and maximum current consumption from VDD supply at VDD = 3.6 V Symbol All peripherals enabled IDD IDD IDD Parameter Conditions fHCLK Max @ TA(1) Unit Typ 85 °C Supply current in HSI or HSE clock, PLL on Run mode, code executing from Flash HSI or HSE clock, PLL off Supply current in Run mode, code executing from RAM Supply current in Sleep mode, code executing from Flash or RAM HSI or HSE clock, PLL on HSI or HSE clock, PLL off HSI or HSE clock, PLL on HSI or HSE clock, PLL off 48 MHz 24.1 27.6 24 MHz 12.4 14.4 8 MHz 4.52 5.28 48 MHz 23.1 25.0 24 MHz 11.5 13.6 8 MHz 4.34 5.03 48 MHz 15.0 17.3 24 MHz 7.53 8.87 8 MHz 2.95 3.41 mA mA mA 1. Data based on characterization results, not tested in production unless otherwise specified. Table 25. Typical and maximum current consumption from the VDDA supply VDDA = 3.6 V Symbol Parameter Conditions(1) fHCLK Typ Max @ TA Unit 85 °C HSE bypass, PLL on IDDA 42/83 Supply current in Run or Sleep mode, code executing from Flash or RAM 48 MHz 165 196 8 MHz 3.6 5.2 1 MHz 3.6 5.2 HSI clock, PLL on 48 MHz 245 279 HSI clock, PLL off 8 MHz 83.4 95.3 HSE bypass, PLL off DocID027114 Rev 3 µA STM32F070CB/RB/C6/F6 Electrical characteristics 1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency. Table 26. Typical and maximum consumption in Stop and Standby modes Symbol IDD Typ @VDD (VDD = VDDA) Max(1) 3.6 V TA = 85 °C Regulator in run mode, all oscillators OFF 15.9 49 Regulator in low-power mode, all oscillators OFF 3.7 33 1.5 - Regulator in run or lowpower mode, all oscillators OFF 2.8 3.6 LSI ON and IWDG ON 3.5 - LSI OFF and IWDG OFF 2.6 3.6 Regulator in run or lowpower mode, all oscillators OFF 1.5 - LSI ON and IWDG ON 2.2 - LSI OFF and IWDG OFF 1.4 - Parameter Conditions Supply current in Stop mode Supply current in LSI ON and IWDG ON Standby mode Supply current in Stop mode VDDA monitoring ON Supply current in Standby mode IDDA Supply current in Stop mode VDDA monitoring OFF Supply current in Standby mode Unit µA 1. Data based on characterization results, not tested in production unless otherwise specified. Typical current consumption The MCU is placed under the following conditions: • VDD = VDDA = 3.3 V • All I/O pins are in analog input configuration • The Flash access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz • When the peripherals are enabled, fPCLK = fHCLK • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively DocID027114 Rev 3 43/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 27. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD IDDA Parameter Conditions Supply current in Run Running from mode from VDD HSE crystal supply clock 8 MHz, Supply current in Run code executing mode from VDDA from Flash supply fHCLK Peripherals Peripherals enabled disabled 48 MHz 23.5 13.5 8 MHz 4.8 3.1 48 MHz 163.3 163.3 8 MHz 2.5 2.5 Unit mA µA I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 45: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx × f SW × C 44/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Table 28. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS ISW I/O current consumption VDDIOx = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint I/O toggling frequency (fSW) Typ 4 MHz 0.18 8 MHz 0.37 16 MHz 0.76 24 MHz 1.39 48 MHz 2.188 4 MHz 0.49 8 MHz 0.94 16 MHz 2.38 24 MHz 3.99 4 MHz 0.81 8 MHz 1.7 16 MHz 3.67 Unit mA 1. CS = 7 pF (estimated value). 6.3.6 Wakeup time from low-power mode The wakeup times given in Table 29 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0). All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. DocID027114 Rev 3 45/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 29. Low-power mode wakeup timings Symbol Parameter Typ @VDD = VDDA Conditions Max Unit = 3.3 V tWUSTOP Wakeup from Stop mode Regulator in run mode 2.8 5 - 51 - - 4 SYSCLK cycles - tWUSTANDBY Wakeup from Standby mode tWUSLEEP 6.3.7 Wakeup from Sleep mode µs External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 11: High-speed external clock source AC timing diagram. Table 30. High-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit - 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - 20 1. Guaranteed by design, not tested in production. Figure 11. High-speed external clock source AC timing diagram WZ +6(+ 9+6(+  9+6(/  WU +6( WI +6( WZ +6(/ W 7+6( 069 46/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 12. Table 31. Low-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit - 32.768 1000 kHz fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time - - 50 1. Guaranteed by design, not tested in production. Figure 12. Low-speed external clock source AC timing diagram WZ /6(+ 9/6(+  9/6(/  WU /6( WI /6( W WZ /6(/ 7/6( 069 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 32. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 32. HSE oscillator characteristics Symbol fOSC_IN RF Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - kΩ Parameter DocID027114 Rev 3 47/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 32. HSE oscillator characteristics Symbol Conditions(1) Min(2) Typ Max(2) - - 8.5 VDD = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz - 0.5 - VDD = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Parameter (3) During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time Unit mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 13. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7  I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results 48/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics obtained with typical external components specified in Table 33. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 33. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol LSE current consumption IDD Oscillator transconductance gm tSU(LSE) (3) Conditions(1) Min(2) Typ Max(2) low drive capability - 0.5 0.9 medium-low drive capability - - 1 medium-high drive capability - - 1.3 high drive capability - - 1.6 low drive capability 5 - - medium-low drive capability 8 - - medium-high drive capability 15 - - high drive capability 25 - - VDDIOx is stabilized - 2 - Parameter Startup time Unit µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. Note: tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 14. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I/6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID027114 Rev 3 49/83 69 Electrical characteristics 6.3.8 STM32F070CB/RB/C6/F6 Internal clock source characteristics The parameters given in Table 34 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 34. HSI oscillator characteristics(1) Symbol fHSI TRIM Parameter Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - 45(2) - 55(2) % - ±5 - % - ±1(3) - % DuCyHSI Duty cycle ACCHSI Accuracy of the HSI oscillator (factory calibrated) tSU(HSI) HSI oscillator startup time - 1(2) - 2(2) µs IDDA(HSI) HSI oscillator power consumption - - 80 - µA TA = -40 to 85°C TA = 25°C 1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. With user calibration. High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 35. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Min Typ - - 14 Frequency HSI14 user-trimming step DuCy(HSI14) Duty cycle Max Unit - MHz (2) - - - 1 % - 45(2) - 55(2) % ACCHSI14 Accuracy of the HSI14 oscillator (factory calibrated) TA = –40 to 85 °C - ±5 - % tsu(HSI14) HSI14 oscillator startup time - 1(2) - 2(2) µs HSI14 oscillator power consumption - - 100 - µA IDDA(HSI14) 1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. Low-speed internal (LSI) RC oscillator Table 36. LSI oscillator characteristics(1) Symbol fLSI 50/83 Parameter Frequency DocID027114 Rev 3 Min Typ Max Unit 30 40 50 kHz STM32F070CB/RB/C6/F6 Electrical characteristics Table 36. LSI oscillator characteristics(1) Symbol Parameter (2) tsu(LSI) IDDA(LSI)(2) Min Typ Max Unit LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 - µA 1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 37 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. Table 37. PLL characteristics Value Symbol fPLL_IN fPLL_OUT tLOCK Parameter Unit Min Typ Max PLL input clock(1) 1(2) 8.0 24(2) MHz PLL input clock duty cycle 40(2) - 60(2) % PLL multiplier output clock 16(2) - 48 MHz - 200(2) µs - 300(2) ps PLL lock time JitterPLL - Cycle-to-cycle jitter - 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 6.3.10 Memory characteristics Flash memory The characteristics are given at TA = -40 to 85 °C unless otherwise specified. Table 38. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = -40 to +85 °C - 53.5 - µs Page erase time (2) TA = -40 to +85 °C - 30 - ms tME Mass erase time TA = -40 to +85 °C - 30 - ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA 2.4 - 3.6 V Symbol tprog tERASE Vprog Parameter Programming voltage Conditions - 1. Guaranteed by design, not tested in production. 2. Page size is 1KB for STM32F070x6 devices and 2KB for STM32F070xB devices. DocID027114 Rev 3 51/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 39. Flash memory endurance and data retention Symbol NEND tRET Min(1) Unit TA = -40 to +85 °C 1 kcycle (2) 20 Years Parameter Endurance Data retention Conditions 1 kcycle at TA = 85 °C 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 40. They are based on the EMS levels and classes defined in application note AN1709. Table 40. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3V, LQFP48, TA = +25 °C, Voltage limits to be applied on any I/O pin fHCLK = 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3V, LQFP48, TA = +25°C, fHCLK = 48 MHz, conforming to IEC 61000-4-4 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations 52/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 41. EMI characteristics Symbol Parameter SEMI 6.3.12 Conditions Monitored frequency band 0.1 to 30 MHz VDD = 3.6 V, TA = 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level Max vs. [fHSE/fHCLK] Unit 8/48 MHz -3 23 dBµV 17 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. DocID027114 Rev 3 53/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 42. ESD absolute maximum ratings Symbol Ratings Conditions Packages Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage TA = +25 °C, conforming (human body model) to JESD22-A114 All 2 2000 V VESD(CDM) Electrostatic discharge voltage TA = +25 °C, conforming (charge device model) to ANSI/ESD STM5.3.1 All C4 500 V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 43. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 44. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. 54/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Table 44. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.14 Injected current on BOOT0 and PF1 pins -0 NA Injected current on PA9, PB3, PB13, PF11 pins with induced leakage current on adjacent pins less than 50 µA -5 NA Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA -5 NA Injected current on all other FT and FTf pins -5 NA Injected current on PB0 and PB1 pins -5 NA Injected current on PC0 pin -0 +5 Injected current on all other TTa, TC and RST pins -5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the conditions summarized in Table 20: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). Table 45. I/O static characteristics Symbol VIL VIH Vhys Parameter Low level input voltage High level input voltage Schmitt trigger hysteresis Conditions Min Typ Max TC and TTa I/O - - 0.3 VDDIOx+0.07(1) FT and FTf I/O - - 0.475 VDDIOx–0.2(1) BOOT0 - - 0.3 VDDIOx–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDDIOx TC and TTa I/O 0.445 VDDIOx+0.398(1) - - - - - - FT and FTf I/O 0.5 VDDIOx +0.2(1) (1) BOOT0 0.2 VDDIOx+0.95 All I/Os except BOOT0 pin 0.7 VDDIOx - TC and TTa I/O - 200(1) - - (1) - (1) - FT and FTf I/O BOOT0 - DocID027114 Rev 3 100 300 Unit V V mV 55/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 45. I/O static characteristics (continued) Symbol Ilkg RPU Parameter Input leakage current(2) Weak pull-up equivalent resistor (4) RPD Weak pull-down equivalent resistor(4) CIO I/O pin capacitance Conditions Min Typ Max TC, FT and FTf I/O TTa in digital mode VSS ≤ VIN ≤ VDDIOx - - ± 0.1 TTa in digital mode VDDIOx ≤ VIN ≤ VDDA - - 1 TTa in analog mode VSS ≤ VIN ≤ VDDA - - ± 0.2 FT and FTf I/O (3) VDDIOx ≤ VIN ≤ 5 V - - 10 VIN = VSS 25 40 55 kΩ VIN = VDDIOx 25 40 55 kΩ - 5 - pF - Unit µA 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 44: I/O current injection susceptibility. 3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 15 for standard I/Os, and in Figure 16 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. 56/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Figure 15. TC and TTa I/O input characteristics   7(67('5$1*( 77/VWDQGDUGUHTXLUHPHQW HQW  LUHP UHTX DUG WDQG 9,1 9 6V &02   ,2[ 9 ''   PLQ  9 ,+  81'(),1(',13875$1*( ',2[ 9' 9,+PLQ    9'',2[ HQW 9,/PD[  GUHTXLUHP 26VWDQGDU 0 &    9'',2[ 9,/PD[  77/VWDQGDUGUHTXLUHPHQW 7(67('5$1*(             9'',2[ 9 06Y9 Figure 16. Five volt tolerant (FT and FTf) I/O input characteristics   7(67('5$1*( 77/VWDQGDUGUHTXLUHPHQW HQW  DUG WDQG 9,1 9 6V &02 LUHP UHTX   ,2[ 9 ''   PLQ  81'(),1(',13875$1*( 9 ,+ 9,+PLQ  9,/PD[   ,2[ 9'' 9   '',2[ 77/VWDQGDUGUHTXLUHPHQW HQW GUHTXLUHP 6VWDQGDU  &02 9'',2[ 9,/PD[  7(67('5$1*(             9'',2[ 9 06Y9 DocID027114 Rev 3 57/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 17: Voltage characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 17: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 46. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH(2) Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH(2) Output high level voltage for an I/O pin VOLFm+(2) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max |IIO| = 8 mA VDDIOx ≥ 2.7 V - 0.4 VDDIOx–0.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - |IIO| = 20 mA VDDIOx ≥ 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V |IIO| = 20 mA VDDIOx ≥ 2.7 V |IIO| = 6 mA Unit V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 17: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO. 2. Data based on characterization results. Not tested in production. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 17 and Table 47, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. 58/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Table 47. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 10 - 25 - 25 CL = 30 pF, VDDIOx ≥ 2.7 V - 50 CL = 50 pF, VDDIOx ≥ 2.7 V - 30 CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V - 20 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V - 12 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2.4 V ≤VDDIOx < 2.7 V - 12 - 2 - 12 - 34 10 - fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2.4 V fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time fmax(IO)out Maximum 11 tf(IO)out tr(IO)out Fm+ configuration (4) - CL = 50 pF, VDDIOx ≥ 2.4 V frequency(3) Output fall time Output rise time fmax(IO)out Maximum frequency(3) CL = 50 pF, VDDIOx ≥ 2.4 V tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller - ns MHz ns MHz ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 17. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360 for a detailed description of Fm+ I/O configuration. DocID027114 Rev 3 59/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Figure 17. I/O AC characteristics definition       W I ,2 RXW W U ,2 RXW 7  7DQGLIWKHGXW\F\FOHLV  0D[LPXPIUHTXHQF\LVDFKLHYHGLI WW ” U I  ZKHQORDGHGE\& VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ 069 6.3.15 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions. Table 48. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV V RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ VF(NRST) NRST input filtered pulse - - - 100(1) ns 2.7 < VDD < 3.6 300(3) - - 2.4 < VDD < 3.6 500(3) - - VNF(NRST) NRST input not filtered pulse 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 3. Data based on design simulation only. Not tested in production. 60/83 DocID027114 Rev 3 ns STM32F070CB/RB/C6/F6 Electrical characteristics Figure 18. Recommended NRST pin protection ([WHUQDO UHVHWFLUFXLW  9'' 538 1567  ,QWHUQDOUHVHW )LOWHU —)  069 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 48: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 6.3.16 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 49 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 20: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 49. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON - 2.4 - 3.6 V VDD = VDDA = 3.3 V - 0.9 - mA IDDA (ADC) Current consumption of the ADC(1) fADC ADC clock frequency - 0.6 - 14 MHz fS(2) Sampling rate - 0.05 - 1 MHz fADC = 14 MHz - - 823 kHz - - - 17 1/fADC fTRIG(2) External trigger frequency VAIN Conversion voltage range - 0 - VDDA V RAIN(2) External input impedance See Equation 1 and Table 50 for details - - 50 kΩ RADC(2) Sampling switch resistance - - - 1 kΩ CADC(2) Internal sample and hold capacitor - - - 8 pF DocID027114 Rev 3 61/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 49. ADC characteristics (continued) Symbol Parameter tCAL(2)(3) Conditions Calibration time tlatr(2) JitterADC tS(2) ADC_DR register write latency 5.9 µs - 83 1/fADC 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle tCONV(2) fADC = fPCLK/2 = 14 MHz 0.196 µs fADC = fPCLK/2 5.5 1/fPCLK fADC = fPCLK/4 = 12 MHz 0.219 µs fADC = fPCLK/4 10.5 1/fPCLK fADC = fHSI14 = 14 MHz 0.188 - 0.259 µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 µs - 1.5 - 239.5 1/fADC Sampling time Total conversion time (including sampling time) Unit - ADC jitter on trigger conversion Stabilization time Max 1.5 ADC cycles + 2 fPCLK cycles Trigger conversion latency tSTAB(2) Typ fADC = 14 MHz ADC clock = HSI14 WLATENCY(2)(4) Min fADC = 14 MHz, 12-bit resolution 12-bit resolution 14 1 - 1/fADC 18 14 to 252 (tS for sampling +12.5 for successive approximation) µs 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. 3. Specified value includes only ADC timing. It does not include the latency of the register access. 4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time. Equation 1: RAIN max formula TS - – R ADC R AIN < --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). 62/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Table 50. RAIN max for fADC = 14 MHz Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 51. ADC accuracy(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.7 V to 3.6 V TA = −40 to 85 °C Typ Max(4) ±3.3 ±4 ±1.9 ±2.8 ±2.8 ±3 ±0.7 ±1.3 ±1.2 ±1.7 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. DocID027114 Rev 3 63/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Figure 19. ADC accuracy characteristics 966$ (*    ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH  7KHLGHDOWUDQVIHUFXUYH  (QGSRLQWFRUUHODWLRQOLQH  (7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW LGHDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH  (7      (2 (/   ('  /6%,'($/              9''$ 069 Figure 20. Typical connection diagram using the ADC 9 ''$ 6DPSOHDQGKROG$'& FRQ YHU WHU 97 5 $,1  9$,1 5 $'& $,1[ & SDU DVLWLF 97 ,/ “ —$ ELW FRQ YHU WHU &$'& 069 1. Refer to Table 49: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 9: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 64/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 6.3.17 Electrical characteristics Temperature sensor characteristics Table 52. TS characteristics Symbol Parameter TL(1) Avg_Slope Min Typ Max Unit - ±1 ±2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V VSENSE linearity with temperature (1) V30 Average slope Voltage at 30 °C (± 5 °C) (2) tSTART(1) ADC_IN16 buffer startup time - - 10 µs tS_temp(1) ADC sampling time when reading the temperature 4 - - µs 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 2: Temperature sensor calibration values. 6.3.18 Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 53. TIMx characteristics Symbol tres(TIM) fEXT Parameter Timer resolution Timer external clock frequency on CH1 to CH4 16-bit timer maximum period tMAX_COUNT 32-bit timer maximum period Conditions Min Typ Max Unit - - 1 - tTIMxCLK fTIMxCLK = 48 MHz - 20.8 - ns - - fTIMxCLK/2 - MHz fTIMxCLK = 48 MHz - 24 - MHz - - 216 - tTIMxCLK fTIMxCLK = 48 MHz - 1365 - µs - - 232 - tTIMxCLK fTIMxCLK = 48 MHz - 89.48 - s DocID027114 Rev 3 65/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Table 54. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 55. WWDG min/max timeout value at 48 MHz (PCLK) 6.3.19 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: 66/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Table 56. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI characteristics Unless otherwise specified, the parameters given in Table 57 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 20: General operating conditions. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics. Table 57. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 6 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) ta(SO)(2) tdis(SO) (3) th(SO) th(MO) DuCy(SCK) Data input setup time Data input hold time Data output hold time SPI slave input clock duty cycle Unit MHz ns ns % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z DocID027114 Rev 3 67/83 69 Electrical characteristics STM32F070CB/RB/C6/F6 Figure 21. SPI timing diagram - slave mode and CPHA = 0 166LQSXW 6&.,QSXW W68 166 &3+$  &32/  WK 166 WF 6&. WZ 6&.+ WZ 6&./ &3+$  &32/  W9 62 WD 62 0,62 287387 WU 6&. WI 6&. WK 62 06%287 %,7287 06%,1 %,7,1 WGLV 62 /6%287 WVX 6, 026, ,1387 /6%,1 WK 6, DLF Figure 22. SPI timing diagram - slave mode and CPHA = 1 166LQSXW 6&.LQSXW W68 166 &3+$  &32/  &3+$  &32/  WZ 6&.+ WZ 6&./ WK 62 WY 62 WD 62 0,62 287387 06%287 %,7287 WU 6&. WI 6&. WGLV 62 /6%287 WK 6, WVX 6, 026, ,1387 WK 166 WF 6&. 06%,1 %,7,1 /6%,1 DLE 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 68/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Electrical characteristics Figure 23. SPI timing diagram - master mode +LJK 166LQSXW 6&.2XWSXW &3+$  &32/  6&.2XWSXW WF 6&. &3+$  &32/  &3+$  &32/  &3+$  &32/  WVX 0, 0,62 ,13 87 WZ 6&.+ WZ 6&./ WU 6&. WI 6&. %,7,1 06%,1 /6%,1 WK 0, 026, 287387 % , 7287 06%287 WY 02 /6%287 WK 02 DLF 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. USB characteristics The STM32F070CB/RB/C6/F6 USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation). Table 58. USB electrical characteristics Symbol Conditions Min. Typ Max. Unit USB transceiver operating voltage - 3.0(1) - 3.6 V tSTARTUP(2) USB transceiver startup time - - - 1.0 µs RPUI Embedded USB_DP pull-up value during idle - 1.1 1.26 1.5 RPUR Embedded USB_DP pull-up value during reception - ZDRV(2) Output driver impedance(3) VDD Parameter kΩ Driving high and low 2.0 2.26 2.6 28 40 44 Ω 1. The STM32F070CB/RB/C6/F6 USB functionality is ensured down to 2.7 V, but the USB electrical characteristics are degraded in the 2.7-to-3.0 V voltage range. 2. Guaranteed by design, not tested in production. 3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver. DocID027114 Rev 3 69/83 69 Package information 7 STM32F070CB/RB/C6/F6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 LQFP64 package information LQFP64 is 64-pin, 10 x 10 mm low-profile quad flat package. Figure 24. LQFP64 outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( ( E    H :B0(B9 1. Drawing is not to scale. Table 59. LQFP64 mechanical data inches(1) millimeters Symbol 70/83 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Package information Table 59. LQFP64 mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 25. LQFP64 recommended footprint                 AIC 1. Dimensions are expressed in millimeters. DocID027114 Rev 3 71/83 80 Package information STM32F070CB/RB/C6/F6 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 26. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3 3URGXFWLGHQWLILFDWLRQ  45.' 3#5 'DWHFRGH : 88 3LQLGHQWLILFDWLRQ 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 72/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 LQFP48 package information LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package Figure 27. LQFP48 outline 3%!4).' 0,!.% # C ! ! ! MM '!5'%0,!.% CCC # $ + ! $ , , $      % % B % 7.2 Package information  0). )$%.4)&)#!4)/.   E "?-%?6 1. Drawing is not to scale. Table 60. LQFP48 mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 DocID027114 Rev 3 73/83 80 Package information STM32F070CB/RB/C6/F6 Table 60. LQFP48 mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 28. LQFP48 recommended footprint                    AID 1. Dimensions are expressed in millimeters. 74/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 29. LQFP48 marking example (package top view) 'HYLFHLGHQWLILFDWLRQ  45. '$#5 'DWHFRGH : 88 3LQLGHQWLILFDWLRQ 3 5HYLVLRQFRGH 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DocID027114 Rev 3 75/83 80 Package information 7.3 STM32F070CB/RB/C6/F6 TSSOP20 package information TSSOP20 is a 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch package. Figure 30.TSSOP20 outline  ϮϬ ϭϭ Đ ϭ ϭ  ^d/E' W>E  Ϭ͘Ϯϱŵŵ 'h'W>E ϭϬ W/Eϭ /Ed/&/d/KE Ŭ ĂĂĂ  ϭ  Ϯ ď > >ϭ Ğ zͺDͺsϯ 1. Drawing is not to scale. Table 61. TSSOP20 mechanical data inches(1) millimeters Symbol 76/83 Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 D 6.400 6.500 6.600 0.2520 0.2559 0.2598 E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1 4.300 4.400 4.500 0.1693 0.1732 0.1772 e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - DocID027114 Rev 3 STM32F070CB/RB/C6/F6 Package information Table 61. TSSOP20 mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. k 0° - 8° 0° - 8° aaa - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. Figure 31. TSSOP20 footprint              9!?&0?6 1. Dimensions are expressed in millimeters. DocID027114 Rev 3 77/83 80 Package information STM32F070CB/RB/C6/F6 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 32. TSSOP20 marking example (package top view) 'HYLFHLGHQWLILFDWLRQ ''1 'DWHFRGH 3LQLGHQWLILFDWLRQ 5HYLVLRQFRGH : 88 3 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 78/83 DocID027114 Rev 3 STM32F070CB/RB/C6/F6 7.4 Package information Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 20: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ ((VDD - VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 62. Package thermal characteristics Symbol ΘJ 7.4.1 Parameter Value Thermal resistance junction-ambient LQFP64 - 10 mm x 10 mm 44 Thermal resistance junction-ambient LQFP48 - 7 mm x 7 mm 55 Thermal resistance junction-ambient TSSOP20 - 6.5 mm x 6.4 mm 76 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org DocID027114 Rev 3 79/83 80 Ordering information 8 STM32F070CB/RB/C6/F6 Ordering information For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. + Table 63. Ordering information scheme Example: STM32 Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Sub-family 070 = STM32F070xx Pin count F = 20 pins C = 48 pins R = 64 pins Code size 6 = 32 Kbyte of Flash memory B = 128 Kbyte of Flash memory Package P = TSSOP T = LQFP Temperature range 6 = –40 to 85 °C Options xxx = programmed parts TR = tape and reel 80/83 DocID027114 Rev 3 F 070 C 6 T 6 x STM32F070CB/RB/C6/F6 9 Revision history Revision history Table 64. Document revision history Date Revision 27-Nov-2014 1 Initial release. 2 Updated the number of SPI in Features and Section: Description. Updated Section: Serial peripheral interface (SPI). Updated the fourth footnote of Table: STM32F070xB/i pin definitions, and added the reference to PB9 pin. Moved the AF3 data to AF4 for PA9 and PA10 pins in Table: Alternate functions selected through GPIOA_AFR registers for port A. Added the reference to footnote 1 to AF0 data for PB12, PB13, PB14 and PB15, and to AF5 data for PB9 and PB10 in Table: Alternate functions selected through GPIOB_AFR registers for port B. Added the reference to footnote 1 to SPI2 in Table: STM32F070xB/6 peripheral register boundary addressesF070. 3 Updated: – Removal of Table 1 from cover page (all part numbers put in the header) – Table 1: STM32F070CB/RB/C6/F6 family device features and peripheral counts; number of int. ADC channels corrected – Figure 1: Block diagram – Figure 2: Clock tree – Table 7: STM32F70x0 USART implementation – Figure 6: STM32F070CB/RB/C6/F6 memory map and added the note related to the start address of the system memory – Figure 9: Power supply scheme – Section 3.5.1: Power supply schemes – Section 3.11: Timers and watchdogs - number of complementary outputs in the table – Table 10: STM32F070xB/6 pin definitions - TSSOP20 pinout correction, pins 10, 15 and 16 – Table 23: Embedded internal reference voltage: added tSTART, changed VREFINT and tS_vrefint values and notes – Table 33: LSE oscillator characteristics (fLSE = 32.768 kHz) LSEDRV[1:0] values removed (see ref. manual) – Table 49: ADC characteristics - tSTAB defined relative to clock frequency; notes 3. and 4. added – Table 52: TS characteristics: removed the min. value for tSTART 15-Jan-2015 07-Feb-2016 Changes DocID027114 Rev 3 81/83 82 Revision history STM32F070CB/RB/C6/F6 Table 64. Document revision history (continued) Date 07-Feb-2016 82/83 Revision 3 Changes – Figure 15 and Figure 16 improved – Section 7: Package information name and structure change – Section 8: Ordering information renamed from Part numbering; removed undue code sizes DocID027114 Rev 3 STM32F070CB/RB/C6/F6 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved DocID027114 Rev 3 83/83 83
STM32F070C6T6 价格&库存

很抱歉,暂时无法提供与“STM32F070C6T6”相匹配的价格&库存,您可以联系我们找货

免费人工找货