0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7438D013TR

TDA7438D013TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC28

  • 描述:

    IC PROCESSOR AUDIO DGTL 28-SOIC

  • 数据手册
  • 价格&库存
TDA7438D013TR 数据手册
TDA7438 THREE BANDS DIGITALLY CONTROLLED AUDIO PROCESSOR 1 ■ FEATURES Figure 1. Package INPUT MULTIPLEXER – 3 STEREO INPUTS ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) 2 DESCRIPTION o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O – SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES ■ ONE STEREO OUTPUT ■ TREBLE, MIDDLE AND BASS CONTROL IN 2.0dB STEPS ■ ■ SO28 Table 1. Order Codes Package TDA7438 DIP28 TDA7438D SO28 TDA7438D013TR Tape & Reel TWO SPEAKER ATTENUATORS: – TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY ■ Part Number VOLUME CONTROL IN 1.0dB STEPS – -INDEPENDENT MUTE FUNCTION ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS The TDA7438 is a volume tone (bass, middle and treble) balance (Left/Right) processor for quality audio applications in car-radio and Hi-Fi systems. DIP28 Selectable input gain is provided. Control of all the functions is accomplished by serial bus. The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers. Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained. Figure 2. Block Diagram MUXOUTL L-IN1 3 TREBLE(L) INL 6 7 18 17 100K L-IN2 MIN(L) MOUT(L) BIN(L) 16 BOUT(L) 14 RM 15 RB 4 100K L-IN3 VOLUME G 5 TREBLE MIDDLE SPKR ATT LEFT BASS 27 LOUT 100K R-IN1 21 0/30dB 2dB STEP 2 I2CBUS DECODER + LATCHES 22 20 100K R-IN2 SDA DIG_GND 1 100K R-IN3 SCL VOLUME G TREBLE MIDDLE SPKR ATT RIGHT BASS 26 ROUT 28 VREF 100K 24 SUPPLY INPUT MULTIPLEXER + GAIN RM 8 MUXOUTR June 2004 9 INR 19 TREBLE(R) 10 RB 11 12 MIN(R) MOUT(R) BIN(R) 13 25 VS AGND 23 BOUT(R) CREF D96AU488A REV. 7 1/19 TDA7438 Table 2. Absolute Maximum Ratings Symbol VS Tamb Tstg Parameter Value Unit 10.5 V 0 to 70 °C -55 to 150 °C Operating Supply Voltage Operating Ambient Temperature Storage Temperature Range Figure 3. Pin Connection R_IN2 1 28 R_IN3 R_IN1 2 27 LOUT L_IN1 3 26 ROUT L_IN2 4 25 AGND L_IN3 5 24 VS MUXOUTL 6 23 CREF INL 7 22 SDA MUXOUTR 8 21 SCL INR 9 20 DIG-GND MIN(R) 10 19 TREBLE(R) MOUT(R) 11 18 TREBLE(L) BIN(R) 12 17 MIN(L) BOUT(R) 13 16 MOUT(L) BIN(L) 14 15 BOUT(L) ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O D96AU489A Table 3. Thermal Data Symbol Rth j-pins Parameter Thermal Resistance Junction-pins Value Unit 85 °C/W Max. Table 4. Quick Reference Data Symbol Parameter Min. Typ. Max. 9 10.2 Unit VS Supply Voltage 6 VCL Max. input signal handling 2 THD Total Harmonic Distortion V = 1Vrms f = 1KHz 0.01 S/N Signal to Noise Ratio Vout = 1Vrms (mode = OFF) 106 dB SC Channel Separation f = 1KHz 90 dB Input Gain in (2db step) 0.1 % 0 30 dB Volume Control (1db step) -47 0 dB Treble Control (2db step) -14 +14 dB Middle Control (2db step) -14 +14 dB Bass Control (2dB step) -14 +14 dB Balance Control 1dB step -79 0 dB Mute Attenuation (*) 80 100 (*) Even applied to Speaker Attenuator Left, Speaker Attenuator Right, Volume Control stand alone or to the combination, if any. 2/19 V Vrms dB TDA7438 Table 5. Electrical Characteristcs: (refer to the test circuit Tamb = 25°C, VS = 9V, RL= 10KΩ, RG = 600Ω, all controls flat (G = 0dB), unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit 6 9 10.2 V SUPPLY VS Supply Voltage IS Supply Current SVR Ripple Rejection 60 7 mA 90 dB 100 KΩ INPUT STAGE RIN Input Resistance VCL Clipping Level THD = 0.3% 2 2.5 SIN Input Separation The selected input is grounded through a 2.2µ capacitor 80 100 -1 0 Ginmin Minimum Input Gain Ginman Maximum Input Gain ) s ( t Vrms c u d o r P 1 30 uc e t e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Gstep Step Resolution 2 VOLUME CONTROL Input Resistance 20 33 Control Range 45 AVMAX Max. Attenuation ASTEP Step Resolution Ri CRANGE EA ET VDC A mute Attenuation Set Error Tracking Error DC Step dB dB ) s t( dB dB 50 KΩ 47 49 dB 45 47 49 dB 0.5 1 1.5 dB AV = 0 to -24dB -1.0 0 1.0 dB AV = -24 to -47dB -1.5 0 1.5 dB AV = 0 to -24dB 0 1 dB AV = -24 to -47dB 0 2 dB 0 0.5 3 mV mV adjacent attenuation steps from 0dB to AV max Mute Attenuation 80 100 dB BASS CONTROL (The center frequency and the response quality can be chosen by the ext. circuitry) Gb Control Range BSTEP RB Max. Boost/cut +12.0 +14.0 +16.0 dB Step Resolution 1 2 3 dB Internal Feedback Resistance 33 44 55 KΩ TREBLE CONTROL (The center frequency and the response quality can be chosen by the ext. circuitry) Gt Control Range TSTEP Step Resolution Max. Boost/cut +13.0 +14.0 +15.0 dB 1 2 3 dB MIDDLE CONTROL (The center frequency and the response quality can be chosen by the ext. circuitry) Gm Control Range MSTEP Step Resolution RM Internal Feedback Resistance Max. Boost/cut +12.0 +14.0 +16.0 dB 1 2 3 dB 18.75 25 31.25 KΩ 3/19 TDA7438 Table 5 (continued) Symbol Parameter Test Condition Min. Typ. Max. Unit SPEAKER ATTENUATORS CRANGE Control Range SSTEP EA 76 Step Resolution Attenuation Set Error AV = 0 to -20dB AV = -20 to -56dB ET Tracking Error dB 0.5 1 1.5 dB -1.5 0 1.5 dB -2 0 2 dB 0 1 dB AV = 0 to -24dB ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O VDC Amute DC Step AV = -24 to -47dB 0 2 dB adjacent attenuation steps 0 3 mV Mute Attenuation 80 100 dB 2.1 2.6 VRMS AUDIO OUTPUTS VCLIP Clipping Level d = 0.3% RL Output Load Resistance 2 RO Output Impedance 10 VDC DC Voltage Level KΩ 40 70 3.8 W V GENERAL (Gain, Bass, Treble, Middle Controls Flat) ENO Et Output Noise All gains = 0dB; BW = 20Hz to 20KHz flat 5 15 µV Total Tracking Error (Volume + Speaker Attenuator) AV = 0 to -24dB 0 1 dB AV= -24 to -47dB 0 2 dB AV = -47 to -79dB 0 3 dB S/N Signal to Noise Ratio SC Channel Separation Left/Right d Distortion All gains 0dB; VO = 1VRMS ; 90 106 dB 80 100 dB AV = 0; VI = 1VRMS ; 0.01 0.08 % 1 V BUS INPUT VIL Input Low Voltage VIH Input High Voltage IIN Input Current 4/19 3 VIN = 0.4V -5 V 5 µA TDA7438 Figure 4. Test Circuit 2.7K 5.6nF MUXOUTL 3 MOUT(L) 18 17 16 100nF BIN(L) BOUT(L) 14 15 RM RB 4 0.47µF L-IN3 TREBLE(L) 7 22nF 100nF 100K 0.47µF L-IN2 INL 6 MIN(L) 2.2µF L-IN1 5.6K 18nF 100K G 5 0.47µF VOLUME TREBLE MIDDLE SPKR ATT LEFT BASS 27 LOUT 100K ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) 3 APPLICATION SUGGESTIONS o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O R-IN1 0.47µF 22 20 SCL SDA DIGGND 1 100K 0.47µF R-IN3 2 I CBUS DECODER + LATCHES 100K 0.47µF R-IN2 21 0/30dB 2dB STEP 2 VOLUME G TREBLE MIDDLE SPKR ATT RIGHT BASS 26 ROUT 28 VREF 100K 24 INPUT MULTIPLEXER + GAIN RM SUPPLY RB 25 VS AGND MUXOUTR 9 INR 19 TREBLE(R) 10 2.2µF 11 MOUT(R) MIN(R) 8 18nF 5.6nF 12 13 BIN(R) BOUT(R) 22nF 100nF 2.7K 5.6K 100nF 23 CREF 10µF D96AU490A The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) for the first one, 0 to -79dB (mute) for the last one. Both of them have 1dB step resolution. The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7438 audioprocessor provides 3 bands tones control. 3.1 Bass, Middle Stages The Bass and the middle cells have the same structure. The Bass cell has an internal resistor Ri = 44KΩ typical. The Middle cell has an internal resistor Ri = 25KΩ typical. Several filter types can be implemented, connecting external components to the Bass/Middle IN and OUT pins. Figure 5. Ri internal IN OUT C1 C2 R2 D95AU313 5/19 TDA7438 The fig.5 refers to basic T Type Bandpass Filter starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows: 1 F c = ----------------------------------------------------------2 ⋅ π ⋅ Ri, R2, C1, C2 R2C2 + R2C1 + RiC1 A V = -----------------------------------------------------------R1C1 + R2C2 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Ri, R2, C1, C2 Q = ------------------------------------------R2C1 + R2C2 Viceversa, once Fc, Av, and Ri internal value are fixed, the external components values will be: AV – 1 C1 = -----------------------------2 ⋅ π ⋅ Ri ⋅ Q 2 Q ⋅ C1 C2 = -----------------------2 A V – 1Q 2 AV – 1 – Q R2 = --------------------------------------------------------------------2 ⋅ π ⋅ C1 ⋅ F c ⋅ ( A V – 1 ) ⋅ Q 3.2 Treble Stage The treble stage is a high pass filter whose time constant is fixed by an internal resistor (25KΩ typical) and an external capacitor connected between treble pins and ground Typical responses are reported in Figg. 14 to 17. 3.3 CREF The suggested 10mF reference capacitor (CREF) value can be reduced to 4.7mF if the application requires faster power ON. Figure 6. THD vs. frequency 6/19 Figure 7. THD vs. RLOAD TDA7438 Figure 8. Channel separation vs. frequency Figure 11. Middle response ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Figure 9. Bass response Figure 12. Typical tone response Figure 10. Treble response 7/19 TDA7438 4 I2C BUS INTERFACE Data transmission from microprocessor to the TDA7438 and vice versa takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 4.1 Data Validity As shown in fig. 12, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 4.2 Start and Stop Conditions As shown in fig.13 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 4.3 Byte Format Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 4.4 Acknowledge The master (mP) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 14). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse. The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer. 4.5 Transmission without Acknowledge Avoiding to detect the acknowledge of the audio processor, the mP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking. Figure 13. Data Validity on the I2CBUS SDA SCL DATA LINE STABLE, DATA VALID CHANGE DATA ALLOWED D99AU1031 Figure 14. Timing Diagram of I2CBUS SCL I2CBUS SDA START 8/19 D99AU1032 STOP TDA7438 Figure 15. Acknowledge on the I2CBUS SCL 1 2 3 7 8 9 SDA MSB START 5 ACKNOWLEDGMENT FROM RECEIVER D99AU1033 SOFTWARE SPECIFICATION ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Interface Protocol The interface protocol comprises: ■ A start condition (S) ■ A chip address byte, containing the TDA7438 address ■ A subaddress bytes ■ A sequence of data (N byte + acknowledge) Figure 16. SUBADDRESS CHIP ADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA 1 to DATA n LSB X X B DATA MSB ACK LSB DATA ACK P D96AU420 ACK = Acknowledge S = Start P = Stop A = Address B = Auto Increment 5.1 EXAMPLES 5.1.1 No Incremental Bus The TDA7438 receives a start condition, the correct chip address, a subaddress with the B = 0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition. Figure 17. SUBADDRESS CHIP ADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA LSB X X 0 D3 D2 D1 D0 ACK MSB LSB DATA ACK P D96AU421 5.1.2 Incremental Bus The TDA7438 receive a start conditions, the correct chip address, a subaddress with the B = 1 (incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored.The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition 9/19 TDA7438 Figure 18. . CHIP ADDRESS SUBADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK DATA 1 to DATA n LSB X X X MSB LSB 1 D3 D2 D1 D0 ACK DATA ACK P D96AU422 Table 6. POWER ON RESET CONDITION INPUT SELECTION IN2 INPUT GAIN 28dB ) s ( t c u d o ) r s 6 DATA BYTES ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O VOLUME MUTE BASS 0dB MIDDLE 2dB TREBLE 2dB SPEAKER MUTE Address = 88 HEX (ADDR:OPEN). Table 7. FUNCTION SELECTION: First byte (subaddress) MSB LSB SUBADDRESS D7 D6 D5 D4 D3 D2 D1 D0 X X X B 0 0 0 0 INPUT SELECT X X X B 0 0 0 1 INPUT GAIN X X X B 0 0 1 0 VOLUME X X X B 0 0 1 1 BASS X X X B 0 1 0 0 MIDDLE X X X B 0 1 0 1 TREBLE X X X B 0 1 1 0 SPEAKER ATTENUATE "R" X X X B 0 1 1 1 SPEAKER ATTENUATE "L" B = 1: INCREMENTAL BUS ACTIVE B = 0: NO INCREMENTAL BUS X = DON’T CARE Figure 19. INPUT SELECTION MSB LSB INPUT MULTIPLEXER D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X 0 0 IN3 X X X X X X 0 1 NOT ALLOWED X X X X X X 1 0 IN2 X X X X X X 1 1 IN1 10/19 TDA7438 Table 8. INPUT GAIN SELECTION MSB D7 D6 D5 D4 LSB INPUT GAIN D3 D2 D1 D0 2dB STEPS 0 0 0 0 0dB 0 0 0 1 2dB 0 0 1 0 4dB 0 0 1 1 6dB 0 1 0 0 8dB 0 1 0 1 10dB ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 0 1 1 0 12dB 0 1 1 1 14dB 1 0 0 0 16dB 1 0 0 1 18dB 1 0 1 0 20dB 1 0 1 1 22dB 1 1 0 0 24dB 1 1 0 1 26dB 1 1 1 0 28dB 1 1 1 1 30dB LSB VOLUME D3 D2 D1 D0 1dB STEPS 0 0 0 0dB 0 0 1 -1dB 0 1 0 -2dB 0 1 1 -3dB 1 0 0 -4dB 1 0 1 -5dB 1 1 0 -6dB 1 1 1 -7dB GAIN = 0 to 30dB Table 9. VOLUME SELECTION MSB D7 D6 D5 D4 0 0 0 0 0dB 0 0 0 1 -8dB 0 0 1 0 -16dB 0 0 1 1 -24dB 0 1 0 0 -32dB 0 1 0 1 -40dB X 1 1 1 X X X MUTE VOLUME = 0 to 47dB/MUTE 11/19 TDA7438 Table 10. BASS SELECTION MSB D7 D6 D5 D4 LSB BASS D3 D2 D1 D0 2dB STEPS 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 0 1 1 0 -2dB 0 1 1 1 0dB 1 1 1 1 0dB 1 1 1 0 2dB 1 1 0 1 4dB 1 1 0 0 6dB 1 0 1 1 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB LSB MIDDLE Table 11. MIDDLE SELECTION MSB D7 12/19 D6 D5 D4 D3 D2 D1 D0 2dB STEPS 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0 1 1 1 0dB 1 1 1 1 0dB 1 1 1 0 2dB 1 1 0 1 4dB 1 1 0 0 6dB 1 0 1 1 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB TDA7438 Table 12. TREBLE SELECTION MSB D7 D6 D5 D4 LSB TREBLE D3 D2 D1 D0 2dB STEPS 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 0 1 1 1 0dB 1 1 1 1 0dB 1 1 1 0 2dB 1 1 0 1 4dB 1 1 0 0 6dB 1 0 1 1 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB Table 13. SPEAKER ATTENUATE SELECTION MSB D7 D6 D5 D4 D3 LSB SPEAKER ATTENUATION D2 D1 D0 1dB 0 0 0 0dB 0 0 1 -1dB 0 1 0 -2dB 0 1 1 -3dB 1 0 0 -4dB 1 0 1 -5dB 1 1 0 -6dB 1 1 1 -7dB 0 0 0 0 0dB 0 0 0 1 -8dB 0 0 1 0 -16dB 0 0 1 1 -24dB 0 1 0 0 -32dB 0 1 0 1 -40dB 0 1 1 0 -48dB 0 1 1 1 -56dB 1 0 0 0 -64dB 1 0 0 1 -72dB 1 1 1 1 X X X MUTE SPEAKER ATTENUATION = 0 to -79dB/MUTE 13/19 TDA7438 Figure 23. PINS: 6, 8 Figure 20. PINS: 23 VS VS VS VS 20µA 20K CREF MUXOUT 20K GND ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O D96AU491 D96AU430 Figure 21. PINS: 26, 27 Figure 24. PINS: 7, 9 VS VS 20µA 24 ROUT LOUT INL INR 33K 20µA D96AU427 VREF D96AU434 Figure 25. PINS: 10, 11 Figure 22. PINS: 1, 2, 3, 4, 5, 28 VS VS 20µA 20µA IN 100K VREF 25K D96AU425 MOUT(L) MOUT(R) 14/19 D96AU431 TDA7438 Figure 26. PINS: 10, 17 Figure 29. PINS: 18, 19 VS VS 20µA 20µA 25K 44K ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O MOUT(L) BIN(L) MOUT(R) D96AU431 Figure 27. PINS: 12, 14 BIN(R) D96AU428 Figure 30. PIN: 20 VS 20µA 20µA SCL 44K BIN(L) D96AU424 BIN(R) D96AU428 Figure 28. PINS: 13, 15 Figure 31. PINS: 21 VS 20µA 20µA SDA 44K BOUT(L) BOUT(R) D96AU423 D96AU429 15/19 TDA7438 Figure 32. DIP28 Mechanical Data & Package Dimensions mm inch DIM. MIN. TYP. MAX. MIN. TYP. a1 0.63 0.025 b 0.45 0.018 b1 0.23 0.31 0.009 MAX. OUTLINE AND MECHANICAL DATA 0.012 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b DIP28 e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O b2 1.27 D E 37.34 15.2 16.68 1.470 0.598 0.657 e 2.54 0.100 e3 33.02 1.300 F 16/19 0.050 14.1 0.555 I 4.445 0.175 L 3.3 0.130 TDA7438 Figure 33. SO28 Mechanical Data & Package Dimensions mm DIM. MIN. TYP. A inch MAX. MIN. TYP. 2.65 MAX. OUTLINE AND MECHANICAL DATA 0.104 a1 0.1 0.3 0.004 0.012 b 0.35 0.49 0.014 0.019 b1 0.23 0.32 0.009 0.013 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b SO-28 e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O C 0.5 c1 0.020 45° (typ.) D 17.7 18.1 0.697 0.713 E 10 10.65 0.394 0.419 e 1.27 0.050 e3 16.51 0.65 F 7.4 7.6 0.291 0.299 L 0.4 1.27 0.016 0.050 S 8 ° (max.) 17/19 TDA7438 Table 14. Revision History Date Revision Description of Changes January 2004 6 First Issue in EDOCS DMS June 2004 7 Changed the Style-sheet in compliance to the new “Corporate Technical Pubblications Design Guide” ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 18/19 TDA7438 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 19/19
TDA7438D013TR 价格&库存

很抱歉,暂时无法提供与“TDA7438D013TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货