0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F412VGH6

STM32F412VGH6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFBGA100

  • 描述:

    ICMCU32BIT1MBFLASH100UFBGA

  • 数据手册
  • 价格&库存
STM32F412VGH6 数据手册
STM32F412xE STM32F412xG Arm®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, 1MB Flash, 256KB RAM, USB OTG FS, 17 TIMs, 1 ADC, 17 comm. interfaces Datasheet - production data Features )%*$ • Dynamic Efficiency Line with BAM (Batch Acquisition Mode) ® ® • Core: Arm 32-bit Cortex -M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 100 MHz, memory protection unit, 125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – Up to 1 Mbyte of Flash memory – 256 Kbyte of SRAM – Flexible external static memory controller with up to 16-bit data bus: SRAM, PSRAM, NOR Flash memory – Dual mode Quad-SPI interface • LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 1.7 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Power consumption – Run: 112 µA/MHz (peripheral off) – Stop (Flash in Stop mode, fast wakeup time): 50 µA Typ @ 25 °C; 75 µA max @25 °C – Stop (Flash in Deep power down mode, slow wakeup time): down to 18 µA @ 25 °C; 40 µA max @25 °C – Standby: 2.4 µA @25 °C / 1.7 V without RTC; 12 µA @85 °C @1.7 V – VBAT supply for RTC: 1 µA @25 °C • 1×12-bit, 2.4 MSPS ADC: up to 16 channels LQFP64 (10x10mm) WLCSP64 UFQFPN48 (3.623x3.651mm) LQFP100 (14x14mm) (7x7 mm) LQFP144 (20x20mm) UFBGA100 (7x7mm) UFBGA144 (10x10mm) • Up to 17 timers: up to twelve 16-bit timers, two 32-bit timers up to 100 MHz each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input, two watchdog timers (independent and window), one SysTick timer • Debug mode – Serial wire debug (SWD) & JTAG – Cortex®-M4 Embedded Trace Macrocell™ • Up to 114 I/O ports with interrupt capability – Up to 109 fast I/Os up to 100 MHz – Up to 114 five V-tolerant I/Os • Up to 17 communication interfaces – Up to 4x I2C interfaces (SMBus/PMBus) – Up to 4 USARTs (2 x 12.5 Mbit/s, 2 x 6.25 Mbit/s), ISO 7816 interface, LIN, IrDA, modem control) – Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or I2S audio protocol), out of which 2 muxed full-duplex I2S interfaces – SDIO interface (SD/MMC/eMMC) – Advanced connectivity: USB 2.0 full-speed device/host/OTG controller with PHY – 2x CAN (2.0B Active) • True random number generator • CRC calculation unit • 96-bit unique ID • RTC: subsecond accuracy, hardware calendar ® • All packages are ECOPACK 2 Table 1. Device summary Reference Part number • 2x digital filters for sigma delta modulator, 4x PDM interfaces, stereo microphone support STM32F412xE STM32F412CE, STM32F412RE, STM32F412VE, STM32F412ZE • General-purpose DMA: 16-stream DMA STM32F412xG STM32F412CG, STM32F412RG, STM32F412VG, STM32F412ZG December 2017 This is information on a product in full production. DocID028087 Rev 7 1/201 www.st.com Contents STM32F412xE/G Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Arm® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . . 19 3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19 3.3 Batch Acquisition mode (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 One-time programmable bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20 3.8 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.11 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23 3.14 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.18 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.19 2/201 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.18.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.18.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.19.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.19.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.19.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31 3.20 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31 3.21 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID028087 Rev 7 STM32F412xE/G Contents 3.22 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.23 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 3.23.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.23.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.23.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.23.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.24 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.25 Universal synchronous/asynchronous receiver transmitters (USART) . . 37 3.26 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.27 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 38 3.30 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40 3.31 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40 3.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.35 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 WLSCP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 LQFP144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.6 UFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.7 UFBGA144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 DocID028087 Rev 7 3/201 5 Contents STM32F412xE/G 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1 4/201 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.2 VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 85 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 86 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 86 6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 115 6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 121 6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.24 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 DocID028087 Rev 7 STM32F412xE/G 7 Contents 6.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 164 6.3.27 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.1 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.6 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.7 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.8.1 8 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Appendix A Recommendations when using the internal reset OFF . . . . . . . . 192 Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 B.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 193 B.2 Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 B.3 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 DocID028087 Rev 7 5/201 5 List of tables STM32F412xE/G List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. 6/201 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F412xE/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32F412xE/G pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 STM32F412xE/G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 STM32F412xE/G register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 84 VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 85 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 86 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V . . . 90 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 91 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 92 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 93 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 94 Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 95 Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 96 Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 97 Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 97 Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 97 Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . . 98 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 98 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Low-power mode wakeup timings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 DocID028087 Rev 7 STM32F412xE/G Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. List of tables LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 130 FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 153 Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 155 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 157 DocID028087 Rev 7 7/201 8 List of tables Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. 8/201 STM32F412xE/G Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 157 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 162 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 166 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 WLCSP64 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 169 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 185 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 188 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 DocID028087 Rev 7 STM32F412xE/G List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F412xE/G block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 25 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30 Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F412xE/G WLCSP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 STM32F412xE/G UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STM32F412xE/G LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32F412xE/G LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STM32F412xE/G LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F412xE/G UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32F412xE/G UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical VBAT current consumption (LSE and RTC ON/LSE oscillator “low power” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical VBAT current consumption (LSE and RTC ON/LSE oscillator “high drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 DocID028087 Rev 7 9/201 11 List of figures Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. 10/201 STM32F412xE/G USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 140 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 146 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 147 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 151 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 153 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 154 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 156 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 162 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 WLCSP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 173 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 177 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 180 LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 193 USB peripheral-only Full speed mode with direct connection for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 194 USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 194 USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 195 Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 DocID028087 Rev 7 STM32F412xE/G Figure 87. List of figures Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 DocID028087 Rev 7 11/201 11 Introduction 1 STM32F412xE/G Introduction This datasheet provides the description of the STM32F412xE/G microcontrollers. For information on the Cortex®-M4 core, refer to the Cortex®-M4 programming manual (PM0214) available from www.st.com. 12/201 DocID028087 Rev 7 STM32F412xE/G 2 Description Description STM32F412XE/G devices are based on the high-performance Arm® Cortex® -M4 32-bit RISC core operating at a frequency of up to 100 MHz. Their Cortex®-M4 core features a Floating point unit (FPU) single precision which supports all Arm single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. STM32F412XE/G devices belong to the STM32 Dynamic Efficiency™ product line (with products combining power efficiency, performance and integration) while adding a new innovative feature called Batch Acquisition Mode (BAM) allowing even more power consumption saving during data batching. STM32F412XE/G devices incorporate high-speed embedded memories (up to 1 Mbyte of Flash memory, 256 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. All devices offer one 12-bit ADC, a low-power RTC, twelve general-purpose 16-bit timers, two PWM timers for motor control and two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces: • Up to four I2Cs, including one I2C supporting Fast-Mode Plus • Five SPIs • Five I2Ss of which two are full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL, or via an external clock to allow synchronization. • Four USARTs • An SDIO/MMC interface • A USB 2.0 OTG full-speed interface • Two CANs. In addition, STM32F412xE/G devices embed advanced peripherals: • A flexible static memory controller interface (FSMC) • A Quad-SPI memory interface • A digital filter for sigma modulator (DFSDM), two filters, up to four inputs, and support of microphone MEMs. STM32F412xE/G devices are offered in 7 packages ranging from 48 to 144 pins. The set of available peripherals depends on the selected package. The STM32F412xE/G operates in the -40 to +125 °C temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. DocID028087 Rev 7 13/201 42 Description STM32F412xE/G These features make the STM32F412xE/G microcontrollers suitable for a wide range of applications: 14/201 • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances • Mobile phone sensor hub • Wearable devices • Connected objects • Wifi modules DocID028087 Rev 7 STM32F412xE/G Description Table 2. STM32F412xE/G features and peripheral counts Peripherals STM32F412xE STM32F412xG 512 1024 Flash memory (Kbyte) SRAM (Kbyte) System 256 FSMC memory controller(1) - Quad-SPI memory interface 1 - - 1 - Generalpurpose 10 Advancedcontrol 2 Basic 2 Random number generator 1 Timers SPI/ I2S 3 2CFMP USART Comm. interfaces SDIO/MMC 1 4 (2) 4(2) 4 1 Yes 1 No CAN LCD parallel interface Data bus size GPIOs 12-bit ADC Number of channels 2 2 2 2 3 4 3 4 - 8 36 50 16 81 114 - 8 36 50 16 81 114 1 10 16 10 16 100 MHz Operating voltage Package 1 Yes 1 No 2 Maximum CPU frequency Operating temperatures 4 1 USB/OTG FS Dual power rail Number of digital Filters for Sigma-delta modulator Number of channels 1 5/5 (2 full duplex) I2C I 1 1.7 to 3.6 V Ambient temperatures: -40 to +85 °C / -40 to +105 °C/ -40 to +125 °C Junction temperature: -40 to +130 °C UFQ LQFP64 FPN48 WLCSP64 UFBGA 100 LQFP100 UFBGA LQFP64 UFQ 144 WLCSP FPN48 LQFP144 64 UFBGA UFBGA 100 144 LQFP100 LQFP144 1. The FSMC can also be used to interface most graphic LCD controllers. 2. Limited application for the USART3 since RX is not available for the UFQFPN48. DocID028087 Rev 7 15/201 42 Description 2.1 STM32F412xE/G Compatibility with STM32F4 series The STM32F412xE/G are fully software and feature compatible with the STM32F4 series (STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407) The STM32F412xE/G can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board. Figure 1. Compatible board design for LQFP100 package           3% QRW DYDLODEOHDQ\PRUH 5HSODFHG E\ 9 &$3B         3( 3( 3( 3( 3( 3( 3% 9&$3B 966 9'' 3' 3' 3' 3' 3% 3% 3% 3%                   3( 3( 3( 3( 3( 3( 3% 3% 9&$3B 9'' 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)[[ 670)[[ 670)[[ 670)[[ 3' 3' 3' 3' 3% 3% 3% 3% 966 9'' 966 9'' 06Y9 16/201 DocID028087 Rev 7 STM32F412xE/G Description Figure 2. Compatible board design for LQFP64 package 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 9'' 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966                3%QRWDYDLODEOHDQ\PRUH  5HSODFHGE\9&$3B       9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3% 3% 9&$3B 966 9'' 3% 3% 3% 9&$3B 9''                       3& 3& 3& 3$ 3$ 3& 3& 3& 3$ 3$ 670)670)OLQH 9&$3BLQFUHDVHGWR—I (65ŸRUEHORZ 966 9 6 6 9 '' 9'' 06Y9 Figure 3. Compatible board design for LQFP144 package 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 3' 3' 3& 3& 3& 3$ 3$               3' 3' 3& 3& 3& 3$ 3$ 670)[[ 670)[[                 9'' 966 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9'' 966 3* 6HSDUDWH86%SRZHUUDLO &RQQHFWHGWR9''LIDGLIIHUHQW SRZHUVXSSO\IRUWKH86%LVQRW UHTXLUHG                 9'' 966 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9''B86% 966 3* 06Y9 DocID028087 Rev 7 17/201 42 Description STM32F412xE/G Figure 4. STM32F412xE/G block diagram (70 )60& 125)ODVK 65$0365$0 $+% 038)38 ,%86 $50&RUWH[0 &RUWH[0 0+] &/.1(>@$>@ '>@12(11:(1 1%/>@1:$,7 &/.&6$&6%'>@ 4XDG63, 19,& .%65$0 '%86 6%86 $&&(/ &$&+( -7$* 6: $+%EXVPDWUL[60 -7567-7', -7&.6:&/. -7'26:'-7'2 75$&(&/. 75$&('>@ 8SWR0%)ODVK PHPRU\ 51* ),)2 *3,23257$ 3%>@ *3,23257% $+%0+] 6WUHDPV '0$ 3$>@ ),)2 6WUHDPV '0$ 9'' ),)2 #9''$ 325 UHVHW *3,23257& ,QW 3//3// 3'>@ *3,23257' 3(>@ *3,23257( 86% 27*)6 3RZHUPDQDJPW 9ROWDJH UHJXODWRU WR9 9''$966$ 1567 39' #9'' ;7$/26& 0+] 3+>@ *3,23257+ 5HVHW FORFN 0 $1 $*7 FRQWURO 26&B,1 26&B287 :'*. 3:5 LQWHUIDFH 9%$7 WR9 #9 3&/. +&/. $3%&/. $3%&/. $+%3&/. $+%3&/. *3,23257* 9'' WR9 966 9&$3B9&$3B 6XSSO\ VXSHUYLVLRQ 3253'5 %25 #9''$ 3*>@ ' ' 6&/6'$,17,'9%86 #9'' 5& +6 5& / 6 3&>@ #9''86% #9'' 3+< $+%0+] %$7 /6 /6 ;7$/N+] 57& $:8 %DFNXSUHJLVWHU 26&B,1 26&B287 $/$50B287 67$03 &5& $+% $3% ),)2 '>@ &0'&.DV$) 6',200& E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) '0$ '0$ (;7,7:.83 $) 7,0 $+% $3% 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,03:0 E 7,0 E FKDQQHOVDV$) 3:03:0 (75%.,1DV$) 7,03:0 E 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) E 7,0 FKDQQHODV$) $3%0+] PD[ 3:03:0 (75%.,1DV$) 7,0 E ::'* FKDQQHODV$) 7,0 5;7;6&. &76576DV$) VPFDUG LU'$ 86$57 DQDORJLQSXWV E 7,0(5 E LU'$ 63,,6 63,,6 FKDQQHOVDV$) 5;7;6&. &76576DV$) 5;7;6&. &76576DV$) 026,0,626&. 166:60&.DV$) 026,0,626&. 166:60&.DV$) 6&/6'$60%$DV$) 63,,6 ,&60%86 63,,6 ,&60%86 6&/6'$60%$DV$) ,&60%86 6&/6'$60%$DV$) ,&)0360%86 6&/6'$60%$DV$) 63,,6 &.,1>@'$7,1>@ &.287 9''5()B$'& 7,0(5 LU'$ VPFDUG ')6'0 8 6 $5 7  0 % S V 7HPSHUDWXUHVHQVRU $'& ),)2 026,0,62 6&.166:6DV$) 026,0,62 6&.166:6DV$) 86$57 LU'$ 86$57 86$57  026,0,62 6&.166:6DV$) $3%0+] 5;7;6&. &76576DV$) VPFDUG E VPFDUG ,) &$1 7;5; &$1 7;5; #9''$ 06Y9 1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 50 MHz. 18/201 DocID028087 Rev 7 STM32F412xE/G Functional overview 3 Functional overview 3.1 Arm® Cortex®-M4 with FPU core with embedded Flash and SRAM The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F412xE/G devices are compatible with all Arm tools and software. Figure 4 shows the general block diagram of the STM32F412xE/G. Note: Cortex®-M4 with FPU is binary compatible with Cortex®-M3. 3.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 125 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 100 MHz. 3.3 Batch Acquisition mode (BAM) The Batch acquisition mode allows enhanced power efficiency during data batching. It enables data acquisition through any communication peripherals directly to memory using the DMA in reduced power consumption as well as data processing while the rest of the system is in low-power mode (including the flash and ART). For example in an audio system, a smart combination of PDM audio sample acquisition and processing from the DFSDM directly to RAM (flash and ART™ stopped) with the DMA using BAM followed by some very short processing from flash allows to drastically reduce the power consumption of the application. A dedicated application note (AN4515) describes how to implement the STM32F412xE/G BAM to allow the best power efficiency. DocID028087 Rev 7 19/201 42 Functional overview 3.4 STM32F412xE/G Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.5 Embedded Flash memory The devices embed up to 1 Mbyte of Flash memory available for storing programs and data. The Flash user area can be protected against reading by an entrusted code (Read Protection, RDP) with different protection levels. The flash user sectors can also be individually protected against write operation. Furthermore the proprietary readout protection (PCROP) can also individually protect the flash user sectors against D-bus read accesses. (Additional information can be found in the product reference manual). To optimize the power consumption the Flash memory can also be switched off in Run or in Sleep mode (see Section 3.21: Low-power modes). Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between power saving and startup time. Before disabling the Flash, the code must be executed from the internal RAM. 3.6 One-time programmable bytes A one-time programmable area is available with16 OTP blocks of 32 bytes. Each block can be individually locked (Additional information can be found in the product reference manual) 3.7 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 20/201 DocID028087 Rev 7 STM32F412xE/G 3.8 Functional overview Embedded SRAM All devices embed 256 Kbyte of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states 3.9 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. Figure 5. Multi-AHB matrix 6 6 6 '0$B3 '0$B0(0 '0$B0(0 '0$B3, 6EXV 6 *3 '0$ *3 '0$ 6 0 ,&2'( 0 '&2'( %XVPDWUL[6 $&&(/ 6 'EXV ,EXV $50 &RUWH[0 )ODVK 8SWR0% 0 65$0 .% 0 $+% SHULSK $3% 0 $+% SHULSK $3% 0 )60&H[WHUQDO 0HP&WUO 4XDG63, 06Y9 3.10 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. DocID028087 Rev 7 21/201 42 Functional overview STM32F412xE/G The DMA can be used with the main peripherals: 3.11 • SPI and I2S • I2C and I2CFMP • USART • General-purpose, basic and advanced-control timers TIMx • SD/SDIO/MMC/eMMC host interface • Quad-SPI • ADC • Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter. Flexible static memory controller (FSMC) The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR Flash memory. The main functions are: • 8-,16-bit data bus width • Write FIFO • Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 3.12 Quad-SPI memory interface (QUAD-SPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode through registers, external Flash status register polling mode and memory mapped mode. Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or 32-bit mode. Code execution is also supported. The opcode and the frame format are fully programmable. Communication can be performed either in single data rate or dual data rate. 22/201 DocID028087 Rev 7 STM32F412xE/G 3.13 Functional overview Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.14 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines. 3.15 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB domain is 50 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. DocID028087 Rev 7 23/201 42 Functional overview 3.16 STM32F412xE/G Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash memory • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using one of the interface listed in the Table 3 or the USB OTG FS in device mode through DFU (device firmware upgrade). Table 3. Embedded bootloader interfaces Package USART1 USART2 USART3 I2C1 PA9/ PD6/ PB11/ PB6/ PA10 PD5 PB10 PB7 SPI3 I2C2 PF0/ PF1 I2C3 PA8/ PB4 I2C FMP1 PB14/ PB15 SPI1 PA4/ PA5/ PA6/ PA7 PA15/ PC10/ PC11/ PC12 SPI4 PE11/ CAN2 USB PE12/ PB5/ PA11 PE13/ PB13 /P12 PE14 UFQFPN48 Y - - Y - Y Y Y - - Y Y WLCSP64 Y - - Y - Y Y Y Y - Y Y LQFP64 Y - - Y - Y Y Y Y - Y Y LQFP100 Y Y - Y - Y Y Y Y Y Y Y LQFP144 Y Y Y Y Y Y Y Y Y Y Y Y UFBGA100 Y Y Y Y - Y Y Y Y Y Y Y UFBGA144 Y Y Y Y Y Y Y Y Y Y Y Y For more detailed information on the bootloader, refer to Application Note: AN2606, STM32™ microcontroller system memory boot mode. 3.17 Note: 24/201 Power supply schemes • VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor (POR/PDR) disabled, provided externally through VDD pins. Requires the use of an external power supply supervisor connected to the VDD and NRST pins. • VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with decoupling technique. The VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.18.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF and internal power supply supervisor availability to identify the packages supporting this option. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6 V) for USB transceivers. For example, when device is powered at 1.8 V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, DocID028087 Rev 7 STM32F412xE/G Functional overview it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: – During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – VDDUSB rising and falling time rate specifications must be respected. – In operating mode phase, VDDUSB could be lower or higher than VDD: – If USB is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. – If USB is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. Figure 6. VDDUSB connected to an external independent power supply 9''86%B0$; 86% IXQFWLRQDODUHD 9''86% 9''86%B0,1 86%QRQ IXQFWLRQDO DUHD 9'' 9''$ 86% QRQ IXQFWLRQDO DUHD 9''B0,1 3RZHURQ 2SHUDWLQJPRGH 3RZHUGRZQ WLPH 069 DocID028087 Rev 7 25/201 42 Functional overview STM32F412xE/G 3.18 Power supply supervisor 3.18.1 Internal reset ON This feature is available for VDD operating voltage range 1.8 V to 3.6 V. On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.18.2 Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low. An external power supply supervisor should monitor VDD and should set the device in reset mode when VDD is below 1.7 V. NRST should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF. 26/201 DocID028087 Rev 7 STM32F412xE/G Functional overview Figure 7. Power supply supervisor interconnection with internal reset OFF(1) 9'' ([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYHZKHQ 9''9 1567 3'5B21 9'' 06Y9 1. The PRD_ON pin is available only on WLCSP64, UFBGA100, UFBGA144 and LQFP144 packages. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no longer supported: 3.19 • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled. • The brownout reset (BOR) circuitry must be disabled. • The embedded programmable voltage detector (PVD) is disabled. • VBAT functionality is no more available and VBAT pin should be connected to VDD. Voltage regulator The regulator has three operating modes: 3.19.1 – Main regulator mode (MR) – Low power regulator (LPR) – Power-down Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. The WLCSP64 is available in two versions, one with the regulator internally enabled and one with the regulator internally disabled. On all other packages, the regulator is always enabled. DocID028087 Rev 7 27/201 42 Functional overview STM32F412xE/G There are three power modes configured by software when the regulator is ON: • MR is used in the nominal regulation mode (With different voltage scaling in Run mode) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. • LPR is used in the Stop mode The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Depending on the package, one or two external ceramic capacitors should be connected on the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the 100 pins and 144 pins packages. All packages have the regulator ON feature. 3.19.2 Regulator OFF The regulator is disabled by holding BYPASS_REG pin high. This feature is available only on UFBGA100 and UFBGA144 packages, which feature the BYPASS_REG pin. The WLCSP64 is available in two versions, one with a fixed enabled regulator and one with a fixed disabled regulator (see Table 4: Regulator ON/OFF and internal power supply supervisor availability and Section 8: Part numbering). The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: 28/201 • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. DocID028087 Rev 7 STM32F412xE/G Functional overview Figure 8. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDO RSWLRQDO  ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %@ $GGUHVV TV",?.% )60&B1%/>@ WK %/B1:( 1%/ WY 'DWDB1( WK 'DWDB1:( 'DWD )60&B'>@ WY 1$'9B1( )60&B1$'9  WZ 1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter Min Max FSMC_NE low time 3 THCLK - 1 3 THCLK +0.5 FSMC_NEx low to FSMC_NWE low THCLK + 0.5 THCLK + 0.5 FSMC_NWE low time THCLK – 1.5 THCLK+ 1 THCLK - 1 - - 0.5 THCLK - 0.5 - - 1 THCLK - 1 - FSMC_NWE high to FSMC_NE high hold time FSMC_NEx low to FSMC_A valid th(A_NWE) Address hold time after FSMC_NWE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK + 2 th(Data_NWE) Data hold time after FSMC_NWE high THCLK + 0.5 - tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 1 FSMC_NADV low time - THCLK+ 0.5 tw(NADV) DocID028087 Rev 7 Unit ns 153/201 166 Electrical characteristics STM32F412xE/G 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings(1)(2) Symbol Parameter Min Max 8THCLK - 1 8THCLK + 0.5 6THCLK + 0.5 6THCLK + 1 FSMC_NE low time tw(NE) tw(NWE) FSMC_NWE low time tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6THCLK + 0.5 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid - 4THCLK + 1 Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms WZ 1( )60&B1( WK 1(B12( WY 12(B1( )60&B12( WZ 12( )60&B1:( WK $B12( TV!?.% )60&B$>@ $GGUHVV WK %/B12( TV",?.% )60&B1%/>@ 1%/ WK 'DWDB1( WVX 'DWDB1( WVX 'DWDB12( WY $B1( )60&B$'>@ WY 1$'9B1( WK 'DWDB12( 'DWD $GGUHVV TH!$?.!$6 WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 154/201 DocID028087 Rev 7 STM32F412xE/G Electrical characteristics Table 88. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol tw(NE) tv(NOE_NE) ttw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter Min Max 3THCLK – 1 3THCLK + 0.5 2THCLK 2THCLK + 1 THCLK – 1.5 THCLK FSMC_NOE high to FSMC_NE high hold time 0 - FSMC_NEx low to FSMC_A valid - 0.5 FSMC_NEx low to FSMC_NADV low 0 1 THCLK – 0.5 THCLK + 0.5 FSMC_NE low time FSMC_NEx low to FSMC_NOE low FSMC_NOE low time FSMC_NADV low time th(AD_NADV) FSMC_AD(address) valid hold time after FSMC_NADV high) 0 - th(A_NOE) Address hold time after FSMC_NOE high THCLK – 0.5 - th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 tsu(Data_NE) Data to FSMC_NEx high setup time THCLK - 2 - tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK - 2 - th(Data_NE) Data hold time after FSMC_NEx high 0 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 89. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2) Symbol Min Max 8THCLK - 1 8THCLK + 0.5 5THCLK 5THCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 5THCLK - 1 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4THCLK + 1 - tw(NE) tw(NOE) Parameter FSMC_NE low time FSMC_NWE low time Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. DocID028087 Rev 7 155/201 166 Electrical characteristics STM32F412xE/G Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WK 1(B1:( WZ 1:( WY 1:(B1( )60&B1:( WK $B1:( TV!?.% )60&B$>@ $GGUHVV WK %/B1:( TV",?.% )60&B1%/>@ 1%/ WY $B1( )60&B$'>@ WY 'DWDB1$'9 $GGUHVV W Y 1$'9B1( WK 'DWDB1:( 'DWD TH!$?.!$6 WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 156/201 DocID028087 Rev 7 06Y9 STM32F412xE/G Electrical characteristics Table 90. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Min Max 4THCLK - 1 4THCLK+0.5 THCLK THCLK + 1 2THCLK - 1 2THCLK + 0.5 THCLK - 1.5 - FSMC_NEx low to FSMC_A valid - 2 FSMC_NEx low to FSMC_NADV low 0 1 THCLK – 0.5 THCLK+ 0.5 THCLK - THCLK- 1.5 - THCLK - FSMC_NEx low to FSMC_BL valid - 1.5 tv(Data_NADV) FSMC_NADV high to Data valid - THCLK + 2 th(Data_NWE) Data hold time after FSMC_NWE high THCLK + 0.5 - tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) Parameter FSMC_NE low time FSMC_NEx low to FSMC_NWE low FSMC_NWE low time FSMC_NWE high to FSMC_NE high hold time FSMC_NADV low time FSMC_AD(adress) valid hold time after FSMC_NADV high) th(A_NWE) Address hold time after FSMC_NWE high th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(BL_NE) Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Table 91. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2) Symbol Min Max FSMC_NE low time 9THCLK - 1 9THCLK + 0.5 FSMC_NWE low time 7THCLK - 1 7THCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6THCLK -1 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4THCLK + 1 - tw(NE) tw(NWE) Parameter Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. Synchronous waveforms and timings Figure 54 through Figure 57 represent synchronous waveforms and Table 92 through Table 95 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: • BurstAccessMode = FSMC_BurstAccessMode_Enable; • MemoryType = FSMC_MemoryType_CRAM; • WriteBurst = FSMC_WriteBurst_Enable; • CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390) • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM DocID028087 Rev 7 157/201 166 Electrical characteristics STM32F412xE/G In all timing tables, the THCLK is the HCLK clock period (with maximum FSMC_CLK = 90 MHz). Figure 54. Synchronous multiplexed NOR/PSRAM read timings WZ &/. %867851  WZ &/. )60&B&/. 'DWDODWHQF\  WG &/./1([/ )60&B1([ WG &/./1$'9/ WG &/.+1([+ WG &/./1$'9+ )60&B1$'9 WG &/.+$,9 WG &/./$9 )60&B$>@ WG &/./12(/ WG &/.+12(+ )60&B12( WG &/./$',9 WG &/./$'9 )60&B$'>@ WK &/.+$'9 WVX $'9&/.+ WVX $'9&/.+ $'>@ ' WVX 1:$,79&/.+ WK &/.+$'9 ' WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 06Y9 158/201 DocID028087 Rev 7 STM32F412xE/G Electrical characteristics Table 92. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) Parameter FSMC_CLK period Min Max 2THCLK - 0.5 - - 1 THCLK + 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) td(CLKH_NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK - - 1.5 THCLK - td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 2.5 td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 1 - th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 2 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 - Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. DocID028087 Rev 7 159/201 166 Electrical characteristics STM32F412xE/G Figure 55. Synchronous multiplexed PSRAM write timings WZ &/. %867851  WZ &/. )60&B&/. 'DWDODWHQF\  WG &/./1([/ WG &/.+1([+ )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/.+$,9 WG &/./$9 )60&B$>@ WG &/.+1:(+ WG &/./1:(/ )60&B1:( WG &/./$',9 WG &/./$'9 )60&B$'>@ WG &/./'DWD WG &/./'DWD $'>@ ' ' )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 WG &/.+1%/+ )60&B1%/ 06Y9 160/201 DocID028087 Rev 7 STM32F412xE/G Electrical characteristics Table 93. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max tw(CLK) FSMC_CLK period, VDD range= 2.7 to 3.6 V 2THCLK - 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x= 0...2) - 1 td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 - td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - - 2 THCLK - - 1.5 THCLK + 0.5 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low t(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 2.5 td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 4 td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 3 td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 - Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. DocID028087 Rev 7 161/201 166 Electrical characteristics STM32F412xE/G Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings WZ &/. WZ &/. )60&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\  )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$9 WG &/.+$,9 )60&B$>@ WG &/.+12(+ WG &/./12(/ )60&B12( WVX '9&/.+ WK &/.+'9 WVX '9&/.+ ' )60&B'>@ WVX 1:$,79&/.+ )60&B1:$,7 :$,7&)* E :$,732/E ' WK &/.+1:$,79 WVX 1:$,79&/.+ )60&B1:$,7 :$,7&)* E :$,732/E WVX 1:$,79&/.+ WK &/.+'9 WK &/.+1:$,79 WK &/.+1:$,79 06Y9 Table 94. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol Min Max 2THCLK – 0.5 - - 1 THCLK +0.5 - td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - - 2 THCLK - - 1.5 THCLK - tw(CLK) t(CLKL-NExL) td(CLKH-NExH) 162/201 Parameter FSMC_CLK period FSMC_CLK low to FSMC_NEx low (x=0..2) FSMC_CLK high to FSMC_NEx high (x= 0…2) td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 1 - th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 2 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 - DocID028087 Rev 7 Unit ns STM32F412xE/G Electrical characteristics 1. CL = 30 pF. 2. Based on characterization, not tested in production. Figure 57. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )60&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\  )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$9 WG &/.+$,9 )60&B$>@ WG &/./1:(/ WG &/.+1:(+ )60&B1:( WG &/./'DWD )60&B'>@ )60&B1:$,7 :$,7&)* E :$,732/E WG &/./'DWD ' WVX 1:$,79&/.+ ' WG &/.+1%/+ WK &/.+1:$,79 )60&B1%/ 06Y9 DocID028087 Rev 7 163/201 166 Electrical characteristics STM32F412xE/G Table 95. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol Min Max 2THCLK – 0.5 - - 1 THCLK + 0.5 - td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - - 2 THCLK - - 1.5 THCLK + 0.5 - tw(CLK) td(CLKL-NExL) Parameter FSMC_CLK period FSMC_CLK low to FSMC_NEx low (x=0..2) td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 4 td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 3 THCLK - 2 - 2 - td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high tsu(NWAITCLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high Unit ns 1. CL = 30 pF. 2. Based on characterization, not tested in production. 6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 96 for the SDIO are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics. 164/201 DocID028087 Rev 7 STM32F412xE/G Electrical characteristics Figure 58. SDIO high-speed mode Figure 59. SD default mode Table 96. Dynamic characteristics: SD / MMC characteristics(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp =50MHz 4 - - tIH Input hold time HS fpp =50MHz 2.5 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp =50MHz - 13 13.5 tOH Output hold time HS fpp =50MHz 11 - - DocID028087 Rev 7 ns 165/201 166 Electrical characteristics STM32F412xE/G Table 96. Dynamic characteristics: SD / MMC characteristics(1)(2) (continued) Symbol Parameter Conditions Min Typ Max Unit CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp =25MHz 2.5 - - tIHD Input hold time SD fpp =25MHz 2.5 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =25 MHz - 1.5 2 tOHD Output hold default time SD fpp =25 MHz 0.5 - - ns 1. Guaranteed by characterization results, not tested in production. 2. VDD = 2.7 to 3.6 V. Table 97. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in eMMC mode tISU Input setup time HS fpp =50MHz 3.5 - - tIH Input hold time HS fpp =50MHz 4 - - ns CMD, D outputs (referenced to CK) in eMMC mode tOV Output valid time HS fpp =50MHz - 13.5 15 tOH Output hold time HS fpp =50MHz 12 - - ns 1. Guaranteed by characterization results, not tested in production. 2. CLOAD = 20 pF. 6.3.27 RTC characteristics Table 98. RTC characteristics 166/201 Symbol Parameter - fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register DocID028087 Rev 7 Min Max 4 - STM32F412xE/G 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 WLCSP64 package information Figure 60. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale package outline H EEE = ) *  $  'HWDLO$ H H + * H $ $ $ ) %XPSVLGH 6LGHYLHZ ' %XPS $ HHH = ( $ 2ULHQWDWLRQ UHIHUHQFH E FFF = ; < GGG = = 6HDWLQJSODQH DDD [ :DIHUEDFNVLGH 'HWDLO$ URWDWHGƒ $)B0(B9 1. Drawing is not to scale. DocID028087 Rev 7 167/201 196 Package information STM32F412xE/G Table 99. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.170 - - 0.0067 - A2 - 0.380 - - 0.0150 - - 0.025 - - 0.0010 - b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 3.588 3.623 3.658 0.1413 0.1426 0.1440 E 3.616 3.651 3.686 0.1424 0.1437 0.1451 e - 0.400 - - 0.0157 - e1 - 2.800 - - 0.1102 - e2 - 2.800 - - 0.1102 - F - 0.4115 - - 0.0162 - G - 0.4255 - - 0.0168 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 A3 (2) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating. 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Figure 61. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale recommended footprint 'SDG 'VP $)B)3B9 168/201 DocID028087 Rev 7 STM32F412xE/G Package information Table 100. WLCSP64 recommended PCB design rules (0.4 mm pitch) Dimension Recommended values Pitch 0.4 mm Dpad 0.225 mm Dsm 0.290 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm Device marking for WLCSP64 The following figure gives an example of topside marking and pin 1 position identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 62. WLCSP64 marking example (package top view) WŝŶϭŝĚĞŶƚŝĨŝĞƌ WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ )5*
STM32F412VGH6 价格&库存

很抱歉,暂时无法提供与“STM32F412VGH6”相匹配的价格&库存,您可以联系我们找货

免费人工找货