0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32H730ABI6Q

STM32H730ABI6Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFBGA169

  • 描述:

    IC MCU 32BIT 128KB FLSH 169UFBGA

  • 数据手册
  • 价格&库存
STM32H730ABI6Q 数据手册
STM32H730AB STM32H730IB STM32H730VB STM32H730ZB 32-bit Arm® Cortex®-M7 550 MHz MCU, 128 KB Flash, 564 KB RAM, 35 comms peripherals and analog interfaces, HW crypto/hash Datasheet - production data Features FBGA Core • 32-bit Arm® Cortex®-M7 CPU with DP-FPU, L1 cache: 32-Kbyte data cache and 32-Kbyte instruction cache allowing 0-wait state execution from embedded Flash memory and external memories, frequency up to 550 MHz, MPU, 1177 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions LQFP100 (14 x 14 mm) LQFP144 (20 x 20 mm) LQFP176 (24 x 24 mm) FBGA UFBGA144 (7 x 7 mm) UFBGA 169 (7 x 7 mm) UFBGA 176+25 (10 x 10 mm) Memories • 128 Kbytes of embedded Flash memory with ECC • SRAM: total 564 Kbytes all with ECC, including 128 Kbytes of data TCM RAM for critical realtime data + 432 Kbytes of system RAM (up to 256 Kbytes can remap on instruction TCM RAM for critical real time instructions) + 4 Kbytes of backup SRAM (available in the lowest-power modes) • Flexible external memory controller with up to 24-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories • 2 x Octo-SPI interface with XiP and on-the-fly decryption support • 2 x SD/SDIO/MMC interface • Bootloader with security services support (SFI and SB-SFU) Graphics • Chrom-ART Accelerator graphical hardware accelerator enabling enhanced graphical user interface to reduce CPU load • LCD-TFT controller supporting up to XGA resolution TFBGA100 (8 x 8 mm) Clock, reset and supply management • 1.62 V to 3.6 V application supply and I/O • POR, PDR, PVD and BOR • Dedicated USB power • Embedded DCDC and LDO regulator • Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI • External oscillators: 4-50 MHz HSE, 32.768 kHz LSE Low power • Sleep, Stop and Standby modes • VBAT supply for RTC, 32×32-bit backup registers Analog • 2×16-bit ADC, up to 3.6 MSPS in 16-bit: up to 22 channels and 7.2 MSPS in doubleinterleaved mode • 1 x 12-bit ADC, up to 5 MSPS in 12-bit, up to 12 channels • 2 x comparators • 2 x operational amplifier GBW = 8 MHz September 2020 DS13315 Rev 2 1/262 www.st.com STM32H730xB • 2× 12-bit D/A converters Digital filters for sigma delta modulator (DFSDM) • 8 channels/4 filters DMA, on-chip FS PHY and ULPI for external HS PHY • SWPMI single-wire protocol master I/F • MDIO slave interface Mathematical acceleration 4 DMA controllers to offload the CPU • 1 × MDMA with linked list support • CORDIC for trigonometric functions acceleration • 2 × dual-port DMAs with FIFO • FMAC: Filter mathematical accelerator • 1 × basic DMA with request router capabilities 24 timers • Seventeen 16-bit (including 5 x low power 16-bit timer available in stop mode) and four 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input • 2x watchdogs, 1x SysTick timer Digital temperature sensor Cryptographic/HASH acceleration • AES 128, 192, 256, TDES, HASH (MD5, SHA1, SHA-2), HMAC • 2x OTFDEC AES-128 in CTR mode for OctoSPI memory encryption/decryption True random number generator Debug mode CRC calculation unit • SWD and JTAG interfaces • 2-Kbyte embedded trace buffer RTC with sub-second accuracy and hardware calendar Up to 128 I/O ports with interrupt capability ROP, PC-ROP, tamper detection, secure firmware upgrade support Up to 35 communication interfaces 96-bit unique ID • Up to 5 × I2C FM+ interfaces (SMBus/PMBus™) • Up to 5 USARTs/5 UARTs (ISO7816 interface, LIN, IrDA, modem control) and 1 x LPUART All packages are ECOPACK2 compliant • Up to 6 SPIs with 4 with muxed duplex I2S for audio class accuracy via internal audio PLL or external clock and up to 5 x SPI (from 5 x USART when configured in synchronous mode) • 2x SAI (serial audio interface) • 1× FD/TT-CAN and 2xFD-CAN • 8- to 14-bit camera interface • 16-bit parallel slave synchronous interface • SPDIF-IN interface • HDMI-CEC • Ethernet MAC interface with DMA controller • USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated 2/262 DS13315 Rev 2 STM32H730xB Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Error code correction (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 3.4 Secure access mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 CORDIC co-processor (CORDIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CORDIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 3.7 Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 26 FMAC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.8 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.8.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.8.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.8.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.9 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.10 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.10.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.10.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.11 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.12 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.13 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.14 Chrom-ART Accelerator (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.15 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 34 3.16 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 34 3.17 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 34 3.18 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DS13315 Rev 2 3/262 8 Contents 4/262 STM32H730xB 3.19 Octo-SPI memory interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.20 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.21 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22 Digital temperature sensor (DTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.24 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.25 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.26 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.27 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39 3.28 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.29 PSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.30 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.31 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.32 Cryptographic acceleration (CRYP and HASH) . . . . . . . . . . . . . . . . . . . . 42 3.33 On-the-fly decryption engine (OTFDEC) . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.34 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.34.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.34.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.34.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 47 3.34.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.34.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.34.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.35 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 48 3.36 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.37 Universal synchronous/asynchronous receiver transmitter (USART) . . . 49 3.38 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 50 3.39 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 51 3.40 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.41 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.42 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 52 3.43 Management data input/output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . . 53 3.44 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 53 3.45 Controller area network (FDCAN1, FDCAN2, FDCAN3) . . . . . . . . . . . . . 53 DS13315 Rev 2 STM32H730xB Contents 3.46 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 54 3.47 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 54 3.48 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.49 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Pinouts, pin descriptions and alternate functions . . . . . . . . . . . . . . . . 57 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.3 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 114 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . 115 6.3.6 Embedded reference voltage characteristics . . . . . . . . . . . . . . . . . . . . 116 6.3.7 Embedded USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . 117 6.3.8 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Typical and maximum current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Typical SMPS efficiency versus load current and temperature . . . . . . . . . . . . .124 I/O system current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 6.3.9 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.10 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 129 High-speed external user clock generated from an external source . . . . . . . . .129 Low-speed external user clock generated from an external source . . . . . . . . . .130 High-speed external clock generated from a crystal/ceramic resonator. . . . . . .131 Low-speed external clock generated from a crystal/ceramic resonator . . . . . . .132 DS13315 Rev 2 5/262 8 Contents STM32H730xB 6.3.11 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 133 48 MHz high-speed internal RC oscillator (HSI48) . . . . . . . . . . . . . . . . . . . . . . .133 64 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . . . . . . . .134 4 MHz low-power internal RC oscillator (CSI) . . . . . . . . . . . . . . . . . . . . . . . . . .135 Low-speed internal (LSI) RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 6.3.12 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . . . . . . .141 Designing hardened software to avoid noise problems . . . . . . . . . . . . . . . . . . .141 Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 143 Electrostatic discharge (ESD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 Static latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Functional susceptibility to I/O current injection . . . . . . . . . . . . . . . . . . . . . . . . .144 6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 General input/output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 Output voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Output buffer timing characteristics (HSLV option disabled) . . . . . . . . . . . . . . .149 Output buffer timing characteristics (HSLV option enabled). . . . . . . . . . . . . . . .151 Analog switch between ports Pxy_C and Pxy . . . . . . . . . . . . . . . . . . . . . . . . . .152 6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.19 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Asynchronous waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 Synchronous waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 NAND controller waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 SDRAM waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 6.3.20 Octo-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.3.21 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.3.22 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 6/262 6.3.23 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.3.24 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.3.25 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.26 Analog temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . 200 6.3.27 Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . 201 6.3.28 Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 DS13315 Rev 2 STM32H730xB Contents 6.3.29 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.3.30 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.3.31 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.3.32 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 206 6.3.33 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 209 6.3.34 Parallel synchronous slave interface (PSSI) characteristics . . . . . . . . 210 6.3.35 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 211 6.3.36 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 6.3.37 Low-power timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 6.3.38 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 USART interface characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217 I2S Interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 MDIO characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . . . . . . . .225 USB OTG_FS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 USB OTG_HS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 Ethernet interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Device marking for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 7.2 TFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Device marking for TFBGA100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 7.3 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Device marking for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 7.4 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Device marking for UFBGA144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 7.5 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Device marking for UFBGA169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250 7.6 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Device marking for LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 7.7 UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Device marking for UFBGA176+25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 DS13315 Rev 2 7/262 8 Contents STM32H730xB 7.8.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8/262 DS13315 Rev 2 STM32H730xB List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. STM32H730xB features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 System versus domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 STM32H730xB pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 STM32H730xB pin alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Supply voltage and maximum temperature configuration. . . . . . . . . . . . . . . . . . . . . . . . . 109 VCAP operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 111 SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 111 Inrush current and inrush electric charge characteristics for LDO and SMPS . . . . . . . . . 112 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 114 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Typical and maximum current consumption in Run mode, code with data processing running from ITCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, cache OFF. . . . . . . . . . . . . . . . 121 Typical consumption in Run mode and corresponding performance versus code position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Typical current consumption in Autonomous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Typical current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Typical current consumption in System Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Typical current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 124 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4-50 MHz HSE oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 PLL1 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 PLL1 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 PLL2 and PLL3 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . 138 PLL2 and PLL3 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . 139 DS13315 Rev 2 9/262 11 List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. 10/262 STM32H730xB Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Output voltage characteristics for all I/Os except PC13, PC14 and PC15 . . . . . . . . . . . . 147 Output voltage characteristics for PC13, PC14 and PC15 . . . . . . . . . . . . . . . . . . . . . . . . 148 Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Pxy_C and Pxy analog switch characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 155 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 155 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 157 Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 157 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 160 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 166 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 171 SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus . . . . . . . . . . . . 178 Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Minimum sampling time vs RAIN (16-bit ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 16-bit ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Minimum sampling time vs RAIN (12-bit ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12-bit ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 DS13315 Rev 2 STM32H730xB Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. List of tables Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 DFSDM measured timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 LPTIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 225 Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 226 USB OTG_FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 230 Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 231 Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 231 Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Dynamics SWD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 TFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 240 LQFP144 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 UFBGA144 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 246 UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 UFBGA169 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 249 LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 UFBGA176+25 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 256 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 DS13315 Rev 2 11/262 11 List of figures STM32H730xB List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. 12/262 STM32H730xB block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32H730xB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 TFBGA100 pinout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LQFP100 pinout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 TFBGA144 ballout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LQFP144 pinout (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LQFP176 pinout (with SMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 UFBGA169 ballout (with SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 UFBGA176+25 ballout (with SMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 124 Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . . 125 Typical SMPS efficiency (%) vs load current (A) in Stop and DStop modes at TJ = 30 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 126 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 154 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 156 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 158 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 165 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 170 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 171 SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 OCTOSPI SDR read/write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 OCTOSPI DTR mode timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 OCTOSPI Hyperbus clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 OCTOSPI Hyperbus read timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 OCTOSPI Hyperbus write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 188 DS13315 Rev 2 STM32H730xB Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. List of figures Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 188 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 LQFP100 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 TFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 TFBGA100 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 TFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 LQFP144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 LQFP144 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 UFBGA144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 UFBGA144 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 UFBGA144 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 UFBGA169 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 LQFP176 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 UFBGA176+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 UFBGA176+25 package recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 UFBGA176+25 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 DS13315 Rev 2 13/262 13 Introduction 1 STM32H730xB Introduction This document provides information on STM32H730xB microcontrollers, such as description, functional overview, pin assignment and definition, packaging, and ordering information. This document should be read in conjunction with the STM32H730xB reference manual (RM0468), available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M7 core, refer to the Cortex®-M7 Technical Reference Manual, available from the http://www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 14/262 DS13315 Rev 2 STM32H730xB 2 Description Description STM32H730xB devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC core operating at up to 550 MHz. The Cortex® -M7 core features a floating point unit (FPU) which supports Arm® double-precision (IEEE 754 compliant) and single-precision dataprocessing instructions and data types. The Cortex -M7 core includes 32 Kbytes of instruction cache and 32 Kbytes of data cache. STM32H730xB devices support a full set of DSP instructions and a memory protection unit (MPU) to enhance application security. STM32H730xB devices incorporate high-speed embedded memories with 128 Kbytes of Flash memory, up to 564 Kbytes of RAM (including 192 Kbytes that can be shared between ITCM and AXI, plus 64 Kbytes exclusively ITCM, plus 128 Kbytes exclusively AXI, 128 Kbyte DTCM, 48 Kbytes AHB and 4 Kbytes of backup RAM), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access. To improve application robustness, all memories feature error code correction (one error correction, two error detections). The devices embed peripherals allowing mathematical/arithmetic function acceleration (CORDIC co-processor for trigonometric functions and FMAC unit for filter functions). All the devices offer three ADCs, two DACs, two operational amplifiers, two ultra-low power comparators, a low-power RTC, 4 general-purpose 32-bit timers, 12 general-purpose 16-bit timers including two PWM timers for motor control, five low-power timers, a true random number generator (RNG), and a cryptographic acceleration cell, and a HASH processor. The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces. • Standard peripherals – Five I2Cs – Five USARTs, five UARTs and one LPUART – Six SPIs, four I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization. (Note that the five USARTs also provide SPI slave capability.) – Two SAI serial audio interfaces – One SPDIFRX interface with four inputs – One SWPMI (Single Wire Protocol Master Interface) – Management Data Input/Output (MDIO) slaves – Two SDMMC interfaces – A USB OTG high-speed interface with full-speed capability (with the ULPI) – Two FDCANs plus one TT-FDCAN interface – An Ethernet interface – Chrom-ART Accelerator – HDMI-CEC DS13315 Rev 2 15/262 56 Description STM32H730xB • Advanced peripherals including – A flexible memory control (FMC) interface – Two Octo-SPI memory interfaces with on-the-fly decryption (OTFDEC) – A camera interface for CMOS sensors – An LCD-TFT display controller Refer to Table 1: STM32H730xB features and peripheral counts for the list of peripherals available on each part number. To reduce the power consumption some STM32H730xB devices include an optional stepdown converter that can be used either for internal or external supply, or both. STM32H730xB devices operate in the –40 to +85 °C ambient temperature range from a 1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see Section 3.8.2: Power supply supervisor) and connecting the PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled. Dedicated supply inputs for USB are available to allow a greater power supply choice. A comprehensive set of power-saving modes allows the design of low-power applications. STM32H730xB devices are offered in several packages ranging from 100 to 176 pins/balls. The set of included peripherals changes with the device chosen. These features make STM32H730xB microcontrollers suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances • Mobile applications, Internet of Things • Wearable devices: smart watches. Figure 1 shows the device block diagram. 16/262 DS13315 Rev 2 STM32H730xB Description Figure 1. STM32H730xB block diagram MII / RMII To APB1-2 peripherals MDIO as AF AHB1 D-TCM 64KB I-TCM 64KB AHBP FIFO LCD-TFT WWDG OCTOSPI1 signals AHB4 CH[4;1], ETR as AF 32b TIM23 CH[4;1], ETR as AF 32b TIM24 CH[4;1], ETR as AF 16b TIM12 CH[2;1] as AF 16b TIM13 CH1 as AF 16b TIM14 CH1 as AF USART2 RX, TX, CK, CTS, RTS, DE as AF USART3 RX, TX, CK, CTS, RTS, DE as AF UART4 RX, TX, CTS, RTS, DE as AF UART5 RX, TX, CTS, RTS, DE as AF UART7 RX, TX, CTS, RTS, DE as AF RX, TX, CTS, RTS, DE as AF SPI1/I2S1 UART9 AHB4 DMA Mux2 AHB4 BDMA DAP TIM1/PWM 16b HSEM 16b CRC ADC3 I2C2/SMBUS I2C3/SMBUS SCL, SDA, SMBA as AF I2C5/SMBUS SCL, SDA, SMBA as AF MDIOS MDC, MDIO as AF TT-FDCAN1 FDCAN2 FDCAN3 16 KB SRAM 4 KB BKP RAM SPDIFRX1 HDMI-CEC DAC 16b LPTIM4 16b OUT as AF LPTIM3 16b I2C4 MOSI, MISO, SCK, NSS / SDO, SDI, CK, WS, MCK, as AF SPI6/I2S6 RX, TX, CK, CTS, RTS as AF LPUART1 IN1, IN2, ETR, OUT as AF LPTIM2 16b AHB/APB VREF VINM, VINP, VOUT as AF Voltage regulator 3.3 to 1.2V IWDG Temperature sensor HSI RC HSI HSI48 HSI48 RC CSI RC CSI LSI LSI RC VDD VSS VCAP, VDDLDO VDDSMPS, VSSSMPS, VLXSMPS, VFBSMPS VBAT XTAL 32 kHz @VDD IN1, IN2, ETR, OUT as AF OPAMP2 @VSW SYSCFG EXTI WKUP CEC as AF OUT1, OUT2 as AF VINM, VINP, VOUT as AF LS LPTIM5 IN[1:4] as AF OPAMP1 VCORE BBgen + POWER MNGT RTC Backup registers LS OUT as AF TX, RX, RXFD_MODE, TXFD_MODE as AF TX, RX, RXFD_MODE, TXFD_MODE as AF TX, RX, RXFD_MODE, TXFD_MODE as AF @VDD PWRCTRL SAI4 COMP1&2 OUT as AF LPTIM1 16b RCC Reset & control AHB4 (275MHz) GPIO PORTJ,K APB4 MHz (max) APB4 138138 MHz (max) PJ,PK[11:0] SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF USBCR FIFO USART1 TIM8/PWM SPI3/I2S3 I2C1/SMBUS RAM I/F 32-bit AHB BUS-MATRIX MOSI, MISO, SCK, NSS / SDO, SDI, CK, WS, MCK, as AF MOSI, MISO, SCK, NSS / SDO, SDI, CK, WS, MCK, as AF SPI2/I2S2 APB1 138 MHz (max) SPI4 10 KB SRAM TIM15 GPIO PORTA.. H SCL, SDA, SMBA as AF CH[4;1], ETR as AF TIM5 A P B 10 MHz 3 TIM17 TIM16 PA..H[15:0] SD_[A;B], SCK_[A;B], FS_[A;B], MCLK_[A;B], D[3:1], CK[2:1] as AF COMPx_INP, COMPx_INM, COMPx_OUT as AF TIM4 32b UART8 USART6 Up to 17 analog inputs Some common to ADC1 and 2 16b SPI5 USART10 CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2 as AF CH[4;1], ETR as AF FIFO SAI1 RX, TX, CK, CTS, RTS, DE as AF CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2 as AF 16b CH[4;1], ETR as AF TIM3 DFSDM RX, TX, CK, CTS, RTS, DE as AF RX, TX, CK, CTS, RTS, DE as AF TIM7 TIM2 16b AHB/APB AHB4 RX, TX, CTS, RTS, DE as AF 16b SWPMI AHB4_MEMD3 (275MHz) MOSI, MISO, SCK, NSS / SDO, SDI, CK, WS, MCK, as AF PSSI AHB4 (275MHz) MOSI, MISO, SCK, NSS as AF TIM6 32b Digital filter 2 compl. chan.(TIM15_CH1[1:2]N), 2 chan. (TIM_CH15[1:2], BKIN as AF DCMI AHB4 1 compl. chan.(TIM17_CH1N), 1 chan. (TIM17_CH1, BKIN as AF 1 compl. chan.(TIM16_CH1N), 1 chan. (TIM16_CH1, BKIN as AF FMAC AHB2 (275MHz) Up to 20 analog inputs Most are common to ADC1 & 2 ADC2 AHB/APB CORDIC AXI/AHB34 (275MHz) APB2 138 MHz (max) MOSI, MISO, SCK, NSS as AF ADC1 AHB4 SD_[A;B], SCK_[A;B], FS_[A;B], MCLK_[A;B], D[3:1], CK[2:1] as AF 3DES/AES AHB3 FIFO SDMMC1 APB4 138 MHz (max) CKOUT, DATIN[7:0], CKIN[7:0] HASH SRAM1 SRAM2 16 KB 16 KB DLYBOS1-2 AHB/APB DLYBSD2 HSYNC, VSYNC, PIXCLK, D[13:0] PDCK, DE, RDY, D[15:0] RNG OCTOSPI2 signals DLYBSD1 D[7:0], D123DIR, D0DIR, CMD, CKas AF DMA/ FIFO FIFO 32-bit AHB BUS-MATRIX DMA Mux1 FMC_signals AHB2 (275MHz) FIFO OTFDEC2 APB3 (138MHz) CHROM-ART (DMA2D) 64-bit AXI BUS-MATRIX 16 Streams FIFO OTFDEC1 AHBS LCD_R[7:0], LCD_G[7:0], LCD_B[7:0], LCD_HSYNC, LCD_VSYNC, LCD_DE, LCD_CLK DMA/ FIFO 8 Stream 8 Stream FIFOs FIFOs 128KB FLASH FMC D-Cache 32KB MDMA PHY ETHER SDMMC2 OTG_HS MAC AHB1 (275MHz) AXIM ETM I-Cache 32KB DMA2 (275MHz) AXI/AHB12 (275MHz) OCTOSPIM TRACECLK TRACED[3:0] 128 KB AXI SRAM Arm CPU JTAG/SW Cortex-M7 550 MHz OCTOSPI1 NJTRST, JTDI, JTCK/SWCLK JTDO/SWDIO, JTDO DMA1 Shared AXI I-TCM 192KB OCTOSPI2 D-TCM 64KB D[7:0],DP, DM, STP, D123DIR, NXT,ULPI:CK D0DIR, , D[7:0], DIR, CMD, CKas AF ID, VBUS AWU OSC32_IN OSC32_OUT TS, TAMP1, TAMP3, OUT, REFIN @VDD XTAL OSC 4- 48 MHz PLL1+PLL2+PLL3 OSC_IN OSC_OUT @VDD POR reset Int SUPPLY SUPERVISION POR/PDR/BOR PVD VDDA, VSSA NRESET WKUP[1;2;4;6] MSv65314V2 DS13315 Rev 2 17/262 56 Description STM32H730xB Table 1. STM32H730xB features and peripheral counts STM32H730IBT6Q - yes yes yes yes yes Multiplexed I/O NOR Flash memory yes yes yes yes yes yes yes 16-bit NAND Flash memory yes yes yes yes yes yes yes 16-bit SDRAM controller - - yes yes yes yes yes 24-bit SDRAM controller(1) - - - - - yes - 112 114 121 128 119 STM32H730VBT6 Flash memory (Kbytes) SRAM (Kbytes) 128 SRAM mapped onto AXI bus 128 SRAM1 (D2 domain) 16 SRAM2 (D2 domain) 16 SRAM4 (D3 domain) 16 RAM shared between ITCM and AXI (Kbytes) 192 ITCM RAM TCM RAM (instruction) in Kbytes DTCM RAM 64 128 (data) Backup SRAM (Kbytes) 4 Interface FMC GPIO 18/262 STM32H730ZBI6 - STM32H730ZBT6 NOR Flash memory/RAM controller Peripherals STM32H730VBH6 STM32H730IBK6Q SMPS STM32H730ABI6Q no SMPS 1 80 DS13315 Rev 2 STM32H730xB Description Table 1. STM32H730xB features and peripheral counts (continued) STM32H730ZBT6 STM32H730ZBI6 STM32H730ABI6Q STM32H730IBK6Q STM32H730IBT6Q Octo-SPI interface STM32H730VBH6 Peripherals SMPS STM32H730VBT6 no SMPS 2(2) 2(2) 2 2 2 2 2 OTFDEC yes Cordic yes FMAC yes General purpose 32 bits 2 2 2 2 2 2 2 General purpose 16 bits 10 10 10 10 10 10 10 Advanced control (PWM) 2 2 2 2 2 2 2 Basic 2 2 2 2 2 2 2 Low-power 5 5 5 5 5 5 5 RTC 1 1 1 1 1 1 1 Window watchdog / independent watchdog 2 2 2 2 2 2 2 Wakeup pins 4 4 4 4 4 4 4 Tamper pins 2 2 2 2 2 2 2 Timers Random number generator yes Cryptographic accelerator yes DS13315 Rev 2 19/262 56 Description STM32H730xB Table 1. STM32H730xB features and peripheral counts (continued) STM32H730VBH6 STM32H730ZBT6 STM32H730ZBI6 STM32H730ABI6Q STM32H730IBK6Q STM32H730IBT6Q SMPS STM32H730VBT6 no SMPS 5/4 5/4 6/4 6/4 4/4 6/4 6/4 5 5 5 5 5 5 5 USART/UART/ LPUART 5/5/1 5/5/1 5/5/1 5/5/1 5/5/1 5/5/1 5/5/1 SAI/PDM 2/1(3) 2/1(3) 2/1 2/1 2/1 2/1 2/1 Peripherals SPI / I2S I2C SPDIFRX 1 HDMI-CEC Communic SWPMI ation interfaces MDIO 1 1 1 SDMMC FDCAN/TTFDCAN 2 2/1 2/1 2/1 2/1 2/1 2/1 2/1 USB [OTG_HS(ULPI)/ FS(PHY)] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] Ethernet [MII/RMII] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] 1 [1/1] Camera interface/PSSI yes LCD-TFT yes Chrom-ART Accelerator (DMA2D) yes Number of ADCs Number of Direct channels ADC1/ADC2 16-bit ADCs 20/262 2 0 2/2 0 2/2 2/2 2/2 0 Number of Fast channels ADC1/ADC2 3/2 3/2 4/3 4/3 6/5 6/5 4/3 Number of Slow channels ADC1/ADC2 11/10 9/8 12/11 12/11 12/11 12/11 12/11 DS13315 Rev 2 STM32H730xB Description Table 1. STM32H730xB features and peripheral counts (continued) STM32H730IBT6Q 2 2 2 2 2 2 2 Number of Fast channels 2 6 6 6 6 6 6 Number of Slow channels 0 9 4 9 9 9 4 STM32H730ZBI6 STM32H730ZBT6 STM32H730VBH6 Number of Direct channels Peripherals STM32H730VBT6 STM32H730IBK6Q SMPS STM32H730ABI6Q no SMPS Number of ADCs 12-bit ADCs 1 Present in IC yes 12-bit DAC Number of channels 2 Comparators 2 Operational amplifiers 2 DFSDM Present in IC yes Maximum CPU frequency 550 MHz USB separate supply pad - yes yes yes yes yes yes USB internal regulator - - - - yes yes yes LDO yes SMPS step-down converter Operating voltage no yes 1.71 to 3.6 V 1.62 to 3.6 V Operating temperature Package -40°C to +85°C LQFP 100 TFBGA 100 LQFP 144 UFBGA 144 UFBGA 169 UFBGA 176+25 LQFP176 1. The 24-bit SDRAM controller is a 32-bit controller with only a 24-bit data bus and without NBL2-3. It can be used for graphical purposes to access aligned 32-bit words ignoring upper 8 bits. 2. The two Octo-SPI/Quad-SPI interfaces are available only in Muxed mode. 3. For limitations on peripheral features depending on packages, check the available pins/balls in Table 7: STM32H730xB pin and ball descriptions. DS13315 Rev 2 21/262 56 Functional overview STM32H730xB 3 Functional overview 3.1 Arm® Cortex®-M7 with FPU The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency. The Cortex®-M7 processor is a highly efficient high-performance featuring: • Six-stage dual-issue pipeline • Dynamic branch prediction • Harvard architecture with L1 caches (32 Kbytes of I-cache and 32 Kbytes of D-cache) • 64-bit AXI interface • 64-bit ITCM interface • 2x32-bit DTCM interfaces The following memory interfaces are supported: • Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency • Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses • AXI Bus interface to optimize Burst transfers • Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. Figure 1 shows the general block diagram of the STM32H730xB family. 3.2 Memory protection unit (MPU) The memory protection unit (MPU) manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions. The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory. When an unauthorized access is performed, a memory management exception is generated. 22/262 DS13315 Rev 2 STM32H730xB Functional overview 3.3 Memories 3.3.1 Embedded Flash memory The STM32H730xB devices embed 128 Kbytes of Flash memory that can be used for storing programs and data. The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of: • one Flash word (8 words, 32 bytes or 256 bits) • 10 ECC bits (single-error correction and double-error detection). The Flash memory is organized as follows: 3.3.2 • One sector of 128 Kbytes of user Flash memory (4 K Flash memory words) • 128 Kbytes of system Flash memory from which the device can boot • 2 Kbytes (64 Flash words) of user option bytes for user configuration Embedded SRAM All devices feature: • from 128 to 320 Kbytes of AXI-SRAM mapped onto the AXI bus on D1 domain • SRAM1 mapped on D2 domain: 16 Kbytes • SRAM2 mapped on D2 domain: 16 Kbytes • SRAM4 mapped on D3 domain: 16 Kbytes • 4 Kbytes of backup SRAM The content of this area is protected against possible unwanted write accesses, and can be retained in Standby or VBAT mode. • RAM mapped to TCM interface (ITCM and DTCM): Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the Cortex®-M7CPU(AHBSAHBP): – 64 to 256 Kbytes of ITCM-RAM (instruction RAM) This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the CPU. – 128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports) The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex®-M7 dual issue capability. The MDMA can be used to load code or data in ITCM or DTCM RAMs. As reflected above, 192 Kbyte of RAM can be used either for AXI SRAM or ITCM, with a 64Kbyte granularity. DS13315 Rev 2 23/262 56 Functional overview STM32H730xB Error code correction (ECC) Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at final-application software level in order to ensure data integrity through ECC algorithms implementation. SRAM data are protected by ECC: • 7 ECC bits are added per 32-bit word. • 8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM. The ECC mechanism is based on the SECDED algorithm. It supports single-error correction and double-error detection. 3.4 Secure access mode In addition to other typical memory protection mechanism (RDP, PCROP), STM32H730xB devices introduce the Secure access mode, a new enhanced security feature. This mode allows developing user-defined secure services by ensuring, on the one hand code and data protection and on the other hand code safe execution. Two types of secure services are available: • STMicroelectronics Root Secure Services: These services are embedded in System memory. They provide a secure solution for firmware and third-party modules installation. These services rely on cryptographic algorithms based on a device unique private key. • User-defined secure services: These services are embedded in user Flash memory. Examples of user secure services are proprietary user firmware update solution, secure Flash integrity check or any other sensitive applications that require a high level of protection. The secure firmware is embedded in specific user Flash memory areas configured through option bytes. Secure services are executed just after a reset and preempt all other applications to guarantee protected and safe execution. Once executed, the corresponding code and data are no more accessible. The above secure services is activated for the next reset exits through an option bit. 24/262 DS13315 Rev 2 STM32H730xB 3.5 Functional overview Boot modes At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes: • All Flash address space • All RAM address space: ITCM, DTCM RAMs and SRAMs • The System memory bootloader The boot loader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, FDCAN, USB-DFU). Refer to application note AN2606 “STM32 microcontroller System memory Boot mode” for details. 3.6 CORDIC co-processor (CORDIC) The CORDIC co-processor provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications. It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks. The filter mathematical accelerator unit performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic, which allows it to index vector elements held in local memory. The unit includes support for circular buffers on input and output, which allows digital filters to be implemented. Both finite and infinite impulse response filters can be realized. The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks. CORDIC features • 24-bit CORDIC rotation engine • Circular and Hyperbolic modes • Rotation and Vectoring modes • Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root, Natural logarithm • Programmable precision up to 20-bit • Fast convergence: 4 bits per clock cycle • Supports 16-bit and 32-bit fixed point input and output formats • Low latency AHB slave interface • Results can be read as soon as ready without polling or interrupt • DMA read and write channels DS13315 Rev 2 25/262 56 Functional overview 3.7 STM32H730xB Filter mathematical accelerator (FMAC) The filter mathematical accelerator unit performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic, which allows it to index vector elements held in local memory. The unit includes support for circular buffers on input and output, which allows digital filters to be implemented. Both finite and infinite impulse response filters can be realized. The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks. FMAC features • 16 x 16-bit multiplier • 24+2-bit accumulator with addition and subtraction • 16-bit input and output data • 256 x 16-bit local memory • Up to three areas can be defined in memory for data buffers (two input, one output), defined by programmable base address pointers and associated size registers • Input and output sample buffers can be circular • Buffer “watermark” feature reduces overhead in interrupt mode • Filter functions: FIR, IIR (direct form 1) • AHB slave interface • DMA read and write data channels 3.8 Power supply management 3.8.1 Power supply scheme STM32H730xB power supply voltages are the following: • VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD pins. • VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE • VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and OPAMP. • VDD33USB: allows the support of a VDD supply different from 3.3 V while powering the USB transceiver with 3.3V on VDD33USB. • VDD50USB can be supplied through the USB cable to generate the VDD33USB via the USB internal regulator. This allows support of a VDD supply different to 3.3 V. The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V. 26/262 • VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present. • VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V, 1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register. The DS13315 Rev 2 STM32H730xB Functional overview VCORE domain is split into the following power domains that can be independently switch off. – D1 domain containing some peripherals and the Cortex®-M7 core – D2 domain containing a large part of the peripherals – D3 domain containing some peripherals and the system control • VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply VDDSMPS must be kept at the same voltage level as VDD • VLXSMPS = SMPS step-down converter output coupled to an inductor • VFBSMPS = VCORE or 1.8 V or 2.5 V external SMPS step-down converter feedback voltage sense input. During power-up and power-down phases, the following power sequence requirements must be respected (see Figure 2): • When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB) must remain below VDD + 300 mV. • When VDD is above 1 V, all power supplies are independent. During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase. Figure 2. Power-up/power-down sequence V 3.6 VDDX(1) VDD VBOR0 1 0.3 Power-on Invalid supply area Operating mode VDDX < VDD + 300 mV Power-down time VDDX independent from VDD MSv47490V1 1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB. DS13315 Rev 2 27/262 56 Functional overview 3.8.2 STM32H730xB Power supply supervisor The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry: • Power-on reset (POR) The POR supervisor monitors VDD power supply and compares it to a fixed threshold. The devices remain in Reset mode when VDD is below this threshold, • Power-down reset (PDR) The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops below a fixed threshold. The PDR supervisor can be enabled/disabled through PDR_ON pin. • Brownout reset (BOR) The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when VDD drops below this threshold. 28/262 DS13315 Rev 2 STM32H730xB 3.8.3 Functional overview Voltage regulator The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off. Voltage regulator output can be adjusted according to application needs through 6 power supply levels: • • 3.9 Run mode (VOS0 to VOS3) – Scale 0: boosted performance (available only with LDO regulator) – Scale 1: high performance – Scale 2: medium performance and consumption – Scale 3: optimized performance and low-power consumption Stop mode (SVOS3 to SVOS5) – Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C, LPTIM) are operational – Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled. The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt. Low-power strategy There are several ways to reduce power consumption on STM32H730xB: • Decrease the dynamic power consumption by slowing down the system clocks even in Run mode and by individually clock gating the peripherals that are not used. • Save power when the CPU is idle, by selecting among the available low-power modes according to the user application needs. This allows the best compromise between short startup time and low power consumption to be achieved, according to the available wakeup sources. The devices feature several low-power modes: • CSleep (CPU clock stopped) • CStop (CPU sub-system clock stopped) • DStop (Domain bus matrix clock stopped) • Stop (System clock stopped) • DStandby (Domain powered down) • Standby (System powered down) CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex®-Mx core is set after returning from an interrupt service routine. A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode. If part of the domain is not in low-power mode, the domain remains in the current mode. Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode. DS13315 Rev 2 29/262 56 Functional overview STM32H730xB Table 2. System versus domain low-power mode System power mode D1 domain power mode D2 domain power mode D3 domain power mode Run DRun/DStop/DStandby DRun/DStop/DStandby DRun Stop DStop/DStandby DStop/DStandby DStop Standby DStandby DStandby DStandby 3.10 Reset and clock controller (RCC) The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), thus the system frequency can be changed without modifying the baudrate. 3.10.1 Clock management The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs. The RCC receives the following clock source inputs: • • Internal oscillators: – 64 MHz HSI clock – 48 MHz RC oscillator – 4 MHz CSI clock – 32 kHz LSI clock External oscillators: – HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated from a crystal/ceramic resonator) – LSE clock: 32.768 kHz The RCC provides three PLLs: one for system clock, two for kernel clocks. The system starts on the HSI clock. The user application can then select the clock configuration. 30/262 DS13315 Rev 2 STM32H730xB 3.10.2 Functional overview System reset sources Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the RCC and power controller status registers, as well as the backup power domain. A system reset is generated in the following cases: 3.11 • Power-on reset (pwr_por_rst) • Brownout reset • Low level on NRST pin (external reset) • Window watchdog • Independent watchdog • Software reset • Low-power mode security reset • Exit from Standby General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. After reset, all GPIOs (except debug pins) are in Analog mode to reduce power consumption (refer to GPIOs register reset values in the device reference manual). The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.12 Bus-interconnect matrix The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow the interconnection of bus masters with bus slaves (see Figure 3). DS13315 Rev 2 31/262 56 STM32H730xB Figure 3. STM32H730xB bus matrix AHBS OR DMA2D LTDC D1-to-D2 AHB DMA2_MEM MDMA DMA1_MEM SDMMC1 DMA2 Ethernet SDMMC2 USBHS1 MAC DMA2_PERIPH DMA1 AHBP AXIM I$ D$ 32KB 32KB ITCM 64 Kbyte ITCM 192 Kbyte DTCM 128 Kbyte DMA1_PERIPH CPU Cortex-M7 AXI SRAM 192K byte SRAM1 16 Kbyte SRAM2 16 Kbyte Flash A 128 Kbytes AHB1 DS13315 Rev 2 AXI SRAM 128 Kbyte OTFDEC1 OCTOSPI1 OTFDEC2 OCTOSPI2 AHB2 APB1 FMC AHB3 APB2 APB3 64-bit AXI bus matrix D1 domain 32-bit AHB bus matrix D2 domain D2-to-D1 AHB D2-to-D3 AHB D1-to-D3 AHB Legend 32-bit bus AHB4 TCM AHB AXI APB 32/262 64-bit bus Master interface Bus multiplexer Slave interface APB4 SRAM4 16 Kbyte Backup SRAM 4 Kbyte MSv65315V1 Functional overview BDMA 32-bit AHB bus matrix D3 domain STM32H730xB 3.13 Functional overview DMA controllers The devices feature four DMA instances and a DMA request router to unload CPU activity: • A master direct memory access (MDMA) The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface and a dedicated AHB interface to access Cortex®-M7 TCM memories. The MDMA is located in D1 domain. It is able to interface with the other DMA controllers located in D2 domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly. Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers. • Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request router capabilities. • One basic DMA (BDMA) located in D3 domain, with request router capabilities. • A DMA request multiplexer (DMAMUX) The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output trigger or DMA event. 3.14 Chrom-ART Accelerator (DMA2D) The Chrom-Art Accelerator (DMA2D) is a specialized DMA dedicated to image manipulation. It can perform the following operations: • Filling a part or the whole of a destination image with a specific color • Copying a part or the whole of a source image into a part or the whole of a destination • image • Copying a part or the whole of a source image into a part or the whole of a destination • image with a pixel format conversion • Blending a part and/or two complete source images with different pixel format and copy • the result into a part or the whole of a destination image with a different color format. • All the classical color coding schemes are supported from 4-bit up to 32-bit per pixel with indexed or direct color mode, including block based YCbCr to handle JPEG decoder output. • The DMA2D has its own dedicated memories for CLUTs (color look-up tables). An interrupt can be generated when an operation is complete or at a programmed watermark. All the operations are fully automated and are running independently from the CPU or the DMAs. DS13315 Rev 2 33/262 56 Functional overview 3.15 STM32H730xB Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and handle up to 140 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M7 with FPU core. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor context automatically saved on interrupt entry, and restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.16 Extended interrupt and event controller (EXTI) The EXTI controller performs interrupt and event management. In addition, it can wake up the processor, power domains and/or D3 domain from Stop mode. The EXTI handles up to 80 independent event/interrupt lines split as 26 configurable events and 54 direct events. Configurable events have dedicated pending flags, active edge selection, and software trigger capable. Direct events provide interrupts or events from peripherals having a status flag. 3.17 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 34/262 DS13315 Rev 2 STM32H730xB 3.18 Functional overview Flexible memory controller (FMC) The FMC controller main features are the following: • Interface with static-memory mapped devices including: 3.19 – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (4 memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data • Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories • 8-,16-, 24-bit data bus width • Independent Chip Select control for each memory bank • Independent configuration for each memory bank • Write FIFO • Read FIFO for SDRAM controller • The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the FMC kernel clock divided by 2. Octo-SPI memory interface (OCTOSPI) The OCTOSPI is a specialized communication interface targeting single, dual, quad or octal SPI memories. The STM32H730xB embeds two separate Octo-SPI interfaces. Each OCTOSPI instance supports single/dual/quad/octal SPI formats. multiplexing of single/dual/quad/octal SPI over the same bus can be achieved using the integrated OctoSPI I/O manager (OCTOSPIM). The OCTOSPI can operate in any of the three following modes: • Indirect mode: all the operations are performed using the OCTOSPI registers • Status-polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting • Memory-mapped mode: the external memory is memory mapped and it is seen by the system as if it was an internal memory supporting both read and write operations. The OCTOSPI supports two frame formats supported by most external serial memories such as serial PSRAMs, serial NAND and serial NOR Flash memories, Hyper RAMs and Hyper Flash memories. Multi chip package (MCP) combining any of the above mentioned memory types can also be supported. • The classical frame format with the command, address, alternate byte, dummy cycles and data phase • The HyperBus™ frame format. DS13315 Rev 2 35/262 56 Functional overview 3.20 STM32H730xB Analog-to-digital converters (ADCs) STM32H730xB devices embed three analog-to-digital converters, two of 16-bit resolution, and the third of 12-bit resolution. The 16-bit resolution ADCs can be configured as 16, 14, 12, 10 or 8 bits. The 12-bit resolution ADC can be configured to 12, 10 or 8 bits. Each ADC shares up to 20 external channels, performing conversions in Single-shot or Scan mode. In Scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller, thus allowing automatic transfer of ADC converted values to a destination location without any software action. In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some, or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs can be triggered by any of the TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, TIM23, TIM24, and LPTIM1 timers. 3.21 Temperature sensor STM32H730xB devices embed a temperature sensor that generates a voltage (VTS) that varies linearly with the temperature. This temperature sensor is internally connected to ADC3_IN17. The conversion range is between 1.7 V and 3.6 V. It can measure the device junction temperature ranging from − 40 to +125°C. The temperature sensor have a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the System memory area, which is accessible in Read-only mode. 3.22 Digital temperature sensor (DTS) STM32H730xB devices embed a sensor that converts the temperature into a square wave the frequency of which is proportional to the temperature. The PCLK or the LSE clock can be used as the reference clock for the measurements. A formula given in the product reference manual allows calculation of the temperature according to the measured frequency stored in the DTS_DR register. 36/262 DS13315 Rev 2 STM32H730xB 3.23 Functional overview VBAT operation The VBAT power domain contains the RTC, the backup registers and the backup SRAM. To optimize battery duration, this power domain is supplied by VDD when available or by the voltage applied on VBAT pin (when VDD supply is not present). VBAT power is switched when the PDR detects that VDD dropped below the PDR level. The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by VDD, in which case, the VBAT mode is not functional. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 3.24 Digital-to-analog converters (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel including DMA underrun error detection • external triggers for conversion • input voltage reference VREF+ or internal VREFBUF reference. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. DS13315 Rev 2 37/262 56 Functional overview 3.25 STM32H730xB Ultra-low-power comparators (COMP) STM32H730xB devices embed two rail-to-rail comparators (COMP1 and COMP2). They feature programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as selectable output polarity. The reference voltage can be one of the following: • An external I/O • A DAC output channel • An internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined into a window comparator. 3.26 Operational amplifiers (OPAMP) STM32H730xB devices embed two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability. The operational amplifier main features are: • PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3, -7 or -15 • One positive input connected to DAC • Output connected to internal ADC • Low input bias current down to 1 nA • Low input offset voltage down to 1.5 mV • Gain bandwidth up to 7.3 MHz The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15. 38/262 DS13315 Rev 2 STM32H730xB 3.27 Functional overview Digital filter for sigma-delta modulators (DFSDM) The devices embed one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support. The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from internal ADC peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM). DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution. The DFSDM peripheral supports: • • 8 multiplexed input digital serial channels: – configurable SPI interface to connect various SD modulator(s) – configurable Manchester coded 1 wire interface support – PDM (Pulse Density Modulation) microphone input support – maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding) – clock output for SD modulator(s): 0..20 MHz alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution): – • internal sources: ADC data or memory data streams (DMA) 4 digital filter modules with adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – integrator: oversampling ratio (1..256) • up to 24-bit output data resolution, signed output data format • automatic data offset correction (offset stored in register by user) • continuous or single conversion • start-of-conversion triggered by: • • • – software trigger – internal timers – external events – start-of-conversion synchronously with first digital filter module (DFSDM0) analog watchdog feature: – low value and high value data threshold registers – dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – input from final output data or from selected input digital serial channels – continuous monitoring independently from standard conversion short circuit detector to detect saturated analog input values (bottom and top range): – up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream – monitoring continuously each input serial channel break signal generation on analog watchdog event or on short circuit detector event DS13315 Rev 2 39/262 56 Functional overview • STM32H730xB extremes detector: – storage of minimum and maximum values of final conversion data – refreshed by software • DMA capability to read the final conversion data • interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence • “regular” or “injected” conversions: • – “regular” conversions can be requested at any time or even in Continuous mode without having any impact on the timing of “injected” conversions – “injected” conversions for precise timing and with high conversion priority Pulse skipper feature to support beamforming applications (delay-line like behavior). Table 3. DFSDM implementation DFSDM features 40/262 DFSDM1 Number of filters 4 Number of input transceivers/channels 8 Internal ADC parallel input X Number of external triggers 16 Regular channel information in identification register X DS13315 Rev 2 STM32H730xB 3.28 Functional overview Digital camera interface (DCMI) The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It features: 3.29 • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports Continuous mode or Snapshot (a single frame) mode • Capability to automatically crop the image PSSI The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It allows the transmitter to send a data valid signal to indicate when the data is valid, and the receiver to output a flow control signal to indicate when it is ready to sample the data. The main PSSI features are: • Slave mode operation • 8- or 16-bit parallel data input or output • 8-word (32-byte) FIFO • Data enable (DE) alternate function input and Ready (RDY) alternate function output. When enabled, these signals can either allow the transmitter to indicate when the data is valid or, the receiver to indicate when it is ready to sample the data, or both. The PSSI shares most of its circuitry with the digital camera interface (DCMI). It therefore cannot be used simultaneously with the DCMI. 3.30 LCD-TFT controller The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024 x 768) resolution with the following features: • 2 display layers with dedicated FIFO (64x64-bit) • Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer • Up to 8 input color formats selectable per layer • Flexible blending between two layers using alpha value (per pixel or constant) • Flexible programmable parameters for each layer • Color keying (transparency color) • Up to 4 programmable interrupt events • AXI master interface with burst of 16 words DS13315 Rev 2 41/262 56 Functional overview 3.31 STM32H730xB True random number generator (RNG) The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component. The RNG can be used to construct a Non-deterministic Random Bit Generator (NDRBG), as a NIST SP 800-90B compliant entropy source. The RNG true random number generator has been tested using German BSI statistical tests of AIS-31 (T0 to T8), and NIST SP800-90B statistical test suite. 3.32 Cryptographic acceleration (CRYP and HASH) The devices embed a cryptographic processor that supports the advanced cryptographic algorithms usually required to ensure confidentiality, authentication, data integrity and nonrepudiation when exchanging messages with a peer: • • Encryption/Decryption – DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key – AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter mode) chaining algorithms, 128, 192 or 256-bit key Universal HASH – – SHA-1 and SHA-2 (secure HASH algorithms) – – MD5 – – HMAC The cryptographic accelerator supports DMA request generation. 3.33 On-the-fly decryption engine (OTFDEC) The embedded OTFDEC decrypts in real-time the encrypted content stored in the external Octo-SPI memories used in Memory-mapped mode. The OTFDEC uses the AES-128 algorithm in counter mode (CTR). Code execution on external Octo-SPI memories can be protected against fault injection thanks to STMicroelectronics enhanced encryption mode (refer to RM0468 for details). 42/262 DS13315 Rev 2 STM32H730xB Functional overview The OTFDEC main features are as follow: • • On-the-fly 128-bit decryption during STM32 Octo-SPI read operations (single or multiple). – AES-CTR algorithm with keystream FIFO (depth= 4) – Support for any read size Up to four independent encrypted regions – Region definition granularity: 4096 bytes – Region configuration write locking mechanism – Two optional decryption modes: execute-only and execute-never • 128-bit key for each region, two-byte firmware version, and eight-byte applicationdefined nonce • Encryption keys confidentiality and integrity protection • – Write only registers with software locking mechanism – Availability of 8-bit CRC as public key information Support for STM32 Octo-SPI prefetching mechanism. DS13315 Rev 2 43/262 56 Functional overview 3.34 STM32H730xB Timers and watchdogs The devices include two advanced-control timers, twelve general-purpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer. All timer counters can be frozen in Debug mode. Table 4 compares the features of the advanced-control, general-purpose and basic timers. Table 4. Timer feature comparison Timer type Advanced -control Timer TIM1, TIM8 TIM2, TIM5, TIM23, TIM24 TIM3, TIM4 TIM12 DMA Capture/ Counter Counter Prescaler request compare resolution type factor generation channels TIM15 TIM16, TIM17 44/262 Max interface clock (MHz) Max timer clock (MHz) (1) 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 Yes 137.5 275 32-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 137.5 275 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 137.5 275 16-bit Up Any integer between 1 and 65536 No 2 No 137.5 275 Up Any integer between 1 and 65536 No 1 No 137.5 275 Up Any integer between 1 and 65536 Yes 2 1 137.5 275 Up Any integer between 1 and 65536 Yes 1 1 137.5 275 General purpose TIM13, TIM14 Complementary output 16-bit 16-bit 16-bit DS13315 Rev 2 STM32H730xB Functional overview Table 4. Timer feature comparison (continued) Timer type Timer DMA Capture/ Counter Counter Prescaler request compare resolution type factor generation channels Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Lowpower timer LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5 16-bit Up 1, 2, 4, 8, 16, 32, 64, 128 Complementary output Max interface clock (MHz) Max timer clock (MHz) (1) Yes 0 No 137.5 275 No 0 No 137.5 275 1. The maximum timer clock is up to 550 MHz depending on theTIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in RCC_D2CFGR register. DS13315 Rev 2 45/262 56 Functional overview 3.34.1 STM32H730xB Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (Edge- or Center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 3.34.2 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32H730xB devices (see Table 4: Timer feature comparison for differences). • TIM2, TIM3, TIM4, TIM5, TIM23, TIM24 The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4, TIM5, TIM23 and TIM24. TIM2, TIM5, TIM23 and TIM24 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or One-pulse mode output. This gives up to 24 input capture/output compare/PWMs on the largest packages. TIM2, TIM3, TIM4, TIM5, TIM23 and TIM24 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5, TIM23, and TIM24 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM12, TIM13, TIM14, TIM15, TIM16, TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5, TIM23, and TIM24 full-featured general-purpose timers or used as simple time bases. 46/262 DS13315 Rev 2 STM32H730xB 3.34.3 Functional overview Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. 3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) The low-power timers have an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 3.34.5 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous / One-shot mode • Selectable software / hardware input trigger • Selectable clock source: • Internal clock source: LSE, LSI, HSI or APB clock • External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) • Programmable digital glitch filter • Encoder mode Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. A window option allows the device to be reset when a reload operation is made too early after the previous reload. 3.34.6 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode. 3.34.7 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. DS13315 Rev 2 47/262 56 Functional overview 3.35 STM32H730xB Real-time clock (RTC), backup SRAM and backup registers The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. • Three anti-tamper detection pins with programmable filter. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode. • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC and the 32 backup registers are supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC clock sources can be: • A 32.768 kHz external crystal (LSE) • An external resonator or oscillator (LSE) • The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz) • The high-speed external clock (HSE) divided by 32. The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes. All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes. 48/262 DS13315 Rev 2 STM32H730xB 3.36 Functional overview Inter-integrated circuit interface (I2C) STM32H730xB devices embed five I2C interfaces. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • 3.37 I2C-bus specification and user manual rev. 5 compatibility: – Slave and Master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching System Management Bus (SMBus) specification rev 2.0 compatibility: – Hardware PEC (Packet Error Checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Universal synchronous/asynchronous receiver transmitter (USART) STM32H730xB devices have five embedded universal synchronous receiver transmitters (USART1, USART2, USART3, USART6, and USART10) and five universal asynchronous receiver transmitters (UART4, UART5, UART7, UART8, and UART9). Refer to Table 5: USART features for a summary of USARTx and UARTx features. These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire Half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 12.5 Mbit/s. USART1, USART2, USART3, USART6, and USART10 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability. The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. DS13315 Rev 2 49/262 56 Functional overview STM32H730xB All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can be done on: • Start bit detection • Any received data frame • A specific programmed data frame • Specific TXFIFO/RXFIFO status when FIFO mode is enabled. All USART interfaces can be served by the DMA controller. Table 5. USART features USART modes/features(1) USART1/2/3/6/10 UART4/5/7/8/9 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode (Master/Slave) X - Smartcard mode X - Single-wire Half-duplex communication X X IrDA SIR ENDEC block X X LIN mode X X Dual clock domain and wakeup from low power mode X X Receiver timeout interrupt X X Modbus communication X X Auto baud rate detection X X Driver Enable X X USART data length 7, 8 and 9 bits Tx/Rx FIFO X Tx/Rx FIFO size X 16 1. X = supported. 3.38 Low-power universal asynchronous receiver transmitter (LPUART) The device embeds one Low-Power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. 50/262 DS13315 Rev 2 STM32H730xB Functional overview The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup from Stop mode are programmable and can be done on: • Start bit detection • Any received data frame • A specific programmed data frame • Specific TXFIFO/RXFIFO status when FIFO mode is enabled. Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. 3.39 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI2S6) that allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Fullduplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode, Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability. Four standard I2S interfaces (multiplexed with SPI1, SPI2, SPI3 and SPI6) are available. They can be operated in Master or Slave mode, in Simplex communication modes, and can be configured to operate as a 16-/32-bit resolution input or output channel (except SPI2S6 which is limited to 16 bits). Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in Master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2S interfaces support 16x 8-bit embedded Rx and Tx FIFOs with DMA capability. 3.40 Serial audio interfaces (SAI) The devices embed 2 SAIs (SAI1, and SAI4) that allow designing many stereo or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller. Audio sampling frequencies up to 192 kHz are supported. In addition, up to 8 microphones can be supported thanks to an embedded PDM interface. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously. DS13315 Rev 2 51/262 56 Functional overview 3.41 STM32H730xB SPDIFRX Receiver Interface (SPDIFRX) The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1). The main SPDIFRX features are the following: • Up to 4 inputs available • Automatic symbol rate detection • Maximum symbol rate: 12.288 MHz • Stereo stream from 32 to 192 kHz supported • Supports Audio IEC-60958 and IEC-61937, consumer applications • Parity bit management • Communication using DMA for audio samples • Communication using DMA for control and user channel information • Interrupt capabilities The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags. The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms. 3.42 Single wire protocol master interface (SWPMI) The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are: • Full-duplex communication mode • automatic SWP bus state management (active, suspend, resume) • configurable bitrate up to 2 Mbit/s • automatic SOF, EOF and CRC handling SWPMI can be served by the DMA controller. 52/262 DS13315 Rev 2 STM32H730xB 3.43 Functional overview Management data input/output (MDIO) slaves The devices embed an MDIO slave interface it includes the following features: • – 32 x 16-bit firmware read/write, MDIO read-only output data registers – 32 x 16-bit firmware read-only, MDIO write-only input data registers • Configurable slave (port) address • Independently maskable interrupts/events: • 3.44 32 MDIO Registers addresses, each of which is managed using separate input and output data registers: – MDIO Register write – MDIO Register read – MDIO protocol error Able to operate in and wake up from Stop mode SD/SDIO/MMC card host interfaces (SDMMC) Two SDMMC host interfaces are available. They support MultiMediaCard System Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits. Both interfaces support the SD memory card specifications version 4.1. and the SDIO card specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits. Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous. The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM. 3.45 Controller area network (FDCAN1, FDCAN2, FDCAN3) The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit. All CAN modules (FDCAN1, FDCAN2, and FDCAN3) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. The FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and time-triggered CAN communication. A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is shared between the three modules - FDCAN1 FDCAN2 and FDCAN3. The common clock calibration unit is optional. It can be used to generate a calibrated clock for FDCAN1, FDCAN2 and FDCAN3 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1. DS13315 Rev 2 53/262 56 Functional overview 3.46 STM32H730xB Universal serial bus on-the-go high-speed (OTG_HS) The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral that supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 Mbit/s) and a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG_HS interface in HS mode, an external PHY device connected to the ULPI is required. The USB OTG_HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It features software-configurable endpoint setting and supports suspend/resume. The USB OTG_HS controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The main features are: 3.47 • Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 8 bidirectional endpoints • 16 host channels with periodic OUT support • Software configurable to OTG1.3 and OTG2.0 modes of operation • USB 2.0 LPM (Link Power Management) support • Battery Charging Specification Revision 1.2 support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Ethernet MAC interface with dedicated DMA controller (ETH) The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller. 54/262 DS13315 Rev 2 STM32H730xB Functional overview The devices include the following features: 3.48 • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception. 3.49 Debug infrastructure The devices offer a comprehensive set of debug and trace features to support software development and system integration. • Breakpoint debugging • Code execution tracing • Software instrumentation • JTAG debug port • Serial-wire debug port • Trigger input and output • Serial-wire trace port • Trace port • Arm® CoreSight™ debug and trace components The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools. The trace port performs data capture for logging and analysis. DS13315 Rev 2 55/262 56 Memory mapping 4 STM32H730xB Memory mapping Refer to the product line reference manual for details on the memory mapping as well as the boundary addresses for all peripherals. 56/262 DS13315 Rev 2 STM32H730xB 5 Pinouts, pin descriptions and alternate functions Pinouts, pin descriptions and alternate functions Figure 4. TFBGA100 pinout (without SMPS) 1 2 3 4 5 6 7 8 9 10 A PC14OSC32_IN PC13 PE2 PB9 PB7 PB4 PB3 PA15 PA14 PA13 B PC15OSC32_OUT VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C PH0-OSC_IN VSS PE4 PE1 PB5 PD6 PD3 PC12 PA9 PA11 D PH1OSC_OUT VDD PE5 PE0 BOOT0 PD7 PD4 PD0 PA8 PA10 E NRST PC2_C PE6 VSS VSS VSS VCAP PD1 PC9 PC7 F PC0 PC1 PC3_C VDD VDD VDD33USB PDR_ON VCAP PC8 PC6 G VSSA PA0 PA4 PC4 PB2 PE10 PE14 PD15 PD11 PB15 H VDDA PA1 PA5 PC5 PE7 PE11 PE15 PD14 PD10 PB14 J VSS PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13 K VDD PA3 PA7 PB1 PE9 PE13 PB11 PB12 PD8 PD12 MSv52520V1. 1. The above figure shows the package top view. DS13315 Rev 2 57/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB VDD VSS PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 5. LQFP100 pinout (without SMPS) PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VCAP PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2_C 17 59 PD12 PC3_C 18 58 PD11 VSSA 19 57 PD10 VREF+ 20 56 PD9 VDDA 21 55 PD8 PA0 22 54 PB15 PA1 23 53 PB14 PA2 24 52 PB13 PA3 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP VSS VDD LQFP100 MSv52521V1. 1. The above figure shows the package top view. 58/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Figure 6. TFBGA144 ballout (without SMPS) 1 2 3 4 5 6 7 8 9 10 11 12 A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 E E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 G G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 H H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 J J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 K K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 L L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 MSv65136V1 1. The above figure shows the package top view. DS13315 Rev 2 59/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 7. LQFP144 pinout (without SMPS) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VCAP PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDD33USB VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2_C PC3_C VDD VSSA VREF+ VDDA PA0 PA1 PA2 MSv52522V1. 1. The above figure shows the package top view. 60/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 VDD VDDLDO PDR_ON VSS VCAP PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 VDD VSS PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 VSS VDD VDDLDO VSS VCAP Figure 8. LQFP176 pinout (with SMPS) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 LQFP176 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PA13 PA12 PA11 PA10 PA9 PA8 VDD PC9 PC8 PC7 PC6 VDD33USB VDD50USB VSS PG8 PG7 PG6 PG5 PG4 VDD VSS PG3 PG2 PK2 PK1 PK0 VSS VDD PJ11 PJ10 PJ9 PJ8 VSS VDD PD15 PD14 PD13 PD12 PD11 VSS VDD PD10 PD9 PD8 VSS PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 PF13 PF14 PF15 PG0 VSS VDD PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP VSS VDDLDO VSS VDD PB12 PB13 PB14 PB15 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PE2 PE3 PE4 PE5 PE6 VSS VDD VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT VSS VDD VSSSMPS VLXSMPS VDDSMPS VFBSMPS PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2_C PC3_C VSSA VREF+ VDDA PA0 PA1 PA2 VDD MSv52553V1. 1. The above figure shows the package top view. DS13315 Rev 2 61/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Figure 9. UFBGA169 ballout (with SMPS) 1 2 3 4 5 6 7 8 9 10 11 12 13 A PE4 PE2 VDD VCAP PB6 VDD VDD PG10 PD5 VDD PC12 PC10 PH14 B PC15OSC32_OUT PE3 VSS VDDLDO PB8 PB4 VSS PG11 PD6 VSS PC11 PA14 PH13 C PC14OSC32_IN PE6 PE5 PDR_ON PB9 PB5 PG14 PG9 PD4 PD1 PA15 VSS VDD D VDD VSS PC13 PE1 PE0 PB7 PG13 PD7 PD3 PD0 PA13 VDDLDO VCAP E VLXSMPS VSSSMPS VBAT PF1 PF3 BOOT0 PG15 PG12 PD2 PA10 PA9 PA8 PA12 F VDDSMPS VFBSMPS PF0 PF2 PF5 PF7 PB3 PG4 PC6 PC7 PC9 PC8 PA11 G VDD VSS PF4 PF6 PF9 NRST PF13 PE7 PG6 PG7 PG8 VDD50USB VDD33USB H PH0-OSC_IN PH1OSC_OUT PF10 PF8 PC2 PA4 PF14 PE8 PG2 PG3 PG5 VSS VDD J PC0 PC1 VSSA PC3 PA0 PA7 PF15 PE9 PE14 PD11 PD13 PD15 PD14 K PC3_C PC2_C PA0_C PA1 PA6 PC4 PG0 PE13 PH10 PH12 PD9 PD10 PD12 L VDDA VREF+ PA1_C PA5 PB1 PB2 PG1 PE12 PB10 PH11 PB13 VSS VDD M VDD VSS PH3 VSS PB0 PF11 VSS PE10 PB11 VDDLDO VSS PD8 PB15 N PA2 PH2 PA3 VDD PC5 PF12 VDD PE11 PE15 VCAP VDD PB12 PB14 MSv52551V1. 1. The above figure shows the package top view. Figure 10. UFBGA176+25 ballout (with SMPS) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A VSS PB8 VDDLDO VCAP PB6 PB3 PG11 PG9 PD3 PD1 PA15 PA14 VDDLDO VCAP VSS B PE4 PE3 PB9 PE0 PB7 PB4 PG13 PD7 PD5 PD2 PC12 PH14 PA13 PA8 PA12 C PC13 VSS PE2 PE1 BOOT0 PB5 PG14 PG10 PD4 PD0 PC11 PC10 PH13 PA10 PA11 D PC15OSC32_OUT PC14OSC32_IN PE5 PDR_ON VDD VSS PG15 PG12 PD6 VSS VDD PH15 PA9 PC8 PC7 E VSS VBAT PE6 VDD VDD PC9 PC6 VDD50USB F VLXSMPS VSSSMPS PF1 PF0 VSS VSS VSS VSS VSS VSS VDD33USB PG6 PG5 G VDDSMPS VFBSMPS PF2 VDD VSS VSS VSS VSS VSS PG8 PG7 PG4 PG2 H PF6 PF4 PF5 PF3 VSS VSS VSS VSS VSS VDD PG3 PD14 PD13 J PH0-OSC_IN PF8 PF7 PF9 VSS VSS VSS VSS VSS PD15 PD11 VSS PD12 K PH1OSC_OUT VSS PF10 VDD VSS VSS VSS VSS VSS VSS PD9 PB15 PB14 L NRST PC0 PC1 VREF- VDD PD10 PD8 PB13 M PC2 PC3 VREF+ VDDA VDD VSS PC5 PH11 PH9 PB12 N PC2_C PC3_C VSSA PH2 PA3 PA7 P PA0 PA1 PA1_C PH4 PA4 PA5 R VSS PA2 PA0_C PH3 PH5 PC4 PB1 VDD VSS PH7 PE14 PF11 PE8 PB2 PG0 PG1 PF15 PF13 PB10 PH8 PH10 PH12 PE7 PB11 PF12 PE12 PE13 PE15 PH6 PA6 PB0 PE10 PF14 PE9 PE11 VCAP VDDLDO VSS MSv52552V1. 1. The above figure shows the package top view. 62/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 6. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin ANA Analog-only Input FT 5 V tolerant I/O TT 3.3 V tolerant I/O B Dedicated BOOT0 pin RST I/O structure Notes Pin functions Definition Bidirectional reset pin with embedded weak pull-up resistor Option for TT and FT I/Os _f I2C FM+ option _a analog option (supplied by VDDA) _u USB option (supplied by VDD33USB) _h High-speed low-voltage I/O Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DS13315 Rev 2 63/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions B3 C3 D3 1 2 3 4 1 2 3 4 A2 B2 B3 A2 B2 A1 C3 C3 B2 B1 D3 1 2 3 4 PE2 PE3 PE4 I/O FT _h I/O FT _h I/O PE5 I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 A3 Pin name (function after reset) I/O FT _h FT _h Notes A3 LQFP144 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - TRACECLK, SAI1_CK1, USART10_RX, SPI4_SCK, SAI1_MCLK_A, SAI4_MCLK_A, OCTOSPIM_P1_IO2, SAI4_CK1, ETH_MII_TXD3, FMC_A23, EVENTOUT - - TRACED0, TIM15_BKIN, SAI1_SD_B, SAI4_SD_B, USART10_TX, FMC_A19, EVENTOUT - - TRACED1, SAI1_D2, DFSDM1_DATIN3, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, SAI4_FS_A, SAI4_D2, FMC_A20, DCMI_D4/PSSI_D4, LCD_B0, EVENTOUT - - TRACED2, SAI1_CK2, DFSDM1_CKIN3, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, SAI4_SCK_A, SAI4_CK2, FMC_A21, DCMI_D6/PSSI_D6, LCD_G0, EVENTOUT - - E3 5 5 B4 C2 E3 5 PE6 I/O FT _h - TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI4_SD_A, SAI4_D1, SAI4_MCLK_B, TIM1_BKIN2_COMP12, FMC_A22, DCMI_D7/PSSI_D7, LCD_G1, EVENTOUT - - - - - - 6 VSS S - - - - - - - - - - 7 VDD S - - - - B2 6 6 C2 E3 E2 8 VBAT S - - - - A2 7 7 A1 D3 C1 9 PC13 I/O FT - EVENTOUT RTC_TAMP1/ RTC_TS, WKUP4 A1 8 8 B1 C1 D2 10 PC14-OSC32_IN I/O FT - EVENTOUT OSC32_IN 64/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) TFBGA100 LQFP100 LQFP144 UFBGA144 UFBGA169 UFBGA176+25 LQFP176 Pin type I/O structure Notes Pin Number Alternate functions B1 9 9 C1 B1 D1 11 PC15OSC32_OUT I/O FT - EVENTOUT OSC32_OUT - - - - - - 12 VSS S - - - - - - - - - - 13 VDD S - - - - - - - - E2 F2 14 VSSSMPS S - - - - - - - - E1 F1 15 VLXSMPS S - - - - - - - - F1 G1 16 VDDSMPS S - - - - - - - - F2 G2 17 VFBSMPS S - - - - - I2C2_SDA(boot), I2C5_SDA, OCTOSPIM_P2_IO0, FMC_A0, TIM23_CH1, EVENTOUT - - I2C2_SCL(boot), I2C5_SCL, OCTOSPIM_P2_IO1, FMC_A1, TIM23_CH2, EVENTOUT - - Pin name (function after reset) - - 10 C3 F3 F4 18 PF0 I/O FT _fh - - 11 C4 E4 F3 19 PF1 I/O FT _fh - I2C2_SMBA, I2C5_SMBA, OCTOSPIM_P2_IO2, FMC_A2, TIM23_CH3, EVENTOUT Additional functions - - 12 D4 F4 G3 20 PF2 I/O FT _h - - 13 E2 E5 H4 21 PF3 I/O FT _ha - OCTOSPIM_P2_IO3, FMC_A3, TIM23_CH4, EVENTOUT ADC3_INP5 - - 14 E3 G3 H2 22 PF4 I/O FT _ha - OCTOSPIM_P2_CLK, FMC_A4, EVENTOUT ADC3_INN5, ADC3_INP9 - - 15 E4 F5 H3 23 PF5 I/O FT _ha - OCTOSPIM_P2_NCLK, FMC_A5, EVENTOUT ADC3_INP4 - 10 16 - - - 24 VSS S - - - - - 11 17 - - - 25 VDD S - - - - - TIM16_CH1, FDCAN3_RX, SPI5_NSS, SAI1_SD_B, UART7_RX, SAI4_SD_B, OCTOSPIM_P1_IO3, TIM23_CH1, EVENTOUT ADC3_INN4, ADC3_INP8 - - 18 F3 G4 H1 26 PF6 FT I/O _ha DS13315 Rev 2 65/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) - - - - - 19 20 21 G3 G2 F6 H4 G5 J3 J2 J4 27 28 29 I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 F2 Pin name (function after reset) FT I/O _ha PF7 PF8 I/O PF9 I/O FT _ha FT _ha Notes - LQFP144 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - TIM17_CH1, FDCAN3_TX, SPI5_SCK, SAI1_MCLK_B, UART7_TX, SAI4_MCLK_B, OCTOSPIM_P1_IO2, TIM23_CH2, EVENTOUT ADC3_INP3 - TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS/UART7_DE, SAI4_SCK_B, TIM13_CH1, OCTOSPIM_P1_IO0, TIM23_CH3, EVENTOUT ADC3_INN3, ADC3_INP7 - TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, SAI4_FS_B, TIM14_CH1, OCTOSPIM_P1_IO1, TIM23_CH4, EVENTOUT ADC3_INP2 ADC3_INN2, ADC3_INP6 - - 22 G1 H3 K3 30 PF10 I/O FT _ha - TIM16_BKIN, SAI1_D3, PSSI_D15, OCTOSPIM_P1_CLK, SAI4_D3, DCMI_D11/PSSI_D11, LCD_DE, EVENTOUT C1 12 23 D1 H1 J1 31 PH0-OSC_IN I/O FT - EVENTOUT OSC_IN D1 13 24 E1 H2 K1 32 PH1-OSC_OUT I/O FT - EVENTOUT OSC_OUT E1 14 25 F1 G6 L1 33 NRST I/O RS T - - - - FMC_D12/FMC_AD12, DFSDM1_CKIN0, DFSDM1_DATIN4, SAI4_FS_B, FMC_A25, OTG_HS_ULPI_STP, LCD_G2, FMC_SDNWE, LCD_R5, EVENTOUT ADC123_INP10 - TRACED0, SAI4_D1, SAI1_D1, DFSDM1_DATIN0, DFSDM1_CKIN4, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, SAI4_SD_A, SDMMC2_CK, OCTOSPIM_P1_IO4, ETH_MDC, MDIOS_MDC, LCD_G5, EVENTOUT ADC123_INN10, ADC123_INP11, RTC_TAMP3, WKUP6 F1 F2 15 16 66/262 26 27 H1 H2 J1 J2 L2 L3 34 35 PC0 PC1 I/O FT _ha FT I/O _ha DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) H5 M1 - PC2 I/O FT _a - E2 17 28 - K2 N1 36 PC2_C AN A TT _a - - ADC3_INN1, ADC3_INP0 ADC12_INN12, ADC12_INP13 LQFP176 H3 UFBGA169 - UFBGA144 - LQFP144 - PWR_DEEPSLEEP, DFSDM1_CKIN1, OCTOSPIM_P1_IO5, SPI2_MISO/I2S2_SDI, DFSDM1_CKOUT, OCTOSPIM_P1_IO2, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT LQFP100 Alternate functions TFBGA100 Notes I/O structure Pin name (function after reset) Pin type UFBGA176+25 Pin Number Additional functions ADC123_INN11, ADC123_INP12 - - - H4 J4 M2 - PC3 I/O FT _a - PWR_SLEEP, DFSDM1_DATIN1, OCTOSPIM_P1_IO6, SPI2_MOSI/I2S2_SDO, OCTOSPIM_P1_IO0, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT F3 18 29 - K1 N2 37 PC3_C AN A TT _a - - ADC3_INP1 - - 30 - - - - VDD S - - - - G1 19 31 J1 J3 N3 38 VSSA S - - - - - - - K1 - L4 - VREF- S - - - - - 20 32 L1 L2 M3 39 VREF+ S - - - - H1 21 33 M1 L1 M4 40 VDDA S - - - - ADC1_INP16, WKUP1 ADC12_INN1, ADC12_INP0 G2 22 34 J2 J5 P1 41 PA0 I/O FT _ha - TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, SPI6_NSS/I2S6_WS, USART2_CTS/USART2_NSS, UART4_TX, SDMMC2_CMD, SAI4_SD_B, ETH_MII_CRS, FMC_A19, EVENTOUT - - - - K3 R3 - PA0_C AN A TT _a - - DS13315 Rev 2 67/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) K4 P2 42 PA1 I/O FT _ha - - - - - L3 P3 - PA1_C AN A TT _a - - ADC12_INP1 - TIM2_CH3, TIM5_CH3, LPTIM4_OUT, TIM15_CH1, OCTOSPIM_P1_IO0, USART2_TX(boot), SAI4_SCK_B, ETH_MDIO, MDIOS_MDIO, LCD_R1, EVENTOUT ADC12_INP14, WKUP2 - LPTIM1_IN2, OCTOSPIM_P1_IO4, SAI4_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT ADC3_INP13 J2 24 36 L2 N1 R2 LQFP176 K2 UFBGA169 35 UFBGA144 23 LQFP144 H2 TIM2_CH2, TIM5_CH2, LPTIM3_OUT, TIM15_CH1N, USART2_RTS/USART2_DE, UART4_RX, OCTOSPIM_P1_IO3, SAI4_MCLK_B, ETH_MII_RX_CLK/ETH_RMII _REF_CLK, OCTOSPIM_P1_DQS, LCD_R2, EVENTOUT LQFP100 Alternate functions TFBGA100 Notes I/O structure Pin name (function after reset) Pin type UFBGA176+25 Pin Number 43 FT _ha PA2 I/O FT I/O _ha Additional functions ADC1_INN16, ADC1_INP17 - - - - N2 N4 - PH2 - - - - - - 44 VDD S - - - - - - - - - - 45 VSS S - - - - - - - - M3 R4 - PH3 I/O FT _ha - OCTOSPIM_P1_IO5, SAI4_MCLK_B, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT ADC3_INN13, ADC3_INP14 - I2C2_SCL, LCD_G5, OTG_HS_ULPI_NXT, PSSI_D14, LCD_G4, EVENTOUT ADC3_INN14, ADC3_INP15 - I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT ADC3_INN15, ADC3_INP16 - - - - - P4 - PH4 I/O FT _fa - - - - - R5 - PH5 I/O FT _fh a 68/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) N3 N5 46 PA3 I/O FT _ha - - 26 38 - - - 47 VSS S - - - - - 27 39 - - - 48 VDD S - - - - - D1PWREN, TIM5_ETR, SPI1_NSS(boot)/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS/I2S6_WS, FMC_D8/FMC_AD8, DCMI_HSYNC/PSSI_DE, LCD_VSYNC, EVENTOUT ADC12_INP18, DAC1_OUT1 - D2PWREN, TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK(boot)/I2S1_CK, SPI6_SCK/I2S6_CK, OTG_HS_ULPI_CK, FMC_D9/FMC_AD9, PSSI_D14, LCD_R4, EVENTOUT ADC12_INN18, ADC12_INP19, DAC1_OUT2 - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO(boot)/I2S1_SDI, OCTOSPIM_P1_IO3, SPI6_MISO/I2S6_SDI, TIM13_CH1, TIM8_BKIN_COMP12, MDIOS_MDC, TIM1_BKIN_COMP12, DCMI_PIXCLK/PSSI_PDCK, LCD_G2, EVENTOUT ADC12_INP3 G3 H3 J3 28 29 30 40 41 42 J3 K3 L3 H6 L4 K5 P5 P6 R7 LQFP176 M2 UFBGA169 37 UFBGA144 25 LQFP144 K2 TIM2_CH4, TIM5_CH4, LPTIM5_OUT, TIM15_CH2, I2S6_MCK, OCTOSPIM_P1_IO2, USART2_RX(boot), LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, OCTOSPIM_P1_CLK, LCD_B5, EVENTOUT LQFP100 Alternate functions TFBGA100 Notes I/O structure Pin name (function after reset) Pin type UFBGA176+25 Pin Number 49 50 51 PA4 PA5 PA6 I/O I/O I/O TT _ha TT _ha FT _ha DS13315 Rev 2 Additional functions ADC12_INP15 69/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) G4 H4 J4 K4 31 32 33 34 35 70/262 44 45 46 47 M3 J4 K4 L4 M4 J6 K6 N5 M5 L5 N6 R6 M7 R8 M8 52 53 54 55 56 PA7 PC4 PC5 PB0 PB1 I/O I/O I/O I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 43 Pin name (function after reset) TT _ha TT _ha TT _ha TT I/O _ha I/O FT _ha DS13315 Rev 2 Notes K3 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI(boot)/I2S1_SDO, SPI6_MOSI/I2S6_SDO, TIM14_CH1, OCTOSPIM_P1_IO2, ETH_MII_RX_DV/ETH_RMII_ CRS_DV, FMC_SDNWE, LCD_VSYNC, EVENTOUT ADC12_INN3, ADC12_INP7, OPAMP1_VINM - PWR_DEEPSLEEP, FMC_A22, DFSDM1_CKIN2, I2S1_MCK, SPDIFRX1_IN3, SDMMC2_CKIN, ETH_MII_RXD0/ETH_RMII_R XD0, FMC_SDNE0, LCD_R7, EVENTOUT ADC12_INP4, OPAMP1_VOUT, COMP1_INM - PWR_SLEEP, SAI4_D3, SAI1_D3, DFSDM1_DATIN2, PSSI_D15, SPDIFRX1_IN4, OCTOSPIM_P1_DQS, ETH_MII_RXD1/ETH_RMII_R XD1, FMC_SDCKE0, COMP1_OUT, LCD_DE, EVENTOUT ADC12_INN4, ADC12_INP8, OPAMP1_VINM - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, OCTOSPIM_P1_IO1, DFSDM1_CKOUT, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, LCD_G1, EVENTOUT ADC12_INN5, ADC12_INP9, OPAMP1_VINP, COMP1_INP - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OCTOSPIM_P1_IO0, DFSDM1_DATIN1, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT ADC12_INP5, COMP1_INM STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) 36 J5 L6 P7 57 I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 48 Pin name (function after reset) FT _ha Notes G5 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - RTC_OUT, SAI4_D1, SAI1_D1, DFSDM1_CKIN1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, SAI4_SD_A, OCTOSPIM_P1_CLK, OCTOSPIM_P1_DQS, ETH_TX_ER, TIM23_ETR, EVENTOUT COMP1_INP ADC1_INP2 PB2 I/O - SPI5_MOSI, OCTOSPIM_P1_NCLK, SAI4_SD_B, FMC_NRAS, DCMI_D12/PSSI_D12, TIM24_CH1, EVENTOUT - - 49 M5 M6 N7 58 PF11 FT I/O _ha - - 50 L5 N6 P11 59 PF12 I/O FT _ha - OCTOSPIM_P2_DQS, FMC_A6, TIM24_CH2, EVENTOUT ADC1_INN2, ADC1_INP6 - - 51 - - - - VSS S - - - - - - 52 - - - - VDD S - - - - - - 53 K5 G7 N11 60 PF13 I/O FT _ha - DFSDM1_DATIN6, I2C4_SMBA, FMC_A7, TIM24_CH3, EVENTOUT ADC2_INP2 - - 54 M6 H7 R10 61 PF14 I/O FT _fh a - DFSDM1_CKIN6, I2C4_SCL, FMC_A8, TIM24_CH4, EVENTOUT ADC2_INN2, ADC2_INP6 - - 55 L6 J7 N10 62 PF15 I/O FT _fh - I2C4_SDA, FMC_A9, EVENTOUT - - - 56 K6 K7 P8 63 PG0 I/O FT _h - OCTOSPIM_P2_IO4, UART9_RX, FMC_A10, EVENTOUT - - - - - - - 64 VSS S - - - - - - - - - - 65 VDD S - - - - - - 57 J6 L7 N9 66 PG1 I/O TT _h - OCTOSPIM_P2_IO5, UART9_TX, FMC_A11, EVENTOUT OPAMP2_VINM - TIM1_ETR, DFSDM1_DATIN2, UART7_RX, OCTOSPIM_P1_IO4, FMC_D4/FMC_AD4, EVENTOUT OPAMP2_VOUT, COMP2_INM H5 37 58 M7 G8 P9 67 PE7 I/O TT _ha DS13315 Rev 2 71/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) 38 L7 H8 N8 68 I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 59 Pin name (function after reset) PE8 TT I/O _ha TT I/O _ha Notes J5 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - TIM1_CH1N, DFSDM1_CKIN2, UART7_TX, OCTOSPIM_P1_IO5, FMC_D5/FMC_AD5, COMP2_OUT, EVENTOUT OPAMP2_VINM - TIM1_CH1, DFSDM1_CKOUT, UART7_RTS/UART7_DE, OCTOSPIM_P1_IO6, FMC_D6/FMC_AD6, EVENTOUT OPAMP2_VINP, COMP2_INP K5 39 60 K7 J8 R11 69 PE9 - - 61 - - - 70 VSS S - - - - - - 62 - - - 71 VDD S - - - - - TIM1_CH2N, DFSDM1_DATIN4, UART7_CTS, OCTOSPIM_P1_IO7, FMC_D7/FMC_AD7, EVENTOUT COMP2_INM - TIM1_CH2, DFSDM1_CKIN4, SPI4_NSS(boot), SAI4_SD_B, OCTOSPIM_P1_NCS, FMC_D8/FMC_AD8, LCD_G3, EVENTOUT COMP2_INP - TIM1_CH3N, DFSDM1_DATIN5, SPI4_SCK(boot), SAI4_SCK_B, FMC_D9/FMC_AD9, COMP1_OUT, LCD_B4, EVENTOUT - - - G6 H6 J6 40 41 42 63 64 65 J7 H8 J8 M8 N8 L8 R9 R12 P12 72 73 74 PE10 PE11 PE12 I/O I/O I/O FT _ha FT _ha FT _h K6 43 66 K8 K8 P13 75 PE13 I/O FT _h - TIM1_CH3, DFSDM1_CKIN5, SPI4_MISO(boot), SAI4_FS_B, FMC_D10/FMC_AD10, COMP2_OUT, LCD_DE, EVENTOUT G7 44 67 L8 J9 M12 76 PE14 I/O FT _h - TIM1_CH4, SPI4_MOSI(boot), SAI4_MCLK_B, FMC_D11/FMC_AD11, LCD_CLK, EVENTOUT 72/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) UFBGA144 UFBGA169 UFBGA176+25 LQFP176 68 M8 N9 P14 77 J7 46 69 M9 K7 47 70 M10 F8 48 71 H7 - 49 - - - - - - - 50 72 - - - - - L9 N12 78 PE15 I/O PB10 I/O Notes LQFP144 45 I/O structure LQFP100 H7 Pin name (function after reset) Pin type TFBGA100 Pin Number Alternate functions Additional functions FT _h - TIM1_BKIN, USART10_CK, FMC_D12/FMC_AD12, TIM1_BKIN_COMP12, LCD_R7, EVENTOUT - - TIM2_CH3, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, DFSDM1_DATIN7, USART3_TX(boot), OCTOSPIM_P1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT - - FT _fh P10 79 PB11 I/O FT _f - TIM2_CH4, LPTIM2_ETR, I2C2_SDA, DFSDM1_CKIN7, USART3_RX(boot), OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_RMII_T X_EN, LCD_G5, EVENTOUT N10 R13 80 VCAP S - - - - 81 VSS S - - - - 82 VDDLDO S - - - - - VDD S - - - - I/O FT _h - TIM12_CH1, I2C2_SMBA, SPI5_SCK, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8/PSSI_D8, EVENTOUT - - I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9/PSSI_D9, EVENTOUT - - TIM5_ETR, I2C3_SDA, FMC_D16, DCMI_HSYNC/PSSI_DE, LCD_R2, EVENTOUT - - TIM12_CH2, I2C3_SMBA, FMC_D17, DCMI_D0/PSSI_D0, LCD_R3, EVENTOUT - M9 - - M10 R14 - - - P15 - PH6 - - - - - M11 - PH7 I/O FT _fh - - - - - N13 - PH8 I/O FT _fh I/O FT _h - - - - - M14 - PH9 DS13315 Rev 2 73/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) UFBGA144 UFBGA169 UFBGA176+25 LQFP176 - - K9 N14 - - - - - - - - - - - - - - - - - - - K8 J8 51 52 74/262 73 74 Additional functions FT _h - TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1/PSSI_D1, LCD_R4, EVENTOUT - - TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2/PSSI_D2, LCD_R5, EVENTOUT - - PH11 I/O - 83 VSS S - - - - - 84 VDD S - - - - - PH12 I/O FT _fh - TIM5_CH3, I2C4_SDA, FMC_D20, DCMI_D3/PSSI_D3, LCD_R6, EVENTOUT - - TIM1_BKIN, OCTOSPIM_P1_NCLK, I2C2_SMBA, SPI2_NSS/I2S2_WS, DFSDM1_DATIN1, USART3_CK, FDCAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RMII_TX D0, OCTOSPIM_P1_IO0, TIM1_BKIN_COMP12, UART5_RX, EVENTOUT - - TIM1_CH1N, LPTIM2_OUT, OCTOSPIM_P1_IO2, SPI2_SCK/I2S2_CK, DFSDM1_CKIN1, USART3_CTS/USART3_NSS, FDCAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RMII_TX D1, SDMMC1_D0, DCMI_D2/PSSI_D2, UART5_TX, EVENTOUT - L10 M13 K10 N15 L11 I/O Alternate functions FT _fh M11 N12 M15 M12 PH10 Notes LQFP144 - I/O structure LQFP100 - Pin name (function after reset) Pin type TFBGA100 Pin Number L15 85 86 PB12 PB13 I/O I/O FT _h FT _h DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) G10 K9 53 54 55 76 77 L11 L12 L9 N13 K15 M13 K14 M12 L14 87 88 89 PB14 PB15 PD8 I/O I/O I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 75 Pin name (function after reset) FT _h FT _h Notes H10 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, DFSDM1_DATIN2, USART3_RTS/USART3_DE, UART4_RTS/UART4_DE, SDMMC2_D0, FMC_D10/FMC_AD10, LCD_CLK, EVENTOUT - - RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, DFSDM1_CKIN2, UART4_CTS, SDMMC2_D1, FMC_D11/FMC_AD11, LCD_G7, EVENTOUT - - DFSDM1_CKIN3, USART3_TX(boot), SPDIFRX1_IN2, FMC_D13/FMC_AD13, EVENTOUT - - I/O FT _h - DFSDM1_DATIN3, USART3_RX(boot), FMC_D14/FMC_AD14, EVENTOUT J9 56 78 K9 K11 K13 90 PD9 I/O FT _h H9 57 79 J9 K12 L13 91 PD10 I/O FT _h - DFSDM1_CKOUT, USART3_CK, FMC_D15/FMC_AD15, LCD_B3, EVENTOUT - - - - - - - 92 VDD S - - - - - - - - - - 93 VSS S - - - - - LPTIM2_IN2, I2C4_SMBA, USART3_CTS/USART3_NSS, OCTOSPIM_P1_IO0, SAI4_SD_A, FMC_A16/FMC_CLE, EVENTOUT - G9 58 80 H9 J10 J13 94 PD11 I/O FT _h DS13315 Rev 2 75/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) 59 L10 K13 J15 95 PD12 I/O I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 81 Pin name (function after reset) FT _fh Notes K10 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, FDCAN3_RX, USART3_RTS/USART3_DE, OCTOSPIM_P1_IO1, SAI4_FS_A, FMC_A17/FMC_ALE, DCMI_D12/PSSI_D12, EVENTOUT - - J10 60 82 K10 J11 H15 96 PD13 I/O FT _fh - LPTIM1_OUT, TIM4_CH2, I2C4_SDA, FDCAN3_TX, OCTOSPIM_P1_IO3, SAI4_SCK_A, UART9_RTS/UART9_DE, FMC_A18, DCMI_D13/PSSI_D13, EVENTOUT - - 83 - - - - VSS S - - - - - - 84 - - - - VDD S - - - - I/O FT _h - TIM4_CH3, UART8_CTS, UART9_RX, FMC_D0/FMC_AD0, EVENTOUT - - TIM4_CH4, UART8_RTS/UART8_DE, UART9_TX, FMC_D1/FMC_AD1, EVENTOUT - H8 61 85 K11 J13 H14 97 PD14 G8 62 86 K12 J12 J12 98 PD15 I/O FT _h - - - - - - 99 VDD S - - - - - - - - - - 100 VSS S - - - - - - - - - - 101 PJ8 I/O FT - TIM1_CH3N, TIM8_CH1, UART8_TX, LCD_G1, EVENTOUT - - - - - - - 102 PJ9 I/O FT - TIM1_CH3, TIM8_CH1N, UART8_RX, LCD_G2, EVENTOUT - - - - - - - 103 PJ10 I/O FT - TIM1_CH2N, TIM8_CH2, SPI5_MOSI, LCD_G3, EVENTOUT - 76/262 DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) TFBGA100 LQFP100 LQFP144 UFBGA144 UFBGA169 UFBGA176+25 LQFP176 Pin type I/O structure Notes Pin Number Alternate functions - - - - - - 104 PJ11 I/O FT - TIM1_CH2, TIM8_CH2N, SPI5_MISO, LCD_G4, EVENTOUT - - - - - - - 105 VDD S - - - - - - - - - - 106 VSS S - - - - - - - - - - 107 PK0 I/O FT - TIM1_CH1N, TIM8_CH3, SPI5_SCK, LCD_G5, EVENTOUT - - - - - - - 108 PK1 I/O FT - TIM1_CH1, TIM8_CH3N, SPI5_NSS, LCD_G6, EVENTOUT - - - - - - - 109 PK2 I/O FT - TIM1_BKIN, TIM8_BKIN, TIM8_BKIN_COMP12, TIM1_BKIN_COMP12, LCD_G7, EVENTOUT - - TIM8_BKIN, TIM8_BKIN_COMP12, FMC_A12, TIM24_ETR, EVENTOUT - Pin name (function after reset) Additional functions - - 87 J12 H9 G15 110 PG2 I/O FT _h - - 88 J11 H10 H13 111 PG3 I/O FT _h - TIM8_BKIN2, TIM8_BKIN2_COMP12, FMC_A13, TIM23_ETR, EVENTOUT - - - - - - - 112 VSS S - - - - - - - - - - 113 VDD S - - - - - TIM1_BKIN2, TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - TIM1_ETR, FMC_A15/FMC_BA1, EVENTOUT - - TIM17_BKIN, OCTOSPIM_P1_NCS, FMC_NE3, DCMI_D12/PSSI_D12, LCD_R7, EVENTOUT - - - 89 J10 F8 G14 114 PG4 I/O FT _h - - 90 H12 H11 F15 115 PG5 I/O FT _h I/O FT _h - - 91 H11 G9 F14 116 PG6 DS13315 Rev 2 77/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) - - - - G12 E15 120 VDD50USB S - - - - C11 G13 F13 121 VDD33USB S - - - - - TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, I2S2_MCK, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, SDMMC1_D6, DCMI_D0/PSSI_D0, LCD_HSYNC, EVENTOUT SWPMI_IO - DBTRGIO, TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, SWPMI_TX, SDMMC1_D7, DCMI_D1/PSSI_D1, LCD_G6, EVENTOUT - - TRACED1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS/UART5_DE, FMC_NE2/FMC_NCE, FMC_INT, SWPMI_RX, SDMMC1_D0, DCMI_D2/PSSI_D2, EVENTOUT - - - - - F6 - 95 65 78/262 98 LQFP176 S - F9 UFBGA176+25 VSS 94 97 - - - 64 - FT _h - E10 - SAI1_MCLK_A, USART6_CK, OCTOSPIM_P2_DQS, FMC_INT, DCMI_D13/PSSI_D13, LCD_CLK, EVENTOUT I/O 93 96 I/O Additional functions PG8 - 63 PG7 Alternate functions TIM8_ETR, SPI6_NSS/I2S6_WS, USART6_RTS/USART6_DE, SPDIFRX1_IN3, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT - F10 UFBGA169 UFBGA144 H10 G10 G13 117 FT _h Notes 92 I/O structure - Pin name (function after reset) Pin type - LQFP144 LQFP100 TFBGA100 Pin Number G11 G11 G12 118 G12 F12 F11 - F9 - 119 E14 122 F10 D15 123 F12 D14 124 PC6 PC7 PC8 I/O I/O I/O FT _h FT _h FT _h DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) 66 99 E11 F11 - - - - - D9 C9 D10 C10 67 68 69 70 100 E12 101 D12 102 D11 103 C12 - 126 E12 B14 127 E11 D13 128 E10 C14 129 F13 C15 130 I/O structure Pin type LQFP176 E13 125 Pin name (function after reset) Notes E9 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 LQFP100 TFBGA100 Pin Number Alternate functions PC9 I/O FT _fh - MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA(boot), I2S_CKIN, I2C5_SDA, UART5_CTS, OCTOSPIM_P1_IO0, LCD_G3, SWPMI_SUSPEND, SDMMC1_D1, DCMI_D3/PSSI_D3, LCD_B2, EVENTOUT VDD S - - - - - MCO1, TIM1_CH1, TIM8_BKIN2, I2C3_SCL(boot), I2C5_SCL, USART1_CK, OTG_HS_SOF, UART7_RX, TIM8_BKIN2_COMP12, LCD_B3, LCD_R6, EVENTOUT - - TIM1_CH2, LPUART1_TX, I2C3_SMBA, SPI2_SCK/I2S2_CK, I2C5_SMBA, USART1_TX(boot), ETH_TX_ER, DCMI_D0/PSSI_D0, LCD_R5, EVENTOUT OTG_HS_VBUS - TIM1_CH3, LPUART1_RX, USART1_RX(boot), OTG_HS_ID, MDIOS_MDIO, LCD_B4, DCMI_D1/PSSI_D1, LCD_B1, EVENTOUT - - TIM1_CH4, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS/USART1_NSS, FDCAN1_RX, LCD_R4, EVENTOUT OTG_HS_DM (boot) PA8 PA9 PA10 PA11 I/O I/O I/O I/O FT _fh FT _u FT _u FT _u DS13315 Rev 2 Additional functions - 79/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) PA12 I/O FT _u - A10 72 105 A12 D11 B13 132 PA13(JTMS/ SWDIO) I/O FT - JTMS/SWDIO, EVENTOUT - E7 73 106 G9 D13 A14 133 VCAP S - - - - - 74 107 - VSS S - - - - - - - - VDDLDO S - - - - - 75 108 - 136 VDD S - - - - - - - - - PH13 I/O FT _h - TIM8_CH1N, UART4_TX, FDCAN1_TX(boot), FMC_D21, LCD_G2, EVENTOUT - - TIM8_CH2N, UART4_RX, FDCAN1_RX(boot), FMC_D22, DCMI_D4/PSSI_D4, LCD_G3, EVENTOUT - - - - - - - - - - - - - - - A9 76 109 A11 80/262 110 A10 - B13 C13 - 77 134 D12 A13 135 - A8 - LQFP176 E13 B15 131 UFBGA169 104 B12 UFBGA144 71 LQFP144 B10 TIM1_ETR, LPUART1_RTS/LPUART1_DE , SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS/USART1_DE, SAI4_FS_B, FDCAN1_TX, TIM1_BKIN2, LCD_R5, EVENTOUT LQFP100 Alternate functions TFBGA100 Notes I/O structure Pin name (function after reset) Pin type UFBGA176+25 Pin Number OTG_HS_DP (boot) - PH14 I/O FT _h D12 - PH15 I/O FT _h - TIM8_CH3N, FMC_D23, DCMI_D11/PSSI_D11, LCD_G4, EVENTOUT - - 137 VSS S - - - - PA14(JTCK/ SWCLK) I/O FT - JTCK/SWCLK, EVENTOUT - - JTDI, TIM2_CH1/TIM2_ETR, CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS/I2S6_WS, UART4_RTS/UART4_DE, LCD_R3, UART7_TX, LCD_B6, EVENTOUT - A13 B12 B12 A12 138 C11 Additional functions A11 139 PA15(JTDI) I/O FT DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) B8 C8 D8 E8 B7 78 79 80 81 82 83 112 B11 B10 113 C10 114 E10 A12 C12 140 B11 A11 C11 141 B11 142 D10 C10 143 115 D10 C10 A10 144 116 E9 E9 B10 145 PC10 PC11 PC12 PD0 PD1 PD2 I/O I/O I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 111 Pin name (function after reset) FT _fh FT _fh I/O FT _h I/O FT _h I/O FT _h I/O FT _h DS13315 Rev 2 Notes B9 LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - DFSDM1_CKIN5, I2C5_SDA, SPI3_SCK(boot)/I2S3_CK, USART3_TX, UART4_TX, OCTOSPIM_P1_IO1, LCD_B1, SWPMI_RX, SDMMC1_D2, DCMI_D8/PSSI_D8, LCD_R2, EVENTOUT - - DFSDM1_DATIN5, I2C5_SCL, SPI3_MISO(boot)/I2S3_SDI, USART3_RX, UART4_RX, OCTOSPIM_P1_NCS, SDMMC1_D3, DCMI_D4/PSSI_D4, LCD_B4, EVENTOUT - - TRACED3, FMC_D6/FMC_AD6, TIM15_CH1, I2C5_SMBA, SPI6_SCK/I2S6_CK, SPI3_MOSI(boot)/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9/PSSI_D9, LCD_R6, EVENTOUT - - DFSDM1_CKIN6, UART4_RX, FDCAN1_RX(boot), UART9_CTS, FMC_D2/FMC_AD2, LCD_B1, EVENTOUT - - DFSDM1_DATIN6, UART4_TX, FDCAN1_TX(boot), FMC_D3/FMC_AD3, EVENTOUT - - TRACED2, FMC_D7/FMC_AD7, TIM3_ETR, TIM15_BKIN, UART5_RX, LCD_B7, SDMMC1_CMD, DCMI_D11/PSSI_D11, LCD_B2, EVENTOUT - 81/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) D9 A9 146 PD3 I/O FT _h - D7 85 118 C9 C9 C9 147 PD4 I/O FT _h - USART2_RTS/USART2_DE, OCTOSPIM_P1_IO4, FMC_NOE, EVENTOUT - B6 86 119 B9 A9 B9 148 PD5 I/O FT _h - USART2_TX, OCTOSPIM_P1_IO5, FMC_NWE, EVENTOUT - - - 120 - - - - VSS S - - - - - - 121 - - - - VDD S - - - - - SAI4_D1, SAI1_D1, DFSDM1_CKIN4, DFSDM1_DATIN1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, SAI4_SD_A, OCTOSPIM_P1_IO6, SDMMC2_CK, FMC_NWAIT, DCMI_D10/PSSI_D10, LCD_B2, EVENTOUT - - C6 87 122 A8 B9 D9 LQFP176 D9 UFBGA169 117 UFBGA144 84 LQFP144 C7 DFSDM1_CKOUT, SPI2_SCK/I2S2_CK, USART2_CTS/USART2_NSS, FMC_CLK, DCMI_D5/PSSI_D5, LCD_G7, EVENTOUT LQFP100 Alternate functions TFBGA100 Notes I/O structure Pin name (function after reset) Pin type UFBGA176+25 Pin Number 149 PD6 I/O FT _h Additional functions - D6 88 123 A9 D8 B8 150 PD7 I/O FT _h - DFSDM1_DATIN4, SPI1_MOSI/I2S1_SDO, DFSDM1_CKIN1, USART2_CK, SPDIFRX1_IN1, OCTOSPIM_P1_IO7, SDMMC2_CMD, FMC_NE1, EVENTOUT - - - - - - 151 VSS S - - - - - - - - - - 152 VDD S - - - - - FDCAN3_TX, SPI1_MISO/I2S1_SDI, USART6_RX, SPDIFRX1_IN4, OCTOSPIM_P1_IO6, SAI4_FS_B, SDMMC2_D0, FMC_NE2/FMC_NCE, DCMI_VSYNC/PSSI_RDY, EVENTOUT - - 82/262 - 124 E8 C8 A8 153 PG9 I/O FT _h DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) - - - - - - - 126 127 128 D8 C8 B8 D7 A8 B8 E8 D7 C8 A7 D8 B7 154 155 156 157 PG10 PG11 PG12 PG13 I/O I/O I/O I/O I/O structure Pin type LQFP176 UFBGA176+25 UFBGA169 UFBGA144 LQFP144 125 Pin name (function after reset) FT _h FT _h FT _h FT _h Notes - LQFP100 TFBGA100 Pin Number Alternate functions Additional functions - FDCAN3_RX, OCTOSPIM_P2_IO6, SPI1_NSS/I2S1_WS, LCD_G3, SAI4_SD_B, SDMMC2_D1, FMC_NE3, DCMI_D2/PSSI_D2, LCD_B2, EVENTOUT - - LPTIM1_IN2, USART10_RX, SPI1_SCK/I2S1_CK, SPDIFRX1_IN1, OCTOSPIM_P2_IO7, SDMMC2_D2, ETH_MII_TX_EN/ETH_RMII_T X_EN, DCMI_D3/PSSI_D3, LCD_B3, EVENTOUT - - LPTIM1_IN1, OCTOSPIM_P2_NCS, USART10_TX, SPI6_MISO/I2S6_SDI, USART6_RTS/USART6_DE, SPDIFRX1_IN2, LCD_B4, SDMMC2_D3, ETH_MII_TXD1/ETH_RMII_TX D1, FMC_NE4, TIM23_CH1, LCD_B1, EVENTOUT - - TRACED0, LPTIM1_OUT, USART10_CTS/USART10_NS S, SPI6_SCK/I2S6_CK, USART6_CTS/USART6_NSS, SDMMC2_D6, ETH_MII_TXD0/ETH_RMII_TX D0, FMC_A24, TIM23_CH2, LCD_R0, EVENTOUT - - - - - 129 C7 C7 C7 158 PG14 I/O FT _h - TRACED1, LPTIM1_ETR, USART10_RTS/USART10_DE , SPI6_MOSI/I2S6_SDO, USART6_TX, OCTOSPIM_P1_IO7, SDMMC2_D7, ETH_MII_TXD1/ETH_RMII_TX D1, FMC_A25, TIM23_CH3, LCD_B0, EVENTOUT - - 130 - - - 159 VSS S - - - DS13315 Rev 2 83/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) UFBGA144 UFBGA169 UFBGA176+25 LQFP176 131 - - - 160 - A7 A6 C5 B5 - 89 90 91 92 84/262 132 133 134 135 136 B7 A7 A6 B6 C6 E7 F7 B6 C6 A5 D7 A6 B6 C6 A5 161 162 163 164 165 Notes LQFP144 - I/O structure LQFP100 - Alternate functions Additional functions - - - - - USART6_CTS/USART6_NSS, OCTOSPIM_P2_DQS, USART10_CK, FMC_NCAS, DCMI_D13/PSSI_D13, EVENTOUT - - JTDO/TRACESWO, TIM2_CH2, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, SPI6_SCK/I2S6_CK, SDMMC2_D2, CRS_SYNC, UART7_RX, TIM24_ETR, EVENTOUT - - NJTRST, TIM16_BKIN, TIM3_CH1, SPI1_MISO/I2S1_SDI, SPI3_MISO/I2S3_SDI, SPI2_NSS/I2S2_WS, SPI6_MISO/I2S6_SDI, SDMMC2_D3, UART7_TX, EVENTOUT - - TIM17_BKIN, TIM3_CH2, LCD_B5, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI/I2S6_SDO, FDCAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10/PSSI_D10, UART5_RX, EVENTOUT - - TIM16_CH1N, TIM4_CH1, I2C1_SCL(boot), CEC, I2C4_SCL, USART1_TX, LPUART1_TX, FDCAN2_TX, OCTOSPIM_P1_NCS, DFSDM1_DATIN5, FMC_SDNE1, DCMI_D5/PSSI_D5, UART5_TX, EVENTOUT - Pin name (function after reset) Pin type TFBGA100 Pin Number VDD S I/O FT _h PG15 PB3(JTDO/TRAC ESWO) PB4(NJTRST) PB5 PB6 I/O I/O I/O I/O FT _h FT _h FT _h FT _fh DS13315 Rev 2 STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) D6 B5 166 PB7 I/O FT _fa - D5 94 138 D5 E6 C5 167 BOOT0 I B - - VPP - TIM16_CH1, TIM4_CH3, DFSDM1_CKIN7, I2C1_SCL, I2C4_SCL, SDMMC1_CKIN, UART4_RX, FDCAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6/PSSI_D6, LCD_B6, EVENTOUT - - TIM17_CH1, TIM4_CH4, DFSDM1_DATIN7, I2C1_SDA(boot), SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, FDCAN1_TX, SDMMC2_D5, I2C4_SMBA, SDMMC1_D5, DCMI_D7/PSSI_D7, LCD_B7, EVENTOUT - - B4 A4 95 96 139 140 C5 B5 B5 C5 A2 B3 LQFP176 D6 UFBGA169 137 UFBGA144 93 LQFP144 A5 TIM17_CH1N, TIM4_CH2, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, DFSDM1_CKIN5, FMC_NL, DCMI_VSYNC/PSSI_RDY, EVENTOUT LQFP100 Alternate functions TFBGA100 Notes I/O structure Pin name (function after reset) Pin type UFBGA176+25 Pin Number 168 169 PB8 I/O PB9 FT _fh I/O FT _fh - LPTIM1_ETR, TIM4_ETR, LPTIM2_ETR, UART8_RX, SAI4_MCLK_A, FMC_NBL0, DCMI_D2/PSSI_D2, LCD_R0, EVENTOUT Additional functions PVD_IN D4 97 141 A5 D5 B4 170 PE0 I/O FT _h C4 98 142 A4 D4 C4 171 PE1 I/O FT _h - LPTIM1_IN2, UART8_TX, FMC_NBL1, DCMI_D3/PSSI_D3, LCD_R6, EVENTOUT - - - - - A4 A4 172 VCAP S - - - - - 99 - - - - 173 VSS S - - - - F7 - 143 E5 C4 D4 174 PDR_ON S - - - - - - - - B4 A3 175 VDDLDO S - - - - - - - - VDD S - - - - - 100 144 DS13315 Rev 2 85/262 102 Pinouts, pin descriptions and alternate functions STM32H730xB Table 7. STM32H730xB pin and ball descriptions (continued) TFBGA100 LQFP100 LQFP144 UFBGA144 UFBGA169 UFBGA176+25 LQFP176 Pin type I/O structure Notes Pin Number Alternate functions - - - - - - 176 VDD S - - - - C2 - - D2 B3 A1 - VSS S - - - - E6 - - E6 B7 A15 - VSS S - - - - J1 - - E7 B10 C2 - VSS S - - - - E4 - - G4 C12 D10 - VSS S - - - - E5 - - G8 D2 D6 - VSS S - - - - - - - G10 G2 E1 - VSS S - - - - - - - H5 H12 F10 - VSS S - - - - - - - H6 L12 F12 - VSS S - - - - - - - - M2 F6 - VSS S - - - - - - - - M4 F7 - VSS S - - - - - - - - M7 F8 - VSS S - - - - - - - - M11 F9 - VSS S - - - - - - - - - G10 - VSS S - - - - - - - - - G6 - VSS S - - - - - - - - - G7 - VSS S - - - - - - - - - G8 - VSS S - - - - - - - - - G9 - VSS S - - - - - - - - - H10 - VSS S - - - - - - - - - H6 - VSS S - - - - - - - - - H7 - VSS S - - - - - - - - - H8 - VSS S - - - - - - - - - H9 - VSS S - - - - - - - - - J10 - VSS S - - - - - - - - - J14 - VSS S - - - - - - - - - J6 - VSS S - - - - - - - - - J7 - VSS S - - - - - - - - - J8 - VSS S - - - - - - - - - J9 - VSS S - - - - - - - - - K10 - VSS S - - - - 86/262 Pin name (function after reset) DS13315 Rev 2 Additional functions STM32H730xB Pinouts, pin descriptions and alternate functions Table 7. STM32H730xB pin and ball descriptions (continued) TFBGA100 LQFP100 LQFP144 UFBGA144 UFBGA169 UFBGA176+25 LQFP176 Pin type I/O structure Notes Pin Number Alternate functions - - - - - K12 - VSS S - - - - - - - - - K2 - VSS S - - - - - - - - - K6 - VSS S - - - - - - - - - K7 - VSS S - - - - - - - - - K8 - VSS S - - - - - - - - - K9 - VSS S - - - - - - - - - M10 - VSS S - - - - - - - - - M6 - VSS S - - - - - - - - - R1 - VSS S - - - - - - - - - R15 - VSS S - - - - D2 - - D3 A3 D5 - VDD S - - - - F5 - - F4 A6 D11 - VDD S - - - - K1 - - F5 A7 E4 - VDD S - - - - F4 - - F6 A10 E12 - VDD S - - - - - - - F7 C13 G4 - VDD S - - - - - - - F8 D1 H12 - VDD S - - - - - - - F9 G1 K4 - VDD S - - - - - - - F10 H13 L12 - VDD S - - - - - - - G5 L13 M5 - VDD S - - - - - - - G6 M1 M9 - VDD S - - - - - - - G7 N4 - - VDD S - - - - - - - - N7 - - VDD S - - - - - - - - N11 - - VDD S - - - - Pin name (function after reset) DS13315 Rev 2 Additional functions 87/262 102 AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PA0 - TIM2_ CH1/TIM 2_ETR TIM5_ CH1 TIM8_ ETR TIM15_ BKIN SPI6_NSS /I2S6_WS - USART2_ CTS/ USART2_ NSS UART4_ TX SDMMC2_ CMD SAI4_SD_ B ETH_MII_ CRS PA1 - TIM2_CH 2 TIM5_ CH2 LPTIM3_ OUT TIM15_CH1 N - - USART2_ RTS/ USART2_ DE UART4_ RX OCTOSPIM _P1_IO3 SAI4_ MCLK_B PA2 - TIM2_CH 3 TIM5_ CH3 LPTIM4_ OUT TIM15_CH1 - OCTOSPI M_P1_IO0 USART2_ TX SAI4_ SCK_B - PA3 - TIM2_CH 4 TIM5_ CH4 LPTIM5_ OUT TIM15_CH2 I2S6_MCK OCTOSPI M_P1_IO2 USART2_ RX - PA4 D1PW REN - TIM5_ ETR - - SPI1_NSS SPI3_NSS/ /I2S1_WS I2S3_WS USART2_ CK PA5 D2PW REN TIM2_CH 1/TIM2_ ETR - TIM8_ CH1N - SPI1_SCK /I2S1_CK - PA6 - TIM1_ BKIN TIM3_C H1 TIM8_ BKIN - SPI1_ MISO/I2S 1_SDI PA7 - TIM1_CH 1N TIM3_ CH2 TIM8_CH 1N - PA8 MCO1 TIM1_CH 1 - TIM8_ BKIN2 I2C3_SCL Port DS13315 Rev 2 Port A AF2 AF3 AF4 AF5 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_A19 - - EVENT OUT ETH_MII_ RX_CLK/ ETH_RMII_ REF_CLK OCTOSPI M_P1_ DQS - LCD_R 2 EVENT OUT - ETH_MDIO MDIOS_ MDIO - LCD_R 1 EVENT OUT LCD_B2 OTG_HS_ ULPI_D0 ETH_MII_ COL OCTOSPI M_P1_ CLK - LCD_B 5 EVENT OUT SPI6_NS S/I2S6_ WS - - - FMC_D8/ FMC_AD 8 DCMI_ HSYNC /PSSI_ DE LCD_V SYNC EVENT OUT - SPI6_SC K/I2S6_ CK - OTG_HS_ ULPI_CK - FMC_D9/ FMC_AD 9 PSSI_ D14 LCD_R 4 EVENT OUT OCTOSPI M_P1_IO3 - SPI6_MIS O/I2S6_S DI TIM13_CH 1 TIM8_BKIN _COMP12 MDIOS_ MDC TIM1_ BKIN_ COMP12 DCMI_ PIXCL K/PSSI _PDCK LCD_G 2 EVENT OUT SPI1_ MOSI/I2S 1_SDO - - SPI6_ MOSI/I2S 6_SDO TIM14_CH 1 OCTOSPI M_P1_IO2 ETH_MII_ RX_DV/ETH _RMII_CRS _DV FMC_SD NWE - LCD_V SYNC EVENT OUT - I2C5_SCL USART1_ CK - - OTG_HS_ SOF UART7_RX TIM8_ BKIN2_ COMP12 LCD_B 3 LCD_R 6 EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 STM32H730xB AF0 Pinouts, pin descriptions and alternate functions 88/262 Table 8. STM32H730xB pin alternate functions AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PA9 - TIM1_CH 2 - LPUART1 _TX I2C3_ SMBA SPI2_SCK /I2S2_CK PA10 - TIM1_CH 3 - LPUART1 _RX - - PA11 - TIM1_CH 4 - LPUART1 _CTS - PA12 - TIM1_ ETR - LPUART1 _RTS/ LPUART1 _DE - PA13 JTMS/ SWDI O - - - - - PA14 JTCK/ SWCL K - - - - - PA15 JTDI TIM2_CH 1/TIM2_ ETR - - CEC DS13315 Rev 2 Port A Port AF2 AF3 AF4 AF5 AF13 AF14 AF15 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS I2C5_ SMBA USART1_ TX - - - ETH_TX_ER - DCMI_ D0/ PSSI_ D0 LCD_R 5 EVENT OUT - USART1_ RX - - OTG_HS_ ID MDIOS_ MDIO LCD_B4 DCMI_ D1/ PSSI_ D1 LCD_B 1 EVENT OUT SPI2_NSS UART4_RX /I2S2_WS USART1_ CTS/ USART1_ NSS - FDCAN1_ RX - - - - LCD_R 4 EVENT OUT SPI2_SCK UART4_TX /I2S2_CK USART1_ RTS/ USART1_ DE SAI4_FS_ B FDCAN1_ TX - - TIM1_ BKIN2 - LCD_R 5 EVENT OUT - - - - - - - - - EVENT OUT - - - - - - - - - EVENT OUT SPI6_NS S/I2S6_W S UART4_R TS/UART 4_DE LCD_R3 - UART7_TX - - LCD_B 6 EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 SPI1_NSS SPI3_NSS/ /I2S1_WS I2S3_WS AF7 AF8 AF9 AF10 AF11 AF12 89/262 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PB0 - TIM1_ CH2N TIM3_ CH3 TIM8_ CH2N OCTOSPIM _P1_IO1 - DFSDM1_ CKOUT - UART4_ CTS LCD_R3 OTG_HS_ ULPI_D1 ETH_MII_ RXD2 PB1 - TIM1_ CH3N TIM3_ CH4 TIM8_CH 3N OCTOSPIM _P1_IO0 - DFSDM1_ DATIN1 - - LCD_R6 OTG_HS_ ULPI_D2 PB2 RTC_ OUT SAI4_D1 SAI1_D1 - DFSDM1_ CKIN1 - SAI1_SD_ A SPI3_ MOSI/I2S 3_SDO PB3 JTDO/ TRAC ESWO TIM2_CH 2 - - - SPI1_SCK SPI3_SCK/ /I2S1_CK I2S3_CK PB4 NJT RST TIM16_ BKIN TIM3_ CH1 - - SPI1_ MISO/I2S 1_SDI PB5 - TIM17_ BKIN TIM3_ CH2 LCD_B5 I2C1_ SMBA PB6 - TIM16_ CH1N TIM4_ CH1 - PB7 - TIM17_ CH1N TIM4_ CH2 PB8 - TIM16_ CH1 PB9 - TIM17_ CH1 Port DS13315 Rev 2 Port B AF2 AF3 AF4 AF5 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS - - LCD_G 1 EVENT OUT ETH_MII_ RXD3 - - LCD_G 0 EVENT OUT OCTOSPI M_P1_ DQS ETH_TX_ER - TIM23_ ETR - EVENT OUT DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 SAI4_SD_ OCTOSPIM A _P1_CLK - SPI6_ SCK/I2S6 _CK SDMMC2_ D2 CRS_ SYNC UART7_RX - - TIM24_ ETR EVENT OUT SPI3_ MISO/I2S3 _SDI SPI2_ NSS/I2S2 _WS SPI6_ MISO/I2S 6_SDI SDMMC2_ D3 - UART7_TX - - - EVENT OUT SPI1_ MOSI/I2S 1_SDO I2C4_SMB A SPI3_ MOSI/I2S 3_SDO SPI6_ MOSI/I2S 6_SDO FDCAN2_ RX OTG_HS_ ULPI_D7 ETH_PPS_ OUT FMC_SD CKE1 DCMI_ D10/ PSSI_ D10 UART5 _RX EVENT OUT I2C1_SCL CEC I2C4_SCL USART1_ TX LPUART1 _TX FDCAN2_ TX OCTOSPI M_P1_ NCS DFSDM1_ DATIN5 FMC_SD NE1 DCMI_ D5/ PSSI_ D5 UART5 _TX EVENT OUT - I2C1_SDA - I2C4_SDA USART1_ RX LPUART1 _RX - - DFSDM1_ CKIN5 FMC_NL DCMI_ VSYNC /PSSI_ RDY - EVENT OUT TIM4_ CH3 DFSDM1_ CKIN7 I2C1_SCL - I2C4_SCL SDMMC1 _CKIN UART4_ RX FDCAN1_ RX SDMMC2_ D4 ETH_MII_ TXD3 SDMMC1 _D4 DCMI_ D6/ PSSI_ D6 LCD_B 6 EVENT OUT TIM4_ CH4 DFSDM1_ DATIN7 I2C1_SDA SPI2_NSS /I2S2_WS I2C4_SDA SDMMC1 _CDIR UART4_ TX FDCAN1_ TX SDMMC2_ D5 I2C4_SMBA SDMMC1 _D5 DCMI_ D7/ PSSI_ D7 LCD_B 7 EVENT OUT STM32H730xB AF0 Pinouts, pin descriptions and alternate functions 90/262 Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PB10 - TIM2_ CH3 - LPTIM2_ IN1 I2C2_SCL PB11 - TIM2_ CH4 - LPTIM2_ ETR PB12 - TIM1_ BKIN - OCTOSPI M_P1_ NCLK PB13 - TIM1_ CH1N - LPTIM2_ OUT PB14 - TIM1_ CH2N TIM12_ CH1 TIM8_ CH2N PB15 RTC_ REFIN TIM1_ CH3N TIM12_ CH2 TIM8_ CH3N Port DS13315 Rev 2 P r o t B AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 SPI2_SCK /I2S2_CK DFSDM1_ DATIN7 USART3_ TX - OCTOSPIM _P1_NCS OTG_HS_ ULPI_D3 ETH_MII_ RX_ER - - LCD_G 4 EVENT OUT I2C2_SDA - DFSDM1_ CKIN7 USART3_ RX - - OTG_HS_ ULPI_D4 ETH_MII_TX _EN/ETH_ RMII_TX_ EN - - LCD_G 5 EVENT OUT I2C2_ SMBA SPI2_NSS /I2S2_WS DFSDM1_ DATIN1 USART3_ CK - FDCAN2_ RX OTG_HS_ ULPI_D5 ETH_MII_TX OCTOSPI D0/ETH_ M_P1_IO RMII_TXD0 0 TIM1_ BKIN_ COMP 12 UART5 _RX EVENT OUT OCTOSPIM SPI2_SCK _P1_IO2 /I2S2_CK DFSDM1_ CKIN1 USART3_ CTS/ USART3_ NSS - FDCAN2_ TX OTG_HS_ ULPI_D6 ETH_MII_TX D1/ETH_ RMII_TXD1 SDMMC1 _D0 DCMI_ D2/P SSI_D2 UART5 _TX EVENT OUT USART1_ TX SPI2_ MISO/ I2S2_SDI DFSDM1_ DATIN2 USART3_ RTS/ USART3_ DE UART4_ RTS /UART4_ DE SDMMC2_ D0 - - FMC_D1 0/FMC_ AD10 - LCD_ CLK EVENT OUT USART1_ RX SPI2_MO SI/I2S2_ SDO DFSDM1_ CKIN2 - UART4_ CTS SDMMC2_ D1 - - FMC_D11 /FMC_AD 11 - LCD_G 7 EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 91/262 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF0 AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PC0 - FMC_D1 2/FMC_ AD12 - DFSDM1_ CKIN0 PC1 TRA CED0 SAI4_D1 - PC2 PWR_ DEEP SLEEP - PC3 PWR_ SLEEP PC4 Port DS13315 Rev 2 Prot C AF2 AF3 AF4 AF5 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS DFSDM1_ DATIN4 - SAI4_FS_ B FMC_A25 OTG_HS_ ULPI_STP LCD_G2 FMC_ SDNWE - LCD_R 5 EVENT OUT DFSDM1_ DFSDM1_C DATIN0 KIN4 SPI2_MO SI/I2S2_S DO SAI1_SD_ A - SAI4_SD_ A SDMMC2_ CK OCTOSPI M_P1_IO4 ETH_MDC MDIOS_ MDC - LCD_G 5 EVENT OUT - DFSDM1_ OCTOSPIM CKIN1 _P1_IO5 SPI2_MIS O/I2S2_S DI DFSDM1_ CKOUT - - OCTOSPIM _P1_IO2 OTG_HS_ ULPI_DIR ETH_MII_ TXD2 FMC_SD NE0 - - EVENT OUT - - DFSDM1_ OCTOSPIM DATIN1 _P1_IO6 SPI2_MO SI/I2S2_S DO - - - OCTOSPIM _P1_IO0 OTG_HS_ ULPI_NXT ETH_MII_ TX_CLK FMC_SD CKE0 - - EVENT OUT PWR_ DEEP SLEEP FMC_A2 2 - DFSDM1_ CKIN2 - I2S1_MCK - - - SPDIFRX1 _IN3 SDMMC2_ CKIN ETH_MII_ RXD0/ETH_ RMII_RXD0 FMC_SD NE0 - LCD_R 7 EVENT OUT PC5 PWR_ SLEEP SAI4_D3 SAI1_D3 DFSDM1_ DATIN2 PSSI_D15 - - - - SPDIFRX1 _IN4 OCTOSPI M_P1_ DQS ETH_MII_ RXD1/ETH_ RMII_RXD1 FMC_SD CKE0 COMP 1_OUT LCD_ DE EVENT OUT PC6 - - TIM3_ CH1 TIM8_CH 1 DFSDM1_ CKIN3 I2S2_MCK - USART6_ TX SDMMC1 _D0DIR FMC_ NWAIT SDMMC2_ D6 - SDMMC1 _D6 DCMI_ D0/ PSSI_ D0 LCD_ HSYNC EVENT OUT PC7 DBTR GIO - TIM3_ CH2 TIM8_CH 2 DFSDM1_ DATIN3 - I2S3_MCK USART6_ RX SDMMC1 _D123DIR FMC_NE1 SDMMC2_ D7 SWPMI_TX SDMMC1 _D7 DCMI_ D1/PS SI_D1 LCD_G 6 EVENT OUT PC8 TRA CED1 - TIM3_ CH3 TIM8_CH 3 - - - USART6_ CK UART5_ RTS/ UART5_ DE FMC_NE2/ FMC_NCE FMC_INT SWPMI_RX SDMMC1 _D0 DCMI_ D2/PS SI_D2 - EVENT OUT PC9 MCO2 - TIM3_C H4 TIM8_CH 4 I2C3_SDA I2S_CKIN I2C5_SDA - UART5_ CTS OCTOSPIM _P1_IO0 LCD_G3 SWPMI_SU SPEND SDMMC1 _D1 DCMI_ D3/PS SI_D3 LCD_B 2 EVENT OUT STM32H730xB - - Pinouts, pin descriptions and alternate functions 92/262 Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PC10 - - - DFSDM1_ CKIN5 I2C5_SDA PC11 - - - DFSDM1_ DATIN5 PC12 TRAC ED3 FMC_D6/ FMC_AD 6 TIM15_ CH1 PC13 - - PC14 - PC15 - DS13315 Rev 2 Prot C Port AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS - SPI3_SCK/ I2S3_CK USART3_ TX UART4_ TX OCTOSPIM _P1_IO1 LCD_B1 SWPMI_RX SDMMC1 _D2 DCMI_ D8/ PSSI_ D8 LCD_R 2 EVENT OUT I2C5_SCL - SPI3_ MISO/I2S3 _SDI USART3_ RX UART4_ RX OCTOSPIM _P1_NCS - - SDMMC1 _D3 DCMI_ D4/ PSSI_ D4 LCD_B 4 EVENT OUT - I2C5_SMB A SPI6_SCK /I2S6_CK SPI3_ MOSI/I2S3 _SDO USART3_ CK UART5_ TX - - - SDMMC1 _CK DCMI_ D9/ PSSI_ D9 LCD_R 6 EVENT OUT - - - - - - - - - - - - - EVENT OUT - - - - - - - - - - - - - - EVENT OUT - - - - - - - - - - - - - - EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 93/262 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PD0 - - - DFSDM1_ CKIN6 - - - - UART4_ RX FDCAN1_ RX - UART9_CTS PD1 - - - DFSDM1_ DATIN6 - - - - UART4_ TX FDCAN1_ TX - PD2 TRAC ED2 FMC_D7/ FMC_AD 7 TIM3_ ETR - TIM15_ BKIN - - - UART5_ RX LCD_B7 PD3 - - - DFSDM1_ CKOUT - SPI2_SCK /I2S2_CK - USART2_ CTS/ USART2_ NSS - PD4 - - - - - - - USART2_ RTS/ USART2_ DE PD5 - - - - - - - PD6 - SAI4_D1 SAI1_D1 DFSDM1_ CKIN4 DFSDM1_ DATIN1 SPI3_ MOSI/I2S 3_SDO PD7 - - - DFSDM1_ DATIN4 - PD8 - - - DFSDM1_ CKIN3 PD9 - - - DFSDM1_ DATIN3 Port DS13315 Rev 2 Port D AF2 AF3 AF4 AF5 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_D2/ FMC_AD 2 - LCD_B 1 EVENT OUT - FMC_D3/ FMC_AD 3 - - EVENT OUT - - SDMMC1 _CMD DCMI_ D11/ PSSI_ D11 LCD_B 2 EVENT OUT - - - FMC_ CLK DCMI_ D5/ PSSI_ D5 LCD_G 7 EVENT OUT - - OCTOSPI M_P1_IO4 - FMC_ NOE - - EVENT OUT USART2_ TX - - OCTOSPI M_P1_IO5 - FMC_NW E - - EVENT OUT SAI1_SD_ A USART2_ RX SAI4_SD_ A - OCTOSPI M_P1_IO6 SDMMC2_ CK FMC_ NWAIT DCMI_ D10/ PSSI_ D10 LCD_B 2 EVENT OUT SPI1_ MOSI/I2S 1_SDO DFSDM1_ CKIN1 USART2_ CK - SPDIFRX1 _IN1 OCTOSPI M_P1_IO7 SDMMC2_ CMD FMC_NE 1 - - EVENT OUT - - - USART3_ TX - SPDIFRX1 _IN2 - - FMC_D1 3/FMC_A D13 - - EVENT OUT - - - USART3_ RX - - - - FMC_D1 4/FMC_ AD14 - - EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 STM32H730xB AF0 Pinouts, pin descriptions and alternate functions 94/262 Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PD10 - - - DFSDM1_ CKOUT - - - USART3_ CK - - - - PD11 - - - LPTIM2_I N2 I2C4_SMB A - - USART3_ CTS/USA RT3_NSS - OCTOSPIM _P1_IO0 SAI4_SD_ A PD12 - LPTIM1_ IN1 TIM4_C H1 LPTIM2_I N1 I2C4_SCL FDCAN3_ RX - USART3_ RTS/USA RT3_DE - OCTOSPIM _P1_IO1 SAI4_FS_ A PD13 - LPTIM1_ OUT TIM4_C H2 - I2C4_SDA FDCAN3_ TX - - - OCTOSPIM _P1_IO3 SAI4_SCK _A PD14 - - TIM4_C H3 - - - - - UART8_C TS - - UART9_RX FMC_D0/ FMC_AD 0 PD15 - - TIM4_C H4 - - - - - UART8_R TS/UART 8_DE - - UART9_TX FMC_D1/ FMC_AD 1 DS13315 Rev 2 Prot D Port AF2 AF3 AF4 AF5 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_D1 5/FMC_A D15 - LCD_B 3 EVENT OUT - FMC_A16 /FMC_CL E - - EVENT OUT - FMC_A17 DCMI_ /FMC_AL D12/PS E SI_D12 - EVENT OUT DCMI_ UART9_RTS FMC_A18 D13/PS /UART9_DE SI_D13 - EVENT OUT - - EVENT OUT - - EVENT OUT DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 95/262 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 PE0 - LPTIM1_ ETR TIM4_E TR - LPTIM2_ET R - - - UART8_R X - SAI4_MCL K_A - PE1 - LPTIM1_I N2 - - - - - - UART8_T X - - - PE2 TRAC ECLK - SAI1_C K1 - USART10_ RX SPI4_SCK SAI1_MCL K_A - SAI4_MC LK_A OCTOSPIM _P1_IO2 SAI4_CK1 PE3 TRAC ED0 - - - TIM15_BKI N - SAI1_SD_ B - SAI4_SD_ B - PE4 TRAC ED1 - SAI1_D2 DFSDM1_ TIM15_CH1 SPI4_NSS SAI1_FS_A DATIN3 N - SAI4_FS_ A PE5 TRAC ED2 - SAI1_C K2 DFSDM1_ TIM15_CH1 CKIN3 PE6 TRAC ED3 PE7 - TIM1_ET R PE8 - PE9 PE10 Port DS13315 Rev 2 Port E AF2 TIM1_BKI SAI1_D1 N2 AF3 AF4 AF5 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_NB L0 DCMI_ D2/PS SI_D2 LCD_R 0 EVENT OUT FMC_NB L1 DCMI_ D3/PS SI_D3 LCD_R 6 EVENT OUT ETH_MII_TX FMC_A23 D3 - - EVENT OUT - USART10_T X FMC_A19 - - EVENT OUT - SAI4_D2 - FMC_A20 DCMI_ D4/PS SI_D4 LCD_B 0 EVENT OUT - FMC_A21 DCMI_ D6/PS SI_D6 LCD_G 0 EVENT OUT TIM1_BKIN2 FMC_A22 _COMP12 DCMI_ D7/PS SI_D7 LCD_G 1 EVENT OUT DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 SPI4_MIS O SAI1_SCK _A - SAI4_SC K_A - SAI4_CK2 - TIM15_CH2 SPI4_MO SI SAI1_SD_ A - SAI4_SD_ A SAI4_D1 SAI4_MCL K_B - DFSDM1_ DATIN2 - - - UART7_R X - - OCTOSPI M_P1_IO4 - FMC_D4/ FMC_AD 4 - - EVENT OUT TIM1_CH 1N - DFSDM1_ CKIN2 - - - UART7_T X - - OCTOSPI M_P1_IO5 - FMC_D5/ FMC_AD 5 COMP 2_OUT - EVENT OUT - TIM1_CH 1 - DFSDM1_ CKOUT - - - UART7_R TS/UART 7_DE - - OCTOSPI M_P1_IO6 - FMC_D6/ FMC_AD 6 - - EVENT OUT - TIM1_CH 2N - DFSDM1_ DATIN4 - - - UART7_C TS - - OCTOSPI M_P1_IO7 - FMC_D7/ FMC_AD 7 - - EVENT OUT STM32H730xB AF0 Pinouts, pin descriptions and alternate functions 96/262 Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PE11 - TIM1_CH 2 - DFSDM1_ CKIN4 - SPI4_NSS - - - - SAI4_SD_ B OCTOSPIM _P1_NCS PE12 - TIM1_CH 3N - DFSDM1_ DATIN5 - SPI4_SCK - - - - SAI4_SCK _B PE13 - TIM1_CH 3 - DFSDM1_ CKIN5 - SPI4_MIS O - - - - PE14 - TIM1_CH 4 - - - SPI4_MO SI - - - PE15 - TIM1_BKI N - - - - - - - DS13315 Rev 2 Prot E Port AF2 AF3 AF4 AF5 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_D8/ FMC_AD 8 - LCD_G 3 EVENT OUT - FMC_D9/ FMC_AD 9 COMP 1_OUT LCD_B 4 EVENT OUT SAI4_FS_ B - FMC_D1 0/FMC_A D10 COMP 2_OUT LCD_D E EVENT OUT - SAI4_MCL K_B - FMC_D11 /FMC_AD 11 - LCD_C LK EVENT OUT - - USART10_C K FMC_D1 2/FMC_A D12 TIM1_B KIN_C OMP12 LCD_R 7 EVENT OUT DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 97/262 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PF0 - - - - I2C2_SDA - I2C5_SDA - - OCTOSPIM _P2_IO0 - - PF1 - - - - I2C2_SCL - I2C5_SCL - - OCTOSPIM _P2_IO1 - PF2 - - - - I2C2_SMB A - I2C5_SMB A - - OCTOSPIM _P2_IO2 PF3 - - - - - - - - - PF4 - - - - - - - - PF5 - - - - - - - - PF6 - TIM16_C H1 FDCAN3 _RX - - SPI5_NSS SAI1_SD_ B PF7 - TIM17_C H1 FDCAN3 _TX - - SPI5_SCK PF8 - TIM16_C H1N - - - SPI5_MIS O Port DS13315 Rev 2 Port F AF2 AF3 AF4 AF5 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_A0 TIM23_ CH1 - EVENT OUT - FMC_A1 TIM23_ CH2 - EVENT OUT - - FMC_A2 TIM23_ CH3 - EVENT OUT OCTOSPIM _P2_IO3 - - FMC_A3 TIM23_ CH4 - EVENT OUT - OCTOSPIM _P2_CLK - - FMC_A4 - - EVENT OUT - OCTOSPIM _P2_NCLK - - FMC_A5 - - EVENT OUT UART7_R SAI4_SD_ X B - OCTOSPI M_P1_IO3 - - TIM23_ CH1 - EVENT OUT SAI1_MCL K_B UART7_T X SAI4_MC LK_B - OCTOSPI M_P1_IO2 - - TIM23_ CH2 - EVENT OUT SAI1_SCK _B UART7_R TS/UART 7_DE SAI4_SC K_B TIM13_CH 1 OCTOSPI M_P1_IO0 - - TIM23_ CH3 - EVENT OUT DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 STM32H730xB AF0 Pinouts, pin descriptions and alternate functions 98/262 Table 8. STM32H730xB pin alternate functions (continued) AF1 AF2 AF3 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PF9 - TIM17_C H1N - - PF10 - TIM16_B KIN SAI1_D3 PF11 - - PF12 - PF13 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF14 AF15 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS - SPI5_MO SI SAI1_FS_B UART7_C TS SAI4_FS_ B TIM14_CH 1 OCTOSPI M_P1_IO1 - - TIM23_ CH4 - EVENT OUT - PSSI_D15 - - - - OCTOSPIM _P1_CLK SAI4_D3 - - DCMI_ D11/PS SI_D11 LCD_D E EVENT OUT - - - SPI5_MO SI - - - OCTOSPIM _P1_NCLK SAI4_SD_ B - FMC_NR AS DCMI_ TIM24_ D12/PS CH1 SI_D12 EVENT OUT - - - - - - - - OCTOSPIM _P2_DQS - - FMC_A6 - TIM24_ CH2 EVENT OUT - - - DFSDM1_ DATIN6 I2C4_SMB A - - - - - - - FMC_A7 - TIM24_ CH3 EVENT OUT PF14 - - - DFSDM1_ CKIN6 I2C4_SCL - - - - - - - FMC_A8 - TIM24_ CH4 EVENT OUT PF15 - - - I2C4_SDA - - - - - - - FMC_A9 - - EVENT OUT PG0 - - - - - - - - - OCTOSPIM _P2_IO4 - UART9_RX FMC_A10 - - EVENT OUT PG1 - - - - - - - - - OCTOSPIM _P2_IO5 - UART9_TX FMC_A11 - - EVENT OUT PG2 - - - TIM8_BKI N - - - - - - - TIM8_BKIN_ FMC_A12 COMP12 - TIM24_ ETR EVENT OUT PG3 - - - TIM8_BKI N2 - - - - - - - TIM23_ TIM8_BKIN2 FMC_A13 ETR _COMP12 - EVENT OUT DS13315 Rev 2 Prot F Port Port G- AF13 99/262 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PG4 - TIM1_BKI N2 - - - - - - - - - TIM1_BKIN2 _COMP12 PG5 - TIM1_ET R - - - - - - - - - PG6 - TIM17_B KIN - - - - - - - - PG7 - - - - - - SAI1_MCL K_A USART6_ CK - PG8 - - - TIM8_ET R - SPI6_NSS /I2S6_WS - USART6_ RTS/USA RT6_DE PG9 - - FDCAN3 _TX - - SPI1_MIS O/I2S1_S DI - PG10 - - FDCAN3 _RX OCTOSPI M_P2_IO 6 - SPI1_NSS /I2S1_WS PG11 - LPTIM1_I N2 - - USART10_ RX PG12 - LPTIM1_I N1 - OCTOSPI M_P2_NC S PG13 TRAC ED0 LPTIM1_ OUT - - Port DS13315 Rev 2 Prot G AF2 AF3 AF4 AF5 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS FMC_A14 /FMC_BA 0 - - EVENT OUT - FMC_A15 /FMC_BA 1 - - EVENT OUT OCTOSPI M_P1_NC S - FMC_NE 3 DCMI_ D12/PS SI_D12 LCD_R 7 EVENT OUT OCTOSPIM _P2_DQS - - FMC_INT DCMI_ D13/PS SI_D13 LCD_C LK EVENT OUT SPDIFRX 1_IN3 - - ETH_PPS_ OUT FMC_SD CLK - LCD_G 7 EVENT OUT USART6_ RX SPDIFRX 1_IN4 OCTOSPIM _P1_IO6 SAI4_FS_ B SDMMC2_D 0 FMC_NE 2/FMC_N CE DCMI_ VSYNC /PSSI_ RDY - EVENT OUT - - - LCD_G3 SAI4_SD_ B SDMMC2_D 1 FMC_NE 3 DCMI_ D2/PS SI_D2 LCD_B 2 EVENT OUT SPI1_SCK /I2S1_CK - - SPDIFRX 1_IN1 OCTOSPIM _P2_IO7 SDMMC2_ D2 ETH_MII_TX _EN/ETH_R MII_TX_EN - DCMI_ D3/PS SI_D3 LCD_B 3 EVENT OUT USART10_ TX SPI6_MIS O/I2S6_S DI - USART6_ RTS/USA RT6_DE SPDIFRX 1_IN2 LCD_B4 SDMMC2_ D3 ETH_MII_TX D1/ETH_RM II_TXD1 FMC_NE 4 TIM23_ CH1 LCD_B 1 EVENT OUT USART10_ CTS/USAR T10_NSS SPI6_SCK /I2S6_CK - USART6_ CTS/USA RT6_NSS - - SDMMC2_ D6 ETH_MII_TX TIM23_ D0/ETH_RM FMC_A24 CH2 II_TXD0 LCD_R 0 EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 STM32H730xB AF0 Pinouts, pin descriptions and alternate functions 100/262 Table 8. STM32H730xB pin alternate functions (continued) AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PG14 TRAC ED1 LPTIM1_ ETR - - USART10_ RTS/USAR T10_DE SPI6_MO SI/I2S6_S DO - USART6_ TX - OCTOSPIM _P1_IO7 SDMMC2_ D7 PG15 - - - - - - - USART6_ CTS/USA RT6_NSS - OCTOSPIM _P2_DQS - USART10_C K FMC_NC AS PH0 - - - - - - - - - - - - PH1 - - - - - - - - - - - PH2 - LPTIM1_I N2 - - - - - - - OCTOSPIM _P1_IO4 PH3 - - - - - - - - - PH4 - - - - I2C2_SCL - - - PH5 - - - - I2C2_SDA SPI5_NSS - PH6 - - TIM12_ CH1 - I2C2_SMB A SPI5_SCK PH7 - - - - I2C3_SCL PH8 - - TIM5_E TR - PH9 - - TIM12_ CH2 - Prot G Port DS13315 Rev 2 Port H AF2 AF3 AF4 AF5 101/262 AF13 AF14 AF15 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS ETH_MII_TX TIM23_ D1/ETH_RM FMC_A25 CH3 II_TXD1 LCD_B 0 EVENT OUT DCMI_ D13/PS SI_D13 - EVENT OUT - - - EVENT OUT - - - - EVENT OUT SAI4_SCK _B ETH_MII_C RS FMC_SD CKE0 - LCD_R 0 EVENT OUT OCTOSPIM _P1_IO5 SAI4_MCL K_B ETH_MII_C OL FMC_SD NE0 - LCD_R 1 EVENT OUT - LCD_G5 OTG_HS_ ULPI_NXT - - PSSI_ D14 LCD_G 4 EVENT OUT - - - - - FMC_SD NWE - - EVENT OUT - - - - - ETH_MII_R XD2 FMC_SD NE1 DCMI_ D8/PS SI_D8 - EVENT OUT SPI5_MIS O - - - - - ETH_MII_R XD3 FMC_SD CKE1 DCMI_ D9/PS SI_D9 - EVENT OUT I2C3_SDA - - - - - - - FMC_D1 6 DCMI_ HSYNC /PSSI_ DE LCD_R 2 EVENT OUT I2C3_SMB A - - - - - - - FMC_D1 7 DCMI_ D0/PS SI_D0 LCD_R 3 EVENT OUT DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 Pinouts, pin descriptions and alternate functions AF0 STM32H730xB Table 8. STM32H730xB pin alternate functions (continued) AF0 AF1 SYS FMC/ LPTIM1/ SAI4/ TIM16/17 /TIM1x/ TIM2x PH10 - - TIM5_C H1 - I2C4_SMB A - - - - - - PH11 - - TIM5_C H2 - I2C4_SCL - - - - - PH12 - - TIM5_C H3 - I2C4_SDA - - - - PH13 - - - TIM8_CH 1N - - - - UART4_T X PH14 - - - TIM8_CH 2N - - - - PH15 - - - TIM8_CH 3N - - - - - PJ8 - TIM1_CH 3N - TIM8_CH 1 - - - - PJ9 - TIM1_CH 3 - TIM8_CH 1N - - - PJ10 - TIM1_CH 2N - TIM8_CH 2 - SPI5_MO SI PJ11 - TIM1_CH 2 - TIM8_CH 2N - SPI5_MIS O Port J DS13315 Rev 2 Prot H Port AF2 AF3 AF4 AF5 DFSDM1/ CEC/DCMI/ LCD/ PSSI/ CEC/ FDCAN3 LPTIM2/3/ DFSDM1/ FDCAN3/ /PDM_ 4/5/ I2C1/2/3/4/5 SPI1/I2S1/ SAI1/ LPUART1 /LPTIM2/ SPI2/I2S2/ TIM3/4/5 /OCTO OCTOSPIM SPI3/I2S3/ /12/15 SPIM_P1/ _P1/TIM15/ SPI4/5/6 2/TIM8 USART1/10 AF6 AF13 AF14 AF15 DFSDM1/ CRS/FMC/ SDMMC1/ LPUART1 FDCAN1/2/ ETH/I2C4/ FMC/LCD LCD/OCT SPI2/I2S2 /SAI4/ FMC/LCD/ LCD/MDIOS /MDIOS/ OSPIM_P1 /SPI3/I2S SDMMC1/ OCTOSPIM /OCTOSPIM OCTOSPI /OTG1_FS/ 3/SPI6/ SPDIFRX _P1/2/SAI4 _P1/SDMMC M_P1/ OTG1_HS/ UART7 1/SPI6/ /SDMMC2/ 2/SWPMI1/ SDMMC1 SAI4/ /USART1/ UART4/5/ SPDIFRX1/ TIM1x/TIM8/ /TIM1x/ SDMMC2/ 2/3/6 8 TIM13/14 UART7/9/ TIM8 TIM8 USART10 COMP/ DCMI/ PSSI/ LCD/ TIM1x/ TIM23 LCD/ TIM24/ UART5 SYS - FMC_D1 8 DCMI_ D1/PS SI_D1 LCD_R 4 EVENT OUT - - FMC_D1 9 DCMI_ D2/PS SI_D2 LCD_R 5 EVENT OUT - - - FMC_D2 0 DCMI_ D3/PS SI_D3 LCD_R 6 EVENT OUT FDCAN1_T X - - FMC_D2 1 - LCD_G 2 EVENT OUT UART4_R FDCAN1_R X X - - FMC_D2 2 DCMI_ D4/PS SI_D4 LCD_G 3 EVENT OUT - - - FMC_D2 3 DCMI_ D11/PS SI_D11 LCD_G 4 EVENT OUT UART8_T X - - - - - LCD_G 1 EVENT OUT - UART8_R X - - - - - LCD_G 2 EVENT OUT - - - - - - - - LCD_G 3 EVENT OUT - - - - - - - - LCD_G 4 EVENT OUT DFSDM1/ I2C4/5/ OCTO SPIM_P1/ SAI1/SPI3/ I2S3/ UART4 AF7 AF8 AF9 AF10 AF11 AF12 Pinouts, pin descriptions and alternate functions 102/262 Table 8. STM32H730xB pin alternate functions (continued) STM32H730xB STM32H730xB 6 6.1 Electrical characteristics Electrical characteristics Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at TJ = 25 °C and TJ = TJmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the 1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 11. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 12. Figure 11. Pin loading conditions Figure 12. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19011V2 DS13315 Rev 2 MS19010V2 103/262 233 Electrical characteristics 6.1.6 STM32H730xB Power supply scheme Figure 13. Power supply scheme VDDSMPS VLXSMPS Step Down Converter VFBSMPS VSSSMPS VCAP Level shifter IOs D3 domain (System logic, EXTI, IO logic Peripherals, RAM) Power switch VSS Power switch Core domain (VCORE) LDO voltage regulator VDDLDO D2 domain (peripherals, RAM) D1 domain (CPU, peripherals, RAM) Flash VSS VDD domain HSI, CSI, HSI48, HSE, PLLs VDD VBAT charging Backup domain Backup VBKP regulator VSW VBAT Power switch Power switch LSI, LSE, RTC, Wakeup logic, backup IO logic registers, Reset BKUP IOs VSS VDD50USB Backup RAM VSS USB regulator VSS VDD33USB USB FS IOs VDDA Analog domain REF_BUF VREF+ ADC, DAC VREF+ VREF- VREF- OPAMP, Comparator VSSA MSv63814V4 1. Refer to application note AN5419 “Getting started with STM32H723/733, STM32H725/735 and STM32H730 Value Line hardware development“ for the possible power scheme and connected capacitors. 104/262 DS13315 Rev 2 STM32H730xB 6.1.7 Electrical characteristics Current consumption measurement Figure 14. Current consumption measurement scheme SMPS ON LDO ON IDD_VBAT IDD_VBAT VBAT VBAT IDD IDD VDD VDD VDDSMPS VDDLDO VDDA VDDA 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 9: Voltage characteristics, Table 10: Current characteristics, and Table 11: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand. Table 9. Voltage characteristics Symbols Ratings Min Max Unit VDDX - VSS(1) External main supply voltage (including VDD, VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT) −0.3 4.0 V Input voltage on FT_xxx pins VSS−0.3 Min(VDD, VDDA, VDD33USB, VBAT) +4.0(3)(4) V Input voltage on TT_xx pins VSS−0.3 4.0 V Input voltage on BOOT0 pin VSS 9.0 V VSS-0.3 4.0 V Variations between different VDDX power pins of the same domain - 50 mV Variations between all the different ground pins - 50 mV VIN(2) Input voltage on any other pins |∆VDDX| |VSSx-VSS| 1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. 3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table. DS13315 Rev 2 105/262 233 Electrical characteristics STM32H730xB 4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled. Table 10. Current characteristics Symbols Ratings Max ΣIVDD (1) Total current into sum of all VDD power lines (source) 620 ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) 620 IVDD IVSS IIO ΣI(PIN) IINJ(PIN) (3)(4) ΣIINJ(PIN) Maximum current into each VDD power pin (source)(1) 100 (1) 100 Maximum current out of each VSS ground pin (sink) Output current sunk by any I/O and control pin, except Px_C 20 Output current sunk by Px_C pins 1 Total output current sunk by sum of all I/Os and control pins(2) Unit mA 140 Total output current sourced by sum of all I/Os and control pins(2) 140 Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5 −5/+0 Injected current on PA4, PA5 −0/0 Total injected current (sum of all I/Os and control pins)(5) ±25 1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN
STM32H730ABI6Q 价格&库存

很抱歉,暂时无法提供与“STM32H730ABI6Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货