0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4657IQT

TS4657IQT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFQFN20_EP

  • 描述:

    IC LINE DVR STER DGTL AUD 20QFN

  • 数据手册
  • 价格&库存
TS4657IQT 数据手册
TS4657 Single supply stereo digital audio line driver with 2.2 Vrms capless outputs Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Single 3.0 to 5.5 V supply for DAC and line driver Audio line output: 2.2 Vrms for all VCC range 16- to 24-bit audio data format stereo DAC, 32 to 48 kHz sample rate I²S, right- or left-justified compatible digital audio interface 95 dB SNR A-weighted at 48 kHz, VCC =5 V 7.4 mA current consumption at VCC = 3.0 V, full operation Internal negative power supply to ensure ground-referenced, capless outputs No external capacitor needed for the negative power supply generation Integrated structure to suppress pop and click noise Available in thin QFN20 4 mm x 4 mm package Pin connections (top view) VREGD GNDD 20 GNDD NC LRCLK SDAT BCLK 5 6 FORMAT2 FORMAT1 STDBY MCLK 10 GNDA 1 16 15 GNDA VREGA VCCA VOUTL 11 VOUTR GNDA VCCD NC Description The TS4657 is a stereo DAC that integrates a high-performance audio line driver capable of generating a 2.2 Vrms output level from a single 3.0 to 5.5 V supply. One single supply is sufficient for the digital and analog parts of the circuit, thus eliminating the need for external regulators. The TS4657 is a low-power consumption device. It features only 22 mW power dissipation at a 3.0 V power supply in full operation. A 16-bit multi-bit sigma delta DAC is used, operating at 256xFs with oversampling digital interpolation filters. The digital audio data can be 16-to 24-bit long and sample rates from 32 to 48 kHz are supported. The output stage signal is ground-referenced by using an internal self-generated negative power supply, and as such external bulky output coupling capacitors are not necessary. The TS4657 is packaged in a small 4 x 4 mm QFN20 package, ideal for portable applications. Applications ■ ■ ■ ■ ■ ■ Digital set-top boxes DVD players Digital TVs Notebooks Portable audio equipment Sound cards March 2009 Rev 1 1/26 www.st.com 26 Contents TS4657 Contents 1 2 3 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 3.2 3.3 3.4 3.5 Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DAC and output stage performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4.1 DAC digital filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical measurement curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 4.1.2 Master clock and data clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Digital audio input format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 4.3 Power-management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Recommended power-up and power-down sequences . . . . . . . . . . . . . . 21 4.3.1 4.3.2 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 QFN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2/26 TS4657 Block diagram and pin description 1 Block diagram and pin description Figure 1. Block diagram VCCA VCCD VREGD VREGA Power management unit MCLK VOUTR DAC BCLK LRCLK SDAT Digital Audio Interface Digital filters DAC VOUTL Control interface FORMAT1 FORMAT2 STDBY GNDD GNDA Table 1. Pin name GNDD NC LRCLK SDAT BCLK MCLK FORMAT2 FORMAT1 STDBY GNDA VOUTR VOUTL VCCA VREGA GNDA GNDA GNDD VREGD VCCD NC Pin description Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 I/O Supply Function Digital ground, connected to GND Non-connected This pin must remain non-connected. pin Digital input Digital input Digital input Digital input Digital input Digital input Digital input Supply Analog output Analog output Supply Supply Supply Supply Supply Supply Supply Channel select clock input Serial audio data input Bit clock input Master clock input Selection of the digital data audio format. Selection of the digital data audio format. Input for Standby pin. STDBY=VIL: the TS4657 is in shutdown mode. Analog ground, connect to GND. Right channel analog output Left channel analog output Main analog power supply, connected to VCCD Decoupling pin for the analog part Analog ground, connected to GND Analog ground, connect to GND Digital ground, connected to GND Decoupling pin for the digital part Main digital power supply. Connect to VCCA Non-connected This pin must remain non-connected. pin 3/26 Block diagram and pin description Figure 2. Typical application schematics TS4657 VCCD VCCA C2 C3 J5 VCC 1 3v to 5V5 J6 GND VCCA VCCD 10uF/6V3 C1 1uF 1uF C4 C5 1uF 2 20 18 19 13 14 1 1uF IC1 VCCD VCCA VREGD VREGA nc nc LRCLK J4 3 4 5 LRCLK SDAT BCLK MCLK Digital Audio Interface Digital Input SDAT J3 J2 Digital Filters and DACs VOUTL 12 820 R5 R6 10K C6 2nF2 SMB J7 J8 SMB OUT L BCLK MCLK J1 6 100K R1 100K R2 100K R3 100K R4 VOUTR 11 R8 10K R7 820 C7 2nF2 OUT R Control Interface FORMAT1 /STDBY Optional TS4657 FORMAT2 GNDD GNDD GNDA GNDA GNDA VCCD 1 2 3 1 2 3 1 2 3 JP1 JP2 JP3 Format1 Format2 /Stdby User Control Figure 3. Typical test schematics VCCD VCCA C2 C3 J5 VCC J6 GND VCCA VCCD 10uF/6V3 1 C1 1uF 1 17 10 15 16 8 7 9 Epad 1uF C4 C5 1uF 2 20 19 13 18 14 1 1uF IC1 VCCD VCCA VREGD VREGA nc nc LRCLK J4 Digital Input 3 4 5 LRCLK SDAT BCLK MCLK SDAT J3 Digital Audio Interface Digital Filters and DACs VOUTL 12 SMB J7 J8 SMB OUT L BCLK J2 MCLK J1 100K R1 100K R2 100K R3 100K R4 6 VOUTR 11 OUT R Control Interface FORMAT1 FORMAT2 /STDBY TS4657 GNDD GNDD GNDA GNDA GNDA VCCD 1 2 3 1 2 3 1 2 3 JP1 JP2 JP3 Format1 Format2 /Stdby 4/26 1 17 10 15 16 8 7 9 Epad TS4657 Absolute maximum ratings 2 Table 2. Symbol VCC Vi Toper Tstg Tj Rthja ESD ESD Absolute maximum ratings Key parameters and their absolute maximum ratings Parameter Supply voltage (1) Digital input voltage MCLK, BCLK, LRCLK, SDAT, FORMAT1, FORMAT2, STDBY Operating free air temperature range Storage temperature Maximum junction temperature Thermal resistance junction to ambient Human body model Machine model Latch-up immunity Lead temperature (soldering, 10 secs) Value 5.5 GND to VCC -40 to + 85 -65 to +150 150 100 2 200 Class A 260 °C Unit V V °C °C °C °C/W kV V 1. All voltage values are measured with respect to ground. 5/26 Electrical characteristics TS4657 3 3.1 Electrical characteristics Power characteristics Table 3. Symbol VCC Power supply Total supply current. , Full operation, RL = 10 KΩ vstdby ≥ 2.0 V VCC = 3.0 V VCC = 5.0 V Standby current consumption. VCC = 3 V to VCC = 5.5 V Vstdby = 0 V Vstdby = 0.8 V VCC = 3.3 V T = 25° C (unless otherwise specified) Parameter Min. 3.0 Typ. Max. 5.5 Unit V ICC 7.4 8 25 50 9.5 9.8 1000 2000 mA ICCstby nA 3.2 Package thermal characteristics Table 4. Symbol Rthja Operating conditions Parameter Thermal resistance junction to ambient for QFN20(1) Min. Typ. 40 Max. Unit °C/W 1. With heat sink surface = 125 mm2. 6/26 TS4657 Electrical characteristics 3.3 Table 5. Symbol DAC and output stage performances VCC = 3.0 V to Vcc = 5.5 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C (unless otherwise specified) Parameter Min. Typ. Max. Unit Operating conditions - Audio data input format Sampling frequency Load resistor Load capacitance 16 32 5 10 100 24 48 bits kHz kΩ Fs RL CL 150 pF Digital input characteristics VIL VIH Low-level input voltage High-level input voltage 2 0.8 V V Dynamic parameters VoutRMS Full-scale output voltage swing Vin at 0 dBFS; RL ≥ RLmin; CL=100 pF 2.1 2.2 Vrms Table 6. Symbol VCC = 3.3 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C (unless otherwise specified) Parameter Min. Typ. Max. Unit Dynamic parameters DR Dynamic range. A-weighted 16-bit data; Vin at -60 dBFS, FS = 48 kHz, Fin = 1 kHz Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to output Vin at -6 dBFS; A-weighted, 18-bit data input Vin at -6 dBFS; unweighted, 18-bit data input Vin at 0 dBFS; A-weighted, 16-bit data input Total harmonic distortion and noise. Fin = 1 kHz Vin at -20 dBFS, 18-bit data input Vin at -6 dBFS, 18-bit data input Vin at 0 dBFS, 16-bit data input Power supply rejection ratio, Vripple = 200 mVpp F= 217 Hz F= 1 kHz 20 Hz < F < 20 kHz Channel separation. 1 kHz, Vin at 0 dBFS Output offset voltage Gain channel balance twu Wake-up time -20 -0.2 0.01 4.5 88 93 dB SNR 89 87 87 94.5 92.5 93 72 82 81 80 71 46 100 20 0.2 dB THD+N 74 dB PSRR dB LRiso Voo dB mV dB ms 7/26 Electrical characteristics Table 7. Symbol DR TS4657 VCC = 5 V, Rload = 10 kΩ, Cload = 100 pF, T = 25° C (unless otherwise specified) Parameter Dynamic range; A-weighted 16-bit data; measured at -60 dBFS, FS = 48 kHz, Fin = 1 kHz Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to output Vin at -6 dBFS; A-weighted, 18-bit data input Vin at -6 dBFS; unweighted, 18-bit data input Vin at 0 dBFS; A-weighted, 16-bit data input Total harmonic distortion and noise. Fin = 1 kHz Vin at -20 dBFS Vin at -6 dBFS Vin at 0 dBFS Power supply rejection ratio, Vripple = 200 mVpp F= 217 Hz F= 1 kHz 20 Hz < F < 20 kHz Channel separation. 1 kHz, Vin at 0 dBFS Output offset voltage Gain channel balance -20 -0.2 3 0.01 4.5 Min. Typ. Max. Unit 88 93 dB SNR 89 95 93 93 72 82.5 81.5 80 73 48 100 20 0.2 6 dB THD+N 74 dB PSRR dB LRiso Voo dB mV dB ms twu Wake-up time(1) 1. See timing diagram in application information. 3.3.1 Terminology SNR: signal-to-noise ratio is expressed in dB. The theoretical formula is: ⎛ VH 1 ⎞ SNR dB = 10 log ⎜ ------------------ ⎟ ⎝ V noise 2⎠ 2 where Vnoise is the integrated noise from 20 Hz to 20 kHz and VH1 is the fundamental of the signal. For unweighted measurements, the SNR is given by: SNR dB VH 1 = 10 log ---------------------------------------------------------------------20kHz 2 ∫ 20Hz u ( f ) ( v noise ( f ) ) df 2 where vnoise is the noise spectral density and u(f) is the unweighted filter transfer function (20 Hz, 20 kHz). For A-weighted measurements: VH 1 SNR dB = 10 log ---------------------------------------------------------------------20kHz A 2 ∫ 20Hz A ( f ) ( v noise ( f ) ) df 2 where vnoise is the noise spectral density and A(f) is the A-weighted filter transfer function. 8/26 TS4657 Electrical characteristics THD+N: total harmonic distortion and noise-to signal-ratio is expressed in dB. It is given by: k ∑ VHi 2 + V noise 2 i=2 T HD + N dB = 10 log -----------------------------------------------2 V outrms where VHi is the rms value of the harmonic components. SINAD: signal and noise distortion is expressed in dB. The equation is given by: V outrms SINAD dB = 10 log -----------------------------------------------k 2 ∑ VHi i=2 k 2 + V noise 2 DR: dynamic range is expressed in dB, with the following equation: ∑ VHi 2 i=1 DR dB = 10 log ---------------------2 V noise 3.4 Digital filter characteristics Table 8. Symbol - VCC = 3.3 V T= 25° C (unless otherwise specified) Parameter Passband edge (-3 dB) Passband ripple f < 0.45 Fs Stopband attenuation f > 0.55 Fs -50 Min. Typ. 0.48Fs +/- 0.1 dB dB Max. Unit 9/26 Electrical characteristics TS4657 3.4.1 Figure 4. DAC digital filter response DAC digital filter frequency response from 32 to 48 kHz Figure 5. DAC digital filter transition band from 32 to 48 kHz Figure 6. DAC digital filter ripple from 32 to 48 kHz 10/26 TS4657 Electrical characteristics 3.5 Figure 7. Electrical measurement curves Crosstalk vs. frequency Figure 8. Crosstalk vs. frequency FS=48kHz FS=44.1kHz FS=44.1kHz FS=32kHz FS=48kHz FS=44.1kHz FS=32kHz FS=32kHz RL = 10kΩ VCC = 5V VIN = 0dBFS TAMB = 25°C FS=32kHz FS=48kHz RL = 10kΩ VCC = 3V VIN = 0dBFS TAMB = 25°C FS=44.1kHz FS=48kHz Figure 9. Frequency response Figure 10. Frequency response FS=48kHz FS=48kHz FS=44.1kHz RL = 10kΩ VCC = 3V VIN = 0dBFS TAMB = 25°C FS=44.1kHz RL = 10kΩ VCC = 5V VIN = 0dBFS TAMB = 25°C FS=32kHz FS=32kHz Figure 11. Current consumption vs. power supply voltage Figure 12. Current consumption vs. standby voltage FS=48kHz FS=32kHz RL = 100kΩ TAMB = 25°C FS = 48kHz FIN = 1kHz VIN = 0dBFS FS = 32kHz FIN = 1kHz VIN = 0dBFS Serial Bus = OFF Serial Bus = ON (I2S) RL = 100kΩ FIN = 1kHz VIN = 0dBFS TAMB = 25°C 11/26 Electrical characteristics TS4657 Figure 13. Output swing vs. power supply voltage Figure 14. Power dissipation vs. frequency VCC = 5V VCC = 3V3 RL = 5kΩ, 10kΩ or 100kΩ FS = 32kHz, 44.1kHz or 48kHz FIN = 1kHz VIN = 0dBFS TAMB = 25°C VCC = 3V RL = 10kΩ FIN = 1kHz VIN = 0dBFS TAMB = 25°C Figure 15. Power supply rejection ratio vs. frequency 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 20 100 1000 10000 20k Ω ° Ω Ω Figure 16. Power supply rejection ratio vs. frequency 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 20 100 1000 10000 20k Ω ° Ω Ω Figure 17. Power supply rejection ratio vs. frequency 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 20 100 1000 10000 20k Ω ° Ω Ω Figure 18. Signal to noise ratio vs. input level VCC = 3V RL = 5kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted 12/26 TS4657 Electrical characteristics Figure 19. Signal to noise ratio vs. input level Figure 20. Signal to noise ratio vs. input level VCC = 3V RL = 5kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 5kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 21. Signal to noise ratio vs. input level Figure 22. Signal to noise ratio vs. input level VCC = 3V RL = 5kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 5V RL = 5kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 23. Signal to noise ratio vs. input level Figure 24. Signal to noise ratio vs. input level VCC = 5V RL = 5kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 5V RL = 5kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted 13/26 Electrical characteristics TS4657 Figure 25. Signal to noise ratio vs. input level Figure 26. Signal to noise ratio vs. input level VCC = 5V RL = 5kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 27. Signal to noise ratio vs. input level Figure 28. Signal to noise ratio vs. input level VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 29. Signal to noise ratio vs. input level Figure 30. Signal to noise ratio vs. input level VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted 14/26 TS4657 Electrical characteristics Figure 31. Signal to noise ratio vs. input level Figure 32. Signal to noise ratio vs. input level VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted Figure 33. Signal to noise ratio vs. input level Figure 34. Total harmonic distortion and noise vs. frequency VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz LPF = 20kHz TAMB = 25°C A-Weighted Unweighted VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k Figure 35. Total harmonic distortion and noise Figure 36. Total harmonic distortion and noise vs. frequency vs. frequency VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 18bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k 20 20k 15/26 Electrical characteristics TS4657 Figure 37. Total harmonic distortion and noise Figure 38. Total harmonic distortion and noise vs. frequency vs. frequency VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k Figure 39. Total harmonic distortion and noise Figure 40. Total harmonic distortion and noise vs. frequency vs. frequency VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 18bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 16bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C 20 20k 20 20k Figure 41. Total harmonic distortion and noise Figure 42. Total harmonic distortion and noise vs. frequency vs. input level VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 18bits VIN = -6dBFS Unweighted LPF = 20kHz TAMB = 25°C VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C 20 20k 16/26 TS4657 Electrical characteristics Figure 43. Total harmonic distortion and noise Figure 44. Total harmonic distortion and noise vs. input level vs. input level VCC = 3V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C Figure 45. Total harmonic distortion and noise Figure 46. Total harmonic distortion and noise vs. input level vs. input level VCC = 3V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C Figure 47. Total harmonic distortion and noise Figure 48. Total harmonic distortion and noise vs. input level vs. input level VCC = 5V RL = 10kΩ FS = 32kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 16bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C 17/26 Electrical characteristics TS4657 Figure 49. Total harmonic distortion and noise vs. input level VCC = 5V RL = 10kΩ FS = 48kHz Input Data = 18bits FIN = 1kHz Unweighted LPF = 20kHz TAMB = 25°C 18/26 TS4657 Application information 4 4.1 4.1.1 Application information Serial audio interface Master clock and data clocks Three external clock signals are applied to the TS4657. The MCLK is the external master clock applied by the audio data processor. The LRCLK is the channel frequency, also called LEFT/RIGHT clock, at which the digital words for each channel are input to the device. The LRCLK clock is the sample rate of the audio data. The ratio MCLK/LRCLK must be an integer as shown in Table 9. The BCLK is the bit clock and represents the clock at which the audio data is serially shifted into the audio port. BCLK is linked to LRCLK. The minimum required BCLK frequency is twice the audio sample rate times the number of bits in each audio word. Refer to Table 10 for the BCLK/LRCLK ratio. MCLK, LRCLK and BCLK must be synchronous clock signals. Table 9. Audio data sampling rates MCLK (MHz) LRCLK (kHz) 256x 32 44.1 48 8.192 11.2896 12.288 4.1.2 Digital audio input format The TS4657 receives serial digital audio data through a 3-wire interface. SDAT is the serial audio data input. The data is entered MSB first and is a two’s complement. The data can be I2S, right or left justified. The data format is chosen with the control pins FORMAT1 and FORMAT2 as detailed in Table 10. Figure 50 on page 20 summarizes the implementation of the audio data format. Table 10. FORMAT2 Digital audio data formats supported by the TS4657 BCLK/LRCLK ratio FORMAT1 Data Format Min Max 256 256 256 256 Right-justified, 16-bit data Data valid on rising edge of BCLK Right-justified, 24-bit data Data valid on rising edge of BCLK Left-Justified, 16-bit up to 24-bit data Data valid on rising edge of BCLK I²S, 16-bit up to 24-bit data Data valid on rising edge of BCLK 0 0 1 1 0 1 0 1 32 48 2 x number of bits of data 2 x number of bits of data 19/26 Application information Figure 50. Audio interface formats managed by the TS4657 16-bit Right justified data format: pin FORMAT1 = VIL, FORMAT2 = VIL LRCLK SDAT LEFT 14 15 16-bit word left data LSB TS4657 RIGHT 0 MSB 1 0 MSB 1 16-bit word right data 14 15 LSB BCLK 24-bit right-justified data format: pin FORMAT1 = VIH, FORMAT2 = VIL LRCLK SDAT LEFT n-2 n-1 n-bit word left data LSB RIGHT 0 MSB 1 0 MSB 1 n-bit word right data n-2 n-1 LSB BCLK Up to 24-bit left-justified data format: pin FORMAT1 = VIL, FORMAT2 = VIH LRCLK SDAT LEFT RIGHT 0 MSB 1 n-bit word left data n-2 n-1 LSB 0 MSB 1 n-bit word right data n-2 n-1 LSB BCLK Up to 24-bit I²S data format: pin FORMAT1 = VIH, FORMAT2 = VIH LRCLK SDAT LEFT RIGHT 0 1 32-bit word left data n-2 n-1 LSB 0 1 32-bit word right data n-2 n-1 LSB MSB MSB BCLK 4.2 Power-management unit The TS4657 utilizes a power-management unit to supply its internal structures. A self-generated negative supply enables the drivers to be powered from positive and negative supplies, therefore increasing the amplitude of the output signal. This internal negative supply switches at a higher frequency than traditional architectures, derived from the master clock MCLK. This structure uses an original design that enables one to suppress the flying or floating capacitors. Therefore, only four small ceramic X5R 10V 1-µF decoupling capacitors are necessary for VCCA/VCCD and VREGA/VREGD. Furthermore, the self-generated negative supply allows the amplifier outputs to be centered around zero, thus the bulky output coupling capacitors can be removed. 20/26 TS4657 Application information 4.3 4.3.1 Recommended power-up and power-down sequences Power-up It is recommended to power-up the TS4657 prior to applying logical data in order to ensure correct ESD protection biasing. When the STDBY pin is in a low state (VIL,) the circuit is in standby; when the pin is in a high state (VIH), the circuit is enabled. An internal pull-down resistor will force the STDBY pin to ground if no signal is applied to this pin. The standby signal can be delayed from the power-up phase but simultaneous stimuli are possible, as shown in Figure 51. Figure 51. Standby signal delayed from power-up phase VCCA VCCD t=0µs min STDBY t=0µs min MCLK BCLK LRCLK t=0µs min SDAT 80% VOUTR VOUTL Twu The wake-up time (Twu) of the TS4657 is defined as the time between the settlement of the digital input signals STDBY, MCLK, BCLK, LRCLK, SDAT and 80% of the VOUTR/VOUTL amplitude. The Twu of the circuit is typically 4.5 ms. If all digital input signals are settled and an ON/OFF sequence is applied quickly on the STDBY pin, the internal capacitors remain charged and the Twu is around 1 ms. 4.3.2 Power-down As described in Section 4.2, the MCLK is internally used to supply some blocks. It is therefore recommended not to switch off the MCLK during normal operation. To properly power-down the device, MCLK, BCLK and LRCLK should be switched off after the STDBY signal. The power-down time is very short and can be considered as zero. 21/26 Package information TS4657 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 22/26 TS4657 Package information 5.1 QFN20 package information Figure 52. QFN20 package mechanical drawing Table 11. QFN20 package mechanical data Dimensions Ref. Min. A A1 A2 A3 b D D2 E E2 e L ddd 0.18 3.85 1.95 3.85 1.95 0.45 0.35 0.80 Millimeters Typ. 0.90 0.02 0.65 0.25 0.23 4.00 2.10 4.00 2.10 0.50 0.55 0.30 4.15 2.25 4.15 2.25 0.55 0.75 0.08 0.007 0.152 0.077 0.152 0.077 0.018 0.014 Max. 1.00 0.05 1.00 Min. 0.031 Inches Typ. 0.035 0.0008 0.026 0.010 0.009 0.157 0.083 0.157 0.083 0.020 0.022 0.012 0.163 0.089 0.163 0.089 0.022 0.030 0.003 Max. 0.040 0.002 0.040 23/26 Ordering information TS4657 6 Ordering information Table 12. Order codes Temperature range -40°C, +85°C Package QFN20 Packing Tape & reel Marking K657 Order code TS4657IQT 24/26 TS4657 Revision history 7 Revision history Table 13. Date 02-Mar-2009 Document revision history Revision 1 Initial release. Changes 25/26 TS4657 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26
TS4657IQT 价格&库存

很抱歉,暂时无法提供与“TS4657IQT”相匹配的价格&库存,您可以联系我们找货

免费人工找货