0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F750Z8T6

STM32F750Z8T6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP144_20X20MM

  • 描述:

    基于Arm®的Cortex®M7 32b MCU+FPU,462DMIPS,64KB闪存/ 320+16+4KB RAM、USB OTG HS/FS、25 com IF、cam、LCD

  • 数据手册
  • 价格&库存
STM32F750Z8T6 数据手册
STM32F750x8 Arm®-based Cortex®-M7 32b MCU+FPU, 462DMIPS, 64KB Flash/ 320+16+ 4KB RAM, USB OTG HS/FS, 25 com IF, cam, LCD Datasheet - production data Features • Core: Arm® 32-bit Cortex®-M7 CPU with FPU, adaptive real-time accelerator (ART Accelerator™) and L1-cache: 4-Kbyte data cache and 4-Kbyte instruction cache, allowing 0-wait state execution from embedded Flash memory and external memories, frequency up to 216 MHz, MPU, 462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions. • Memories – 64 Kbytes of Flash memory – 1024 bytes of OTP memory – SRAM: 320 Kbytes (including 64 Kbytes of data TCM RAM for critical real-time data) + 16 Kbytes of instruction TCM RAM (for critical real-time routines) + 4 Kbytes of backup SRAM (available in the lowest power modes) – Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories • Dual mode Quad-SPI • LCD parallel interface, 8080/6800 modes • LCD-TFT controller up to XGA resolution with dedicated Chrom-ART Accelerator™ for enhanced graphic content creation (DMA2D) • Clock, reset and supply management – 1.7 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – Dedicated USB power – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC (1% accuracy) – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Low-power – Sleep, Stop and Standby modes June 2018 This is information on a product in full production. FBGA LQFP100 (14x14 mm) TFBGA216 (13x13 mm) LQFP144 (20x20 mm) – VBAT supply for RTC, 32×32-bit backup registers + 4 Kbytes of backup SRAM • 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode • 2×12-bit D/A converters • Up to 18 timers: up to thirteen 16-bit (1x lowpower 16-bit timer available in Stop mode) and two 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input. All 15 timers running up to 216 MHz. 2x watchdogs, SysTick timer • General-purpose DMA: 16-stream DMA controller with FIFOs and burst support • Debug mode – SWD & JTAG interfaces – Cortex®-M7 Trace Macrocell™ • Up to 168 I/O ports with interrupt capability – Up to 164 fast I/Os up to 108 MHz – Up to 166 5 V-tolerant I/Os • Up to 25 communication interfaces – Up to 4× I2C interfaces (SMBus/PMBus) – Up to 4 USARTs/4 UARTs (27 Mbit/s, ISO7816 interface, LIN, IrDA, modem control) – Up to 6 SPIs (up to 50 Mbit/s), 3 with muxed simplex I2S for audio class accuracy via internal audio PLL or external clock – 2 x SAIs (serial audio interface) – 2 × CANs (2.0B active) and SDMMC interface DS12535 Rev 1 1/199 www.st.com STM32F750x8 – SPDIFRX interface – HDMI-CEC • Advanced connectivity – USB 2.0 full-speed device/host/OTG controller with on-chip PHY – USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI – 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII • Cryptographic acceleration: hardware acceleration for AES 128, 192, 256, triple DES, HASH (MD5, SHA-1, SHA-2), and HMAC • True random number generator • CRC calculation unit • RTC: subsecond accuracy, hardware calendar • 96-bit unique ID • 8- to 14-bit parallel camera interface up to 54 Mbyte/s Table 1. Device summary Reference STM32F750x8 2/199 Part number STM32F750V8, STM32F750Z8, STM32F750N8 DS12535 Rev 1 STM32F750x8 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 3 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 19 3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.10 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23 3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.18 3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31 3.19 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 31 3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DS12535 Rev 1 3/199 6 Contents STM32F750x8 3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 38 3.25 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 39 3.26 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.27 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.29 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.30 SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 41 3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 41 3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 42 3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 42 3.35 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.36 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.37 Cryptographic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.38 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.39 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.40 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.41 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.42 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.43 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.44 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4/199 DS12535 Rev 1 STM32F750x8 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 90 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 90 6.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 90 6.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 120 6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 126 6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3.20 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.26 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 DS12535 Rev 1 5/199 6 Contents 7 8 STM32F750x8 6.3.27 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3.28 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.3.29 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 180 6.3.30 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 181 6.3.31 SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 183 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.1 LQFP100, 14 x 14 mm low-profile quad flat package information . . . . . 185 7.2 LQFP144, 20 x 20 mm low-profile quad flat package information . . . . . 189 7.3 TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 197 A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6/199 DS12535 Rev 1 STM32F750x8 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32F750x8 features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 28 Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 31 Voltage regulator modes in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 STM32F750x8 pin and ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 STM32F750x8 alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 89 VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 90 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 90 reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical and maximum current consumption in Run mode, code with data processing running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON . . . . . . 95 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory on ITCM interface (ART disabled), regulator ON . . . . . . . . . 96 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . . 98 Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . . 98 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 100 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 101 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DS12535 Rev 1 7/199 9 List of tables Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. 8/199 STM32F750x8 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 137 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 137 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 156 Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 156 Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 157 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 160 Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 160 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 161 Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 162 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 163 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 164 DS12535 Rev 1 STM32F750x8 Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 165 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 174 SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 184 Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 184 LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . . 186 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 TFBGA216 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 193 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 197 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 DS12535 Rev 1 9/199 9 List of figures STM32F750x8 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 10/199 Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F750x8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F750x8 AXI-AHB bus matrix architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 26 PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 30 Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 30 STM32F750V8 LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F750Z8 LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32F750N8 TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in medium low drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in medium high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical VBAT current consumption (RTC ON/BKP SRAM OFF and LSE in high medium drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 HSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 139 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 139 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 DS12535 Rev 1 STM32F750x8 Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 153 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 159 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 161 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 164 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 173 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 174 SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 185 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 189 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 LQFP144, 20 x 20mm, 144-pin low-profile quad flat package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 TFBGA216, 13 x 13 x 0.8 mm thin fine-pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 DS12535 Rev 1 11/199 11 Introduction 1 STM32F750x8 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F750x8 microcontrollers. This document should be ready in conjunction with the STM32F75xxx and STM32F74xxx advanced Arm®-based 32-bit MCUs reference manual (RM0385). The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M7 core, refer to the Cortex®-M7 technical reference manual available from the http://www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 12/199 DS12535 Rev 1 STM32F750x8 2 Description The STM32F750x8 devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex®-M7 core features a single floating point unit (SFPU) precision which supports all Arm® single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security. The STM32F750x8 devices incorporate high-speed embedded memories with a Flash memory of 64 Kbytes, 320 Kbytes of SRAM (including 64 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multiAHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access. All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen generalpurpose 16-bit timers including two PWM timers for motor control and one low-power timer available in Stop mode, two general-purpose 32-bit timers, a true random number generator (RNG), and a cryptographic acceleration cell. They also feature standard and advanced communication interfaces. • • • • • • • • • • • • Up to four I2Cs Six SPIs, three I2Ss in duplex mode. To achieve the audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. Four USARTs plus four UARTs An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI), Two CANs Two SAI serial audio interfaces An SDMMC host interface Ethernet and camera interfaces LCD-TFT display controller Chrom-ART Accelerator™ SPDIFRX interface HDMI-CEC Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors and a cryptographic acceleration cell. The STM32F750x8 devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) is available on all the packages except LQFP100 for a greater power supply choice. The supply voltage can drop to 1.7 V with the use of an external power supply supervisor. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F750x8 devices offer devices in 3 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen. DS12535 Rev 1 13/199 46 Description STM32F750x8 These features make the STM32F750x8 microcontrollers suitable for a wide range of applications. • Motor drive and application control, • Medical equipment, • Industrial applications: PLC, inverters, circuit breakers, • Printers, and scanners, • Alarm systems, video intercom, and HVAC, • Home audio appliances, • Mobile applications, Internet of Things, • Wearable devices: smartwatches. Table 2. STM32F750x8 features and peripheral counts Peripherals STM32F750V8 Flash memory in Kbytes System 320(240+16+64) Instruction 16 Backup 4 Yes(1) FMC memory controller Ethernet Yes General-purpose 10 Advancedcontrol 2 Basic 2 Low-power 1 Random number generator SPI / Yes I2S 4/3 (simplex)(2) I2C Communication interfaces 6/3 (simplex)(2) 4 USART/UART 4/4 USB OTG FS Yes USB OTG HS Yes CAN 2 SAI 2 SPDIFRX 4 inputs SDMMC Yes Camera interface Yes LCD-TFT Yes Chrom-ART Accelerator™ (DMA2D) Yes Cryptography Yes GPIOs 14/199 STM32F750N8 64 SRAM in Kbytes Timers STM32F750Z8 82 DS12535 Rev 1 114 168 STM32F750x8 Table 2. STM32F750x8 features and peripheral counts (continued) Peripherals STM32F750V8 12-bit ADC 16 12-bit DAC Number of channels 24 Yes 2 216 MHz(3) Maximum CPU frequency 1.7 to 3.6 V(4) Operating voltage Package STM32F750N8 3 Number of channels Operating temperatures STM32F750Z8 Ambient temperatures: –40 to +85 °C /–40 to +105 °C Junction temperature: –40 to + 125 °C LQFP100 LQFP144 TFBGA216 1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. 2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. 216 MHz maximum frequency for -40°C to + 85°C ambient temperature range (200 MHz maximum frequency for -40°C to + 105°C ambient temperature range). 4. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 3.17.2: Internal reset OFF). DS12535 Rev 1 15/199 46 Description 2.1 STM32F750x8 Full compatibility throughout the family The STM32F750x8 devices are fully pin-to-pin, compatible with the STM32F4xxxx devices, allowing the user to try different peripherals, and reaching higher performances (higher frequency) for a greater degree of freedom during the development cycle. Figure 1 give compatible board designs between the STM32F4xx families. Figure 1. Compatible board design for LQFP100 package 3& 9'' 966$ 95() 9''$ 3$:.83 3$ 3$ 670)[[670)[[ 670)[[670)[[ 670)[[670)[[ 670)[[670)[[                 9'' 3% 9&$3 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 3& 3% 3& 3$ 3$ 3$ 3$ 9'' 3$ 3& 966$ 95() 9''$ 3$:.83 3$ 3$ 3$ 966  670)[ 3LQVWRDUHQRWFRPSDWLEOH 9'' 966 3% 9&$3 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 3% 3& 3& 3$ 3$ 3$ 3$ 9'' 966  06Y9 The STM32F750x8 LQFP144 and TFBGA216 packages are fully pin to pin compatible with STM32F4xxxx devices. 16/199 DS12535 Rev 1 STM32F750x8 USB OTG HS DMA/ FIFO DMA2 8 Streams FIFO DMA1 8 Streams FIFO LCD-TFT FIFO CHROM-ART (DMA2D) FIFO ART GPIO PORT A PB[15:0] GPIO PORT B FLASH 64KB SRAM1 240 KB SRAM2 16 KB Int PVD LS PCLKx HCLKx LS GPIO PORT J FIFO D[7:0] CMD, CK as AF SDMMC1 4 compl. chan. (TIM1_CH1[1:4]N), 4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF 4 compl. chan.(TIM8_CH1[1:4]N), 4 chan. (TIM8_CH1[1:4], ETR, BKIN as AF DMA1 DMA2 AHB/APB2 VDDUSB = 3.0 to 3.6V VDD = 1.7/1.8 to 3.6 V VSS VCAP1, VCAP2 WKUP[4:0] VDDA, VSSA NRST @VDD Standby interface GPIO PORT K EXT IT. WKUP DP DM ID, VBUS, SOF CLK, NE [3:0], A[23:0], D[31:0], NOEN, NWEN, NBL[3:0], SDCLKE[1:0], SDNE[1:0], SDNWE, NL NRAS, NCAS, NADV NWAIT, INTR CLK, CS,D[3:0] OSC_IN OSC_OUT IWDG GPIO PORT I 168 AF @VDD Supply supervision POR/PDR BOR VBAT = 1.65 to 3.6 V @VBAT GPIO PORT H PK[7:0] AHB/APB1 XTAL 32 kHz RTC AWU Backup register 4 KB BKPSRAM OSC32_IN OSC32_OUT RTC_AF1 RTC_AF1 RTC_50HZ TIM2 32b 4 channels, ETR as AF TIM3 16b 4 channels, ETR as AF TIM4 16b 4 channels, ETR as AF TIM5 32b 4 channels TIM12 16b 2 channels as AF TIM13 16b 1 channel as AF TIM14 16b 1 channel as AF smcard USART2 irDA RX, TX as AF CTS, RTS as AF smcard irDA UART4 RX, TX as AF CTS, RTS as AF RX, TX as AF UART5 RX, TX as AF UART7 RX, TX as AF TIM1 / PWM 16b 16b TIM11 16b RX, TX, CK, CTS, RTS as AF smcard USART1 RX, TX, CK, CTS, RTS as AF smcard USART6 irDA irDA MOSI/SD, SCK/CK NSS/WS, MCK as AF MOSI, MISO, SCK, NSS as AF MOSI, MISO, SCK, NSS as AF MOSI, MISO, SCK, NSS as AF APB2 60MHz SPI1/I2S1 SPI4 SPI5 WWDG USART3 LPTIM1 16b TIM6 16b TIM7 16b SPI6 FIFO FIFO SAI2 SD, SCK, FS, MCLK as AF SPI2/I2S2 SPI3/I2S3 I2C1/SMBUS I2C2/SMBUS SAI1 SD, SCK, FS, MCLK as AF @VDDA U STemperature AR T 2 M B ps sensor I2C3/SMBUS @VDDA Dual DAC channels RX, TX as AF UART8 Digital filter TIM10 1 channel as AF bxCAN1 MOSI/SD, SCK/CK NSS/WS, MCK as AF MOSI/SD, SCK/CK NSS/WS, MCK as AF SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF I2C4/SMBUS ITF FIFO 1 channel as AF APB1(max) 0M 3Hz APB1 54 MHz 16b TIM9 APB2 108 MHz (max) TIM8 / PWM 16b 2 channels as AF 8 analog inputs for ADC3 RC LS Reset & clock MAN GT control GPIO PORT G PJ[15:0] VDDREF_ADC POR reset GPIO PORT F PI[15:0] 8 analog inputs common to the 3 ADCs 8 analog inputs common to the ADC1 & 2 RC HS XTAL OSC 4- 26MHz GPIO PORT E PH[15:0] Power managmt Voltage regulator 1.2 V VDD @VDDA PE[15:0] PG[15:0] OTG FS Quad-SPI AHB1 216 MHz GPIO PORT D PF[15:0] USB PUIXCLK, D[13:0] AHB2 216 MHz GPIO PORT C PD[15:0] HSYNC, VSYNC Camera interface External memory controller (FMC) SRAM, SDRAM,PSRAM, NOR Flash, NAND Flash PLL1,2,3 PC[15:0] HASH RNG @VDDA PA[15:0] TDES, AES256 PHY DMA/ FIFO LCD_R[7:0], LCD_G[7:0], LCD_B[7:0], LCD_HSYNC, LCD_VSYNC, LCD_DE, LCD_CLK ITCM RAM 16KB AHB BUS-MATRIX 11S8M AHB bus-matrix 8S7M DP, DM ULPI:CK, D[7:0], DIR, STP, NXT ID, VBUS, SOF Ethernet MAC 10/100 PHY MII or RMII as AF MDIO as AF DTCM RAM 64KB Arm Cortex-M7 I-Cache AXIM 4KB 216MHz D-Cache AHBP 4KB AHBS FIFO TRACECK TRACED[3:0] MPU NVIC DTCM ICTM FIFO JTAG & SW ETM AHB2AXI JTRST, JTDI, JTCK/SWCLK JTDO/SWD, JTDO FIFO FIFO Figure 2. STM32F750x8 block diagram TX, RX ADC1 bxCAN2 ADC2 SPDIFRX SPDIFRX[3:0] as AF HDMI-CEC HDMI_CEC as AF ADC3 IF DAC_OUT1 DAC_OUT2 as AF as AF TX, RX MSv50782V1 1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register. DS12535 Rev 1 17/199 46 Functional overview STM32F750x8 3 Functional overview 3.1 Arm® Cortex®-M7 with FPU The Arm® Cortex®-M7 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and a low-power consumption, while delivering an outstanding computational performance and low interrupt latency. The Cortex®-M7 processor is a highly efficient high-performance featuring: – Six-stage dual-issue pipeline – Dynamic branch prediction – Harvard caches (4 Kbytes of I-cache and 4 Kbytes of D-cache) – 64-bit AXI4 interface – 64-bit ITCM interface – 2x32-bit DTCM interfaces The processor supports the following memory interfaces: • Tightly Coupled Memory (TCM) interface. • Harvard instruction and data caches and AXI master (AXIM) interface. • Dedicated low-latency AHB-Lite peripheral (AHBP) interface. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up the software development by using metalanguage development tools, while avoiding saturation. Figure 2 shows the general block diagram of the STM32F750x8 devices. Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core. 3.2 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 18/199 DS12535 Rev 1 STM32F750x8 3.3 Embedded Flash memory The STM32F750x8 devices embed a Flash memory of 64 Kbytes available for storing programs and data. 3.4 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify the data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean of verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Embedded SRAM All the devices features: • • System SRAM up to 320 Kbytes: – SRAM1 on AHB bus Matrix: 240 Kbytes – SRAM2 on AHB bus Matrix: 16 Kbytes – DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 64 Kbytes for critical real-time data. Instruction RAM (ITCM-RAM) 16 Kbytes: – It is mapped on TCM interface and reserved only for CPU Execution/Instruction useful for critical real-time routines. The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific AHB slave of the CPU.The TCM RAM instruction is reserved only for CPU. It is accessed at CPU clock speed with 0-wait states. • 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 3.6 AXI-AHB bus matrix The STM32F750x8 system architecture is based on 2 sub-systems: • • An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol: – 3x AXI to 32-bit AHB bridges connected to AHB bus matrix – 1x AXI to 64-bit AHB bridge connected to the embedded flash A multi-AHB Bus-Matrix: – The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and an efficient operation even when several high-speed peripherals work simultaneously. DS12535 Rev 1 19/199 46 Functional overview STM32F750x8 AHBS Chrom-ART Accelerator (DMA2D) DMA2D LCD-TFT_M USB_HS_M DMA_P2 ETHERNET_M AHBP GP MAC USB OTG LCD-TFT DMA2 Ethernet HS DMA_MEM2 4KB I/D Cache AXIM GP DMA1 DMA_PI Arm Cortex-M7 DMA_MEM1 ITCM DTCM Figure 3. STM32F750x8 AXI-AHB bus matrix architecture DTCM RAM 64KB ITCM RAM 16KB AXI to multi-AHB ART ITCM 64-bit AHB FLASH 64KB 64-bit BuS Matrix SRAM1 240KB SRAM2 16KB AHB Periph1 AHB periph2 FMC external MemCtl APB1 APB2 Quad-SPI 32-bit Bus Matrix - S MSv50784V1 1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus. 3.7 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. 20/199 DS12535 Rev 1 STM32F750x8 Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: 3.8 • SPI and I2S • I2C • USART • General-purpose, basic and advanced-control timers TIMx • DAC • SDMMC • Cryptographic acceleration • Camera interface (DCMI) • ADC • SAI • SPDIFRX • Quad-SPI • HDMI-CEC Flexible memory controller (FMC) The Flexible memory controller (FMC) includes three memory controllers: • The NOR/PSRAM memory controller • The NAND/memory controller • The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller The main features of the FMC controller are the following: • Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (4 memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data • Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories • 8-,16-,32-bit data bus width • Independent Chip Select control for each memory bank • Independent configuration for each memory bank • Write FIFO • Read FIFO for SDRAM controller • The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2. LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to DS12535 Rev 1 21/199 46 Functional overview STM32F750x8 specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 3.9 Quad-SPI memory interface (QUADSPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in: • Direct mode through registers. • External flash status register polling mode. • Memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate. 3.10 LCD-TFT controller The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features: 3.11 • 2 displays layers with dedicated FIFO (64x32-bit) • Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer • Up to 8 Input color formats selectable per layer • Flexible blending between two layers using alpha value (per pixel or constant) • Flexible programmable parameters for each layer • Color keying (transparency color) • Up to 4 programmable interrupt events. Chrom-ART Accelerator™ (DMA2D) The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions: • Rectangle filling with a fixed color • Rectangle copy • Rectangle copy with pixel format conversion • Rectangle composition with blending and pixel format conversion. Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. An interrupt can be generated when an operation is complete or at a programmed watermark. All the operations are fully automatized and are running independently from the CPU or the DMAs. 22/199 DS12535 Rev 1 STM32F750x8 3.12 Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 97 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M7 with FPU core. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.13 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected to the 16 external interrupt lines. 3.14 Clocks and startup On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 216 MHz while the maximum frequency of the high-speed APB domains is 108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz. The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio class performance. In this case, the I2S and SAI master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. DS12535 Rev 1 23/199 46 Functional overview 3.15 STM32F750x8 Boot modes At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes: • All Flash address space mapped on ITCM or AXIM interface • All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface • The System memory bootloader The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. 3.16 Note: Power supply schemes • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VDD = 1.7 to 3.6 Vexternal power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option. • VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers (refer to Figure 4 and Figure 5). For example, when device is powered at 1.8V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: – During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD – VDDSUB rising and falling time rate specifications must be respected (see Table 19 and Table 20) – In operating mode phase, VDDUSB could be lower or higher than VDD: - If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. - The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by VDDUSB. - If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. 24/199 DS12535 Rev 1 STM32F750x8 Figure 4. VDDUSB connected to VDD power supply VDD VDD_MAX VDD= VDDA = VDDUSB VDD_MIN Operating mode Power-on Power-down time MS37591V1 Figure 5. VDDUSB connected to external power supply VDDUSB_MAX USB functional area VDDUSB VDDUSB_MIN USB non functional area VDD = VDDA Power-on Operating mode USB non functional area VDD_MIN Power-down time MS37590V1 3.17 Power supply supervisor 3.17.1 Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other packages, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is DS12535 Rev 1 25/199 46 Functional overview STM32F750x8 reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.17.2 Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to VSS. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF. Figure 6. Power supply supervisor interconnection with internal reset OFF VDD Application reset signal (optional) VBAT PDR_ON VSS PDR not active : 1.7v< VDDVDDA while a negative injection is induced by VIN 2.4 V, the compensation cell should be used. Figure 33. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXTERNAL OUTPUT ON CL tr(IO)out tf(IO)out T Maximum frequency is achieved if (tr + tf) ≤ (2/3)T and if the duty cycle is (45-55%) when loaded by CL specified in the table “ I/O AC characteristics”. ai14131d 132/199 DS12535 Rev 1 STM32F750x8 6.3.18 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 55: I/O static characteristics). Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 58. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ - - - 100 ns VDD > 2.7 V 300 - - ns Internal Reset source 20 - - µs VF(NRST) (2) NRST Input filtered pulse VNF(NRST)(2) NRST Input not filtered pulse TNRST_OUT Generated reset pulse duration 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Guaranteed by design. Figure 34. Recommended NRST pin protection VDD External reset circuit (1) NRST (2) RPU Internal Reset Filter 0.1 μF STM32F ai14132c 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 58. Otherwise the reset is not taken into account by the device. DS12535 Rev 1 133/199 184 Electrical characteristics 6.3.19 STM32F750x8 TIM timer characteristics The parameters given in Table 59 are guaranteed by design. Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 59. TIMx characteristics(1)(2) Conditions(3) Min Max Unit AHB/APBx prescaler=1 or 2 or 4, fTIMxCLK = 216 MHz 1 - tTIMxCLK AHB/APBx prescaler>4, fTIMxCLK = 108 MHz 1 - tTIMxCLK Timer external clock frequency on CH1 to CH4 f TIMxCLK = 216 MHz 0 fTIMxCLK/2 MHz Timer resolution - 16/32 bit - 65536 × 65536 tTIMxCLK Symbol tres(TIM) fEXT ResTIM tMAX_COUNT Parameter Timer resolution time Maximum possible count with 32-bit counter - 1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers. 2. Guaranteed by design. 3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK = 4x PCLKx. 6.3.20 RTC characteristics Table 60. RTC characteristics 6.3.21 Symbol Parameter Conditions - fPCLK1/RTCCLK frequency ratio Any read/write operation from/to an RTC register Min Max 4 - 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 61 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 16. Table 61. ADC characteristics Symbol VDDA Parameter Power supply VREF+ Positive reference voltage VREF- Negative reference voltage 134/199 Conditions VDDA −VREF+ < 1.2 V - DS12535 Rev 1 Min Typ Max Unit 1.7(1) - 3.6 V 1.7(1) - VDDA V - 0 - V STM32F750x8 Table 61. ADC characteristics (continued) Symbol fADC fTRIG(2) VAIN RAIN(2) Parameter ADC clock frequency External trigger frequency Conversion voltage range(3) External input impedance RADC(2)(4) Sampling switch resistance CADC(2) Internal sample and hold capacitor Conditions Min Typ Max Unit VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz VDDA = 2.4 to 3.6 V 0.6 30 36 MHz fADC = 30 MHz, 12-bit resolution - - 1764 kHz - - - 17 1/fADC - 0 (VSSA or VREFtied to ground) - VREF+ V See Equation 1 for details - - 50 kΩ - - - 6 kΩ - - 4 7 pF - - 0.100 µs - - 3(5) 1/fADC - - 0.067 µs - - 2(5) 1/fADC fADC = 30 MHz 0.100 - 16 µs - 3 - 480 1/fADC - 2 3 µs fADC = 30 MHz 12-bit resolution 0.50 - 16.40 µs fADC = 30 MHz 10-bit resolution 0.43 - 16.34 µs fADC = 30 MHz 8-bit resolution 0.37 - 16.27 µs fADC = 30 MHz 6-bit resolution 0.30 - 16.20 µs tlat(2) Injection trigger conversion latency fADC = 30 MHz tlatr(2) Regular trigger conversion latency fADC = 30 MHz tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) - 9 to 492 (tS for sampling +n-bit resolution for successive approximation) Sampling rate fS(2) (fADC = 30 MHz, and tS = 3 ADC cycles) 1/fADC 12-bit resolution Single ADC - - 2 Msps 12-bit resolution Interleave Dual ADC mode - - 3.75 Msps 12-bit resolution Interleave Triple ADC mode - - 6 Msps DS12535 Rev 1 135/199 184 Electrical characteristics STM32F750x8 Table 61. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit IVREF+(2) ADC VREF DC current consumption in conversion mode - - 300 500 µA IVDDA(2) ADC VDDA DC current consumption in conversion mode - - 1.6 1.8 mA 1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). 2. Guaranteed by characterization results. 3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. 4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V. 5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 61. Equation 1: RAIN max formula R AIN ( k – 0.5 ) - – R ADC = --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register. Table 62. ADC static accuracy at fADC = 18 MHz Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC =18 MHz VDDA = 1.7 to 3.6 V VREF = 1.7 to 3.6 V VDDA −VREF < 1.2 V Typ Max(1) ±3 ±4 ±2 ±3 ±1 ±3 ±1 ±2 ±2 ±3 Unit LSB 1. Guaranteed by characterization results. Table 63. ADC static accuracy at fADC = 30 MHz Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V, VDDA −VREF < 1.2 V 1. Guaranteed by characterization results. 136/199 DS12535 Rev 1 Typ Max(1) ±2 ±5 ±1.5 ±2.5 ±1.5 ±4 ±1 ±2 ±1.5 ±3 Unit LSB STM32F750x8 Table 64. ADC static accuracy at fADC = 36 MHz Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions Typ Max(1) ±4 ±7 ±2 ±3 ±3 ±6 ±2 ±3 ±3 ±6 fADC =36 MHz, VDDA = 2.4 to 3.6 V, VREF = 1.7 to 3.6 V VDDA −VREF < 1.2 V Unit LSB 1. Guaranteed by characterization results. Table 65. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to-noise and distortion ratio SNR Signal-to-noise ratio THD Total harmonic distortion fADC =18 MHz VDDA = VREF+= 1.7 V Input Frequency = 20 KHz Temperature = 25 °C Min Typ Max Unit 10.3 10.4 - bits 64 64.2 - 64 65 - − 67 − 72 - dB 1. Guaranteed by characterization results. Table 66. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1) Symbol Parameter Test conditions ENOB Effective number of bits SINAD Signal-to noise and distortion ratio SNR Signal-to noise ratio THD Total harmonic distortion fADC =36 MHz VDDA = VREF+ = 3.3 V Input Frequency = 20 KHz Temperature = 25 °C Min Typ Max Unit 10.6 10.8 - bits 66 67 - 64 68 - − 70 − 72 - dB 1. Guaranteed by characterization results. Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.17 does not affect the ADC accuracy. DS12535 Rev 1 137/199 184 Electrical characteristics STM32F750x8 Figure 35. ADC accuracy characteristics [1LSB IDEAL = V REF+ 4096 (or V DDA 4096 depending on package)] EG 4095 4094 4093 (2) ET (3) 7 (1) 6 5 EO 4 EL 3 ED 2 1L SBIDEAL 1 0 1 2 3 456 7 V SSA 4093 4094 4095 4096 VDDA ai14395c 1. See also Table 63. 2. Example of an actual transfer curve. 3. Ideal transfer curve. 4. End point correlation line. 5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. Figure 36. Typical connection diagram using the ADC STM32F VDD RAIN(1) AINx VAIN Cparasitic Sample and hold ADC converter VT 0.6 V RADC(1) VT 0.6 V IL±1 μA 12-bit converter C ADC(1) ai17534 1. Refer to Table 61 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced. 138/199 DS12535 Rev 1 STM32F750x8 General PCB design guidelines Power supply decoupling should be performed as shown in Figure 37 or Figure 38, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 37. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F VREF+ (1) 1 μF // 10 nF VDDA 1 μF // 10 nF VSSA/VREF- (1) ai17535b 1. VREF+ input is available on all the packages whereas the VREF– is available only on TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA. Figure 38. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F VREF+/VDDA (1) 1 μF // 10 nF VREF-/VSSA (1) ai17536c 1. VREF+ input is available on all the packages whereas the VREF– is available only on TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA. DS12535 Rev 1 139/199 184 Electrical characteristics 6.3.22 STM32F750x8 Temperature sensor characteristics Table 67. Temperature sensor characteristics Symbol Parameter Min Typ Max Unit VSENSE linearity with temperature - ±1 ±2 °C Average slope - 2.5 - mV/°C Voltage at 25 °C - 0.76 - V tSTART(2) Startup time - 6 10 µs TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs TL(1) Avg_Slope (1) V25(1) 1. Guaranteed by characterization results. 2. Guaranteed by design. Table 68. Temperature sensor calibration values Symbol Parameter Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FF0 F44C - 0x1FF0 F44D TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FF0 F44E - 0x1FF0 F44F 6.3.23 VBAT monitoring characteristics Table 69. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 50 - KΩ Q Ratio on VBAT measurement - 4 - - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 1 mV accuracy 5 - - µs Er(1) TS_vbat(2)(2) 1. Guaranteed by design. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.24 Reference voltage The parameters given in Table 70 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 70. internal reference voltage Symbol VREFINT TS_vrefint(1) VRERINT_s(2) 140/199 Parameter Internal reference voltage Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.18 1.21 1.24 V - 10 - - µs VDD = 3V ± 10mV - 3 5 mV ADC sampling time when reading the internal reference voltage Internal reference voltage spread over the temperature range DS12535 Rev 1 STM32F750x8 Table 70. internal reference voltage (continued) Symbol Parameter Conditions Min Typ Max Unit TCoeff(2) Temperature coefficient - - 30 50 ppm/°C tSTART(2) Startup time - - 6 10 µs 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. Table 71. Internal reference voltage calibration values Symbol Parameter VREFIN_CAL 6.3.25 Memory address Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FF0 F44A - 0x1FF0 F44B DAC electrical characteristics Table 72. DAC characteristics Symbol Parameter Min Typ Max Unit Comments - VDDA Analog supply voltage 1.7(1) - 3.6 V VREF+ Reference supply voltage 1.7(1) - 3.6 V VSSA Ground 0 - 0 V - RLOAD(2) Resistive load with buffer ON 5 - - kΩ - RO(2) Impedance output with buffer OFF - - 15 When the buffer is OFF, the Minimum kΩ resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ Capacitive load - - 50 pF DAC_OUT Lower DAC_OUT voltage with buffer ON min(2) 0.2 - - V DAC_OUT Higher DAC_OUT voltage max(2) with buffer ON - - VDDA − 0.2 V DAC_OUT Lower DAC_OUT voltage with buffer OFF min(2) - 0.5 - mV DAC_OUT Higher DAC_OUT voltage max(2) with buffer OFF - - VREF+ − 1LSB V - 170 240 CLOAD(2) IVREF+(4) DAC DC VREF current consumption in quiescent mode (Standby mode) µA - 50 75 DS12535 Rev 1 VREF+ ≤VDDA Maximum capacitive load at DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.7 V It gives the maximum output excursion of the DAC. With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs 141/199 184 Electrical characteristics STM32F750x8 Table 72. DAC characteristics (continued) Symbol Min Typ Max Unit Comments - 280 380 µA With no load, middle code (0x800) on the inputs - 475 625 µA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for the DAC in 10-bit configuration. - - ±2 LSB Given for the DAC in 12-bit configuration. - - ±1 LSB Given for the DAC in 10-bit configuration. INL(4) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - ±4 LSB Given for the DAC in 12-bit configuration. - - ±10 mV Given for the DAC in 12-bit configuration Offset(4) Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) - - ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V - - ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V Gain error - - ±0.5 % Given for the DAC in 12-bit configuration - 3 6 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ IDDA(4) DNL(4) Gain error(4) Parameter DAC DC VDDA current consumption in quiescent mode(3) Settling time (full scale: for a 10-bit input code transition between the lowest and the (4) tSETTLING highest input codes when DAC_OUT reaches final value ±4LSB THD(4) Total Harmonic Distortion Buffer ON - - - dB CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Update rate(2) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Wakeup time from off state tWAKEUP(4) (Setting the ENx bit in the DAC Control register) - 6.5 10 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. Power supply rejection ratio PSRR+ (2) (to VDDA) (static DC measurement) - –67 –40 dB No RLOAD, CLOAD = 50 pF 1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). 2. Guaranteed by design. 3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs. 4. Guaranteed by characterization results. 142/199 DS12535 Rev 1 STM32F750x8 Figure 39. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R L DAC_OUTx 12-bit digital to analog converter C L ai17157V3 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 6.3.26 Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s. • Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0385 reference manual) and when the I2CCLK frequency is greater than the minimum shown in the table below: Table 73. Minimum I2CCLK frequency in all I2C modes Symbol Parameter Condition Standard-mode Fast-mode f(I2CCLK) I2CCLK frequency Fast-mode Plus Min Unit 2 Analog Filtre ON DNF=0 10 Analog Filtre OFF DNF=1 9 Analog Filtre ON DNF=0 22.5 Analog Filtre OFF DNF=1 16 MHz The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. DS12535 Rev 1 143/199 184 Electrical characteristics STM32F750x8 The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load Cload supported in Fm+, which is given by these formulas: • Tr(SDA/SCL)=0.8473xRpxCload • Rp(min)= (VDD-VOL(max))/IOL(max) Where Rp is the I2C lines pull-up. Refer to Section 6.3.17: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: Table 74. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 150(3) ns 1. Guaranteed by characterization results. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered 144/199 DS12535 Rev 1 STM32F750x8 SPI interface characteristics Unless otherwise specified, the parameters given in Table 75 for the SPI interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 11 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 75. SPI dynamic characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Typ Max Master mode SPI1,4,5,6 2.7≤VDD≤3.6 54(2) Master mode SPI1,4,5,6 1.71≤VDD≤3.6 27 Master transmitter mode SPI1,4,5,6 1.71≤VDD≤3.6 54 Slave receiver mode SPI1,4,5,6 1.71≤VDD≤3.6 - - 54 Slave mode transmitter/full duplex SPI1,4,5,6 2.7≤VDD≤3.6 50(3) Slave mode transmitter/full duplex SPI1,4,5,6 1.71≤VDD≤3.6 38(3) Master & Slave mode SPI2,3 1.71≤VDD≤3.6 27 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 DS12535 Rev 1 Unit MHz ns 145/199 184 Electrical characteristics STM32F750x8 Table 75. SPI dynamic characteristics(1) (continued) Symbol tsu(MI) tsu(SI) th(MI) th(SI) Parameter Data input setup time Data input hold time Conditions Min Typ Max Master mode 5.5 - - Slave mode 4 - - Master mode 4 - - Slave mode 2 - - ta(SO) Data output access time Slave mode 7 - 21 tdis(SO) Data output disable time Slave mode 5 - 12 Slave mode 2.7≤VDD≤3.6V - 6.5 10 Slave mode 1.71≤VDD≤3.6V - 6.5 13 Master mode - 2 4 Slave mode 1.71≤VDD≤3.6V 5.5 - - Master mode 0 - - tv(SO) Data output valid time tv(MO) th(SO) Data output hold time th(MO) Unit ns 1. Guaranteed by characterization results. 2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40MHz. 3. Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having Tsu(MI)=0 while signal Duty(SCK)=50%. Figure 40. SPI timing diagram - slave mode and CPHA = 0 146/199 DS12535 Rev 1 STM32F750x8 Figure 41. SPI timing diagram - slave mode and CPHA = 1 NSS input CPHA=1 CPOL=0 CPHA=1 CPOL=1 th(NSS) tc(SCK) tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT tr(SCK) tf(SCK) BIT6 OUT tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT MSB IN BIT 1 IN LSB IN ai14135b Figure 42. SPI timing diagram - master mode High NSS input SCK Output tc(SCK) CPHA= 0 CPOL=0 SCK Output SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136c I2S interface characteristics Unless otherwise specified, the parameters given in Table 76 for the I2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD DS12535 Rev 1 147/199 184 Electrical characteristics STM32F750x8 Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Table 76. I2S dynamic characteristics(1) Symbol Parameter fMCK I2S Main clock output fCK I2S clock frequency DCK Conditions - Min 256x8K Max 256xFs Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs 30 70 I2S clock frequency duty cycle Slave receiver tv(WS) WS valid time Master mode - 5 th(WS) WS hold time Master mode 0 - Slave mode 5 - Slave mode PCM short pulse mode(3) 3 - Slave mode 0 - Slave mode PCM short pulse mode(3) 2 - Master receiver 5 - Slave receiver 1 - Master receiver 5 - Slave receiver 1.5 - Slave transmitter (after enable edge) - 16 Master transmitter (after enable edge) - 3.5 Slave transmitter (after enable edge) 5 - Master transmitter (after enable edge) 0 - tsu(WS) WS setup time th(WS) WS hold time tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) Data input setup time Data input hold time Data output valid time Data output hold time Unit (2) MHz MHz % ns ns 1. Guaranteed by characterization results. 2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency). 3. Measurement done with respect to I2S_CK rising edge. Note: Refer to RM0385 reference manual I2S section for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS maximum value is supported for each mode/condition. 148/199 DS12535 Rev 1 STM32F750x8 Figure 43. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(1) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(1) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive MS46528V1 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 44. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(1) MSB transmit LSB receive(1) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive MS46529V1 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DS12535 Rev 1 149/199 184 Electrical characteristics STM32F750x8 SAI characteristics Unless otherwise specified, the parameters given in Table 77 for SAI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C=30 pF • Measurement points are performed at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS). Table 77. SAI characteristics(1) Symbol Parameter Conditions Min Max Unit fMCKL SAI Main clock output - 256 x 8K 256xFs(2) MHz FSCK SAI clock frequency Master data: 32 bits - 128xFs Slave data: 32 bits - 128xFs DSCK SAI clock frequency duty cycle Slave receiver 30 70 tv(FS) FS valid time Master mode 8 22 tsu(FS) FS setup time Slave mode 2 - th(FS) FS hold time Master mode 8 - Slave mode 0 - Master receiver 5 - Slave receiver 3 - Master receiver 0 - Slave receiver 6 - Slave transmitter (after enable edge) - 15 Master transmitter (after enable edge) - 20 Master transmitter (after enable edge) 7 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) th(SD_ST) Data input setup time Data input hold time Data output valid time tv(SD_MT) th(SD_MT) Data output hold time 1. Guaranteed by characterization results. 2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency) 150/199 DS12535 Rev 1 MHz % ns STM32F750x8 Figure 45. SAI master timing waveforms 1/fSCK SAI_SCK_X th(FS) SAI_FS_X (output) tv(FS) th(SD_MT) tv(SD_MT) SAI_SD_X (transmit) Slot n tsu(SD_MR) SAI_SD_X (receive) Slot n+2 th(SD_MR) Slot n MS32771V1 Figure 46. SAI slave timing waveforms 1/fSCK SAI_SCK_X tw(CKH_X) SAI_FS_X (input) tw(CKL_X) tsu(FS) th(FS) th(SD_ST) tv(SD_ST) SAI_SD_X (transmit) Slot n tsu(SD_SR) SAI_SD_X (receive) Slot n+2 th(SD_SR) Slot n MS32772V1 DS12535 Rev 1 151/199 184 Electrical characteristics STM32F750x8 USB OTG full speed (FS) characteristics This interface is present in both the USB OTG HS and USB OTG FS controllers. Table 78. USB OTG full speed startup time Symbol tSTARTUP(1) Parameter Max Unit USB OTG full speed transceiver startup time 1 µs 1. Guaranteed by design. Table 79. USB OTG full speed DC electrical characteristics Symbol Parameter Conditions USB OTG full speed VDDUSB transceiver operating voltage Input levels Min. (1) Typ. - 3.0(2) Max. (1) Unit - 3.6 V VDI(3) Differential input sensitivity I(USB_FS_DP/DM, USB_HS_DP/DM) 0.2 - - VCM(3) Differential common mode range Includes VDI range 0.8 - 2.5 VSE(3) Single ended receiver threshold - 1.3 - 2.0 VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) - - 0.3 2.8 - 3.6 17 21 24 0.65 1.1 2.0 Output levels RPD RPU VOH Static output level high RL of 15 kΩ to PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VSS(4) V V VIN = VDD kΩ PA12, PB15 (USB_FS_DP, USB_HS_DP) VIN = VSS 1.5 1.8 PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS) VIN = VSS 0.25 0.37 0.55 2.1 1. All the voltages are measured from the local ground potential. 2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V VDDUSB voltage range. 3. Guaranteed by design. 4. RL is the load connected on the USB OTG full speed drivers. Note: 152/199 When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled. DS12535 Rev 1 STM32F750x8 Figure 47. USB OTG full speed timings: definition of data signal rise and fall time Cross over points Differential data lines VCRS VSS tf tr ai14137b Table 80. USB OTG full speed electrical characteristics(1) Driver characteristics Symbol tr tf trfm Parameter Rise time(2) Fall time(2) Conditions Min Max Unit CL = 50 pF 4 20 ns CL = 50 pF 4 20 ns tr/tf 90 110 % - 1.3 2.0 V Driving high or low 28 44 Ω Rise/ fall time matching VCRS Output signal crossover voltage ZDRV Output driver impedance(3) 1. Guaranteed by design. 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver. USB high speed (HS) characteristics Unless otherwise specified, the parameters given in Table 83 for ULPI are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 82 and VDD supply voltage conditions summarized in Table 81, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified • Capacitive load C = 20 pF, unless otherwise specified • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Table 81. USB HS DC electrical characteristics Symbol Input level Parameter VDD USB OTG HS operating voltage Min.(1) Max.(1) Unit 1.7 3.6 V 1. All the voltages are measured from the local ground potential. DS12535 Rev 1 153/199 184 Electrical characteristics STM32F750x8 Table 82. USB HS clock timing parameters(1) Symbol Parameter Min Typ Max Unit - fHCLK value to guarantee proper operation of USB HS interface 30 - - MHz FSTART_8BIT Frequency (first transition) 54 60 66 MHz FSTEADY Frequency (steady state) ±500 ppm 59.97 60 60.03 MHz DSTART_8BIT Duty cycle (first transition) 40 50 60 % DSTEADY Duty cycle (steady state) ±500 ppm 49.975 50 50.025 % tSTEADY Time to reach the steady state frequency and duty cycle after the first transition - - 1.4 ms Peripheral - - 5.6 Host - - - - - - tSTART_DEV tSTART_HOST Clock startup time after the de-assertion of SuspendM 8-bit ±10% 8-bit ±10% PHY preparation time after the first transition of the input clock tPREP ms µs 1. Guaranteed by design. Figure 48. ULPI timing diagram Clock Control In (ULPI_DIR, ULPI_NXT) tSC tHC tSD tHD data In (8-bit) tDC Control out (ULPI_STP) tDC tDD data out (8-bit) ai17361c 154/199 DS12535 Rev 1 STM32F750x8 Table 83. Dynamic characteristics: USB ULPI(1) Symbol Parameter Conditions Min. Typ. Max. tSC Control in (ULPI_DIR, ULPI_NXT) setup time - 3 - - tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 1 - - tSD Data in setup time - 1.5 - - tHD Data in hold time - 0.5 - - 2.7 V < VDD < 3.6 V, CL = 20 pF and OSPEEDRy[1:0] = 11 - 5.5 9 - 5.5 11.5 tDC/tDD Data/control output delay 1.7 V < VDD < 3.6 V, CL = 15 pF and OSPEEDRy[1:0] = 11 - Unit ns 1. Guaranteed by characterization results. Ethernet characteristics Unless otherwise specified, the parameters given in Table 84, Table 85 and Table 86 for SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK frequency summarized in Table 16 and VDD supply voltage conditions summarized in Table 84, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 20 pF • Measurement points are done at CMOS levels: 0.5VDD. Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Table 84 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 49 shows the corresponding timing diagram. Figure 49. Ethernet SMI timing diagram tMDC ETH_MDC td(MDIO) ETH_MDIO(O) tsu(MDIO) th(MDIO) ETH_MDIO(I) MS31384V1 DS12535 Rev 1 155/199 184 Electrical characteristics STM32F750x8 Table 84. Dynamics characteristics: Ethernet MAC signals for SMI(1) Symbol Min Typ Max MDC cycle time(2.38 MHz) 400 400 403 Td(MDIO) Write data valid time 10 10.5 12.5 tsu(MDIO) Read data setup time 12.5 - - th(MDIO) Read data hold time 0 - - tMDC Parameter Unit ns 1. Guaranteed by characterization results. Table 85 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the corresponding timing diagram. Figure 50. Ethernet RMII timing diagram RMII_REF_CLK td(TXEN) td(TXD) RMII_TX_EN RMII_TXD[1:0] tsu(RXD) tsu(CRS) tih(RXD) tih(CRS) RMII_RXD[1:0] RMII_CRS_DV ai15667b Table 85. Dynamics characteristics: Ethernet MAC signals for RMII(1) Symbol Parameter Typ Max tsu(RXD) Receive data setup time 1 - - tih(RXD) Receive data hold time 1.5 - - tsu(CRS) Carrier sense setup time 1 - - tih(CRS) Carrier sense hold time 1 - - td(TXEN) Transmit enable valid delay time 5 6 10.5 td(TXD) Transmit data valid delay time 5 6 12 1. Guaranteed by characterization results. 156/199 Min DS12535 Rev 1 Unit ns STM32F750x8 Table 86 gives the list of Ethernet MAC signals for MII and Figure 50 shows the corresponding timing diagram. Figure 51. Ethernet MII timing diagram MII_RX_CLK tsu(RXD) tsu(ER) tsu(DV) tih(RXD) tih(ER) tih(DV) MII_RXD[3:0] MII_RX_DV MII_RX_ER MII_TX_CLK td(TXEN) td(TXD) MII_TX_EN MII_TXD[3:0] ai15668b Table 86. Dynamics characteristics: Ethernet MAC signals for MII(1) Symbol Parameter Min Typ Max tsu(RXD) Receive data setup time 3 - - tih(RXD) Receive data hold time 1.5 - - tsu(DV) Data valid setup time 0 - - tih(DV) Data valid hold time 1.5 - - tsu(ER) Error setup time 1.5 - - tih(ER) Error hold time 0.5 - - td(TXEN) Transmit enable valid delay time 6.5 7 13.5 td(TXD) Transmit data valid delay time 6.5 7 13.5 Unit ns 1. Guaranteed by characterization results. CAN (controller area network) interface Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX). DS12535 Rev 1 157/199 184 Electrical characteristics 6.3.27 STM32F750x8 FMC characteristics Unless otherwise specified, the parameters given in Table 87 to Table 100 for the FMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 11 • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Asynchronous waveforms and timings Figure 52 through Figure 55 represent asynchronous waveforms and Table 87 through Table 94 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: • AddressSetupTime = 0x1 • AddressHoldTime = 0x1 • DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5) • BusTurnAroundDuration = 0x0 • Capcitive load CL = 30 pF In all timing tables, the THCLK is the HCLK clock period 158/199 DS12535 Rev 1 STM32F750x8 Figure 52. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms tw(NE) FMC_NE tv(NOE_NE) t w(NOE) t h(NE_NOE) FMC_NOE FMC_NWE tv(A_NE) FMC_A[25:0] t h(A_NOE) Address tv(BL_NE) t h(BL_NOE) FMC_NBL[1:0] t h(Data_NE) t su(Data_NOE) th(Data_NOE) t su(Data_NE) Data FMC_D[15:0] t v(NADV_NE) tw(NADV) FMC_NADV (1) FMC_NWAIT th(NE_NWAIT) tsu(NWAIT_NE) MS32753V1 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. DS12535 Rev 1 159/199 184 Electrical characteristics STM32F750x8 Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) Symbol Min Max 2THCLK− 0.5 2 THCLK+1.5 0 1 2THCLK− 1 2THCLK+ 1 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 0.5 th(A_NOE) Address hold time after FMC_NOE high 0 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5 th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 - tsu(Data_NE) Data to FMC_NEx high setup time THCLK - 2 - tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK -2 - th(Data_NOE) Data hold time after FMC_NOE high 0 - th(Data_NE) Data hold time after FMC_NEx high 0 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 FMC_NADV low time - THCLK +1 tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tw(NADV) Parameter FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time Unit ns 1. CL = 30 pF. Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings(1) Symbol Min Max FMC_NE low time 7THCLK −1 7THCLK FMC_NWE low time 5THCLK −1 5THCLK +1 FMC_NWAIT low time THCLK −0.5 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+1 - tw(NE) tw(NOE) tw(NWAIT) Parameter 1. Guaranteed by characterization results. 160/199 DS12535 Rev 1 Unit ns STM32F750x8 Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms tw(NE) FMC_NEx FMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FMC_NWE tv(A_NE) FMC_A[25:0] th(A_NWE) Address tv(BL_NE) FMC_NBL[1:0] th(BL_NWE) NBL tv(Data_NE) th(Data_NWE) Data FMC_D[15:0] t v(NADV_NE) FMC_NADV (1) tw(NADV) FMC_NWAIT th(NE_NWAIT) tsu(NWAIT_NE) MS32754V1 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used. Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter Min Max FMC_NE low time 3THCLK−0.5 3THCLK+1.5 FMC_NEx low to FMC_NWE low THCLK−0.5 THCLK+ 1 FMC_NWE low time THCLK−0.5 THCLK+ 1 FMC_NWE high to FMC_NE high hold time THCLK −0.5 - - 0 THCLK−0.5 - - 0 THCLK−0.5 - FMC_NEx low to FMC_A valid th(A_NWE) Address hold time after FMC_NWE high tv(BL_NE) FMC_NEx low to FMC_BL valid th(BL_NWE) FMC_BL hold time after FMC_NWE high tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK+ 3 th(Data_NWE) Data hold time after FMC_NWE high THCLK+0.5 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 FMC_NADV low time - THCLK+ 0.5 tw(NADV) Unit ns 1. Guaranteed by characterization results. DS12535 Rev 1 161/199 184 Electrical characteristics STM32F750x8 Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings(1) Symbol Parameter tw(NE) tw(NWE) Min Max FMC_NE low time 8THCLK−0.5 8THCLK+1.5 FMC_NWE low time 6THCLK−0.5 6THCLK+1 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK−1 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+2 - Unit ns 1. Guaranteed by characterization results. Figure 54. Asynchronous multiplexed PSRAM/NOR read waveforms tw(NE) FMC_ NE tv(NOE_NE) t h(NE_NOE) FMC_NOE t w(NOE) FMC_NWE th(A_NOE) tv(A_NE) FMC_ A[25:16] Address tv(BL_NE) th(BL_NOE) FMC_ NBL[1:0] NBL th(Data_NE) tsu(Data_NE) t v(A_NE) FMC_ AD[15:0] tsu(Data_NOE) th(Data_NOE) Data Address th(AD_NADV) t v(NADV_NE) tw(NADV) FMC_NADV FMC_NWAIT th(NE_NWAIT) tsu(NWAIT_NE) MS32755V1 162/199 DS12535 Rev 1 STM32F750x8 Table 91. Asynchronous multiplexed PSRAM/NOR read timings(1) Symbol tw(NE) tv(NOE_NE) ttw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter Min Max 3THCLK−0.5 3THCLK+1.5 FMC_NEx low to FMC_NOE low 2THCLK−1 2THCLK+0.5 FMC_NOE low time THCLK−0.5 THCLK+0.5 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 0.5 FMC_NEx low to FMC_NADV low 0 0.5 THCLK−0.5 THCLK+1.5 FMC_NE low time FMC_NADV low time th(AD_NADV) FMC_AD(address) valid hold time after FMC_NADV high) 0 - th(A_NOE) Address hold time after FMC_NOE high THCLK−0.5 - th(BL_NOE) FMC_BL time after FMC_NOE high 0 - FMC_NEx low to FMC_BL valid - 0.5 tv(BL_NE) tsu(Data_NE) Data to FMC_NEx high setup time THCLK−2 - tsu(Data_NOE) Data to FMC_NOE high setup time THCLK−2 - th(Data_NE) Data hold time after FMC_NEx high 0 - th(Data_NOE) Data hold time after FMC_NOE high 0 - Unit ns 1. Guaranteed by characterization results. Table 92. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1) Symbol tw(NE) tw(NOE) Parameter Min Max FMC_NE low time 8THCLK−1 8THCLK+2 FMC_NWE low time 5THCLK−1 5THCLK +1 5THCLK +1.5 - 4THCLK+1 - tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid Unit ns 1. Guaranteed by characterization results. DS12535 Rev 1 163/199 184 Electrical characteristics STM32F750x8 Figure 55. Asynchronous multiplexed PSRAM/NOR write waveforms tw(NE) FMC_ NEx FMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FMC_NWE th(A_NWE) tv(A_NE) FMC_ A[25:16] Address tv(BL_NE) th(BL_NWE) FMC_ NBL[1:0] NBL t v(A_NE) FMC_ AD[15:0] t v(Data_NADV) Address th(Data_NWE) Data th(AD_NADV) t v(NADV_NE) tw(NADV) FMC_NADV FMC_NWAIT th(NE_NWAIT) tsu(NWAIT_NE) MS32756V1 Table 93. Asynchronous multiplexed PSRAM/NOR write timings(1) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) 164/199 Parameter Min Max 4THCLK−0.5 4THCLK+1.5 THCLK−1 THCLK+0.5 2THCLK−0.5 2THCLK+0.5 THCLK - FMC_NEx low to FMC_A valid - 0 FMC_NEx low to FMC_NADV low 0 0.5 THCLK−0.5 THCLK+ 1.5 THCLK−2 - FMC_NE low time FMC_NEx low to FMC_NWE low FMC_NWE low time FMC_NWE high to FMC_NE high hold time FMC_NADV low time FMC_AD(adress) valid hold time after FMC_NADV high) th(A_NWE) Address hold time after FMC_NWE high THCLK - th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK−2 - tv(BL_NE) FMC_NEx low to FMC_BL valid - 0 tv(Data_NADV) FMC_NADV high to Data valid - THCLK +2 th(Data_NWE) Data hold time after FMC_NWE high THCLK +0.5 - DS12535 Rev 1 Unit ns STM32F750x8 1. Guaranteed by characterization results. Table 94. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1) Symbol tw(NE) tw(NWE) Parameter FMC_NE low time FMC_NWE low time Min Max 9THCLK 9THCLK+1.5 7THCLK–0.5 7THCLK+0.5 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK+2 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK–1 - Unit ns 1. Guaranteed by characterization results. Synchronous waveforms and timings Figure 56 through Figure 59 represent synchronous waveforms and Table 95 through Table 98 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: • BurstAccessMode = FMC_BurstAccessMode_Enable; • MemoryType = FMC_MemoryType_CRAM; • WriteBurst = FMC_WriteBurst_Enable; • CLKDivision = 1; • DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM • CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise specified. In all timing tables, the THCLK is the HCLK clock period. – For 2.7 V≤VDD≤3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at CL=30 pF (on FMC_CLK). – For 1.71 V≤VDD
STM32F750Z8T6 价格&库存

很抱歉,暂时无法提供与“STM32F750Z8T6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STM32F750Z8T6

库存:0