0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4890IQT

TS4890IQT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFDFN8_EP

  • 描述:

    IC AMP AUDIO PWR 1W MONO AB 8DFN

  • 数据手册
  • 价格&库存
TS4890IQT 数据手册
TS4890 Rail-to-rail output 1 W audio power amplifier with standby mode active low Datasheet - production data 62 The unity-gain stable amplifier can be configured by external gain setting resistors. 0LQL62 Table 1. Device summary(1) 76,'7 76,67 Part number Temp. range TS4890IDT Features Marking 4890 -40 + 85 °C TS4890IST • Operating from VCC= 2.2 V to 5.5 V 4890I 1. Available in tape and reel only. • 1 W rail-to-rail output power @ VCC= 5 V, THD=1%, f=1 kHz, with 8 Ω load • Ultra low consumption in standby mode (10 nA) • 75 dB PSSR @ 217 Hz from 5 to 2.2 V • Pop and click reduction circuitry • Ultra low distortion (0.1%) • Unity gain stable • Available in SO8 and MiniSO8 Applications • Mobile phones (cellular/cordless) • Laptop/notebook computers • PDAs • Portable audio devices Description The TS4890 is an audio power amplifier, which can deliver 1 W of continuous RMS output power into 8 W load @ 5 V. This audio amplifier shows 0.1% distortion level (THD) from a 5 V supply for a Pout = 250 mW RMS. An external standby mode control reduces the supply current to less than 10 nA. An internal thermal shutdown protection is also provided. The TS4890 has been designed for high quality audio applications such as mobile phones, and to minimize the number of external components. February 2019 This is information on a product in full production. DocID8396 Rev 7 1/46 www.st.com Contents TS4890 Contents 1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 7 2/46 5.1 BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.6 Pop and click performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.7 Power amplifier design examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1 SO8 package information (TS4890IDT) . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2 MiniSO8 package information (TS4890IST) . . . . . . . . . . . . . . . . . . . . . . . 43 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DocID8396 Rev 7 TS4890 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Component description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics (VCC= +3.3 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) .......................................................................7 Electrical characteristics (VCC= +2.6 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) .......................................................................8 Electrical characteristics (VCC= +2.2 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) .......................................................................9 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Components 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Components 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Components 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 MiniSO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DocID8396 Rev 7 3/46 46 List of figures TS4890 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 4/46 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Open loop frequency response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Open loop frequency response (ZL=8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Open loop frequency response (VCC=3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Open loop frequency response (560 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Open loop frequency response (Vcc=2.6 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open loop frequency response (Vcc=2.6 V+560 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open loop frequency response (Vcc=2.2 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open loop frequency response (Vcc=2.2 V+560 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open loop frequency response (Vcc=5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open loop frequency response (Vcc=5 V+ 560 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open loop frequency response (Vcc=2.6 V; CL=560 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Open loop frequency response (Vcc=2.2 V; CL=560 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power supply rejection ratio (PSRR) vs power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Supply Rejection Ratio (PSRR) vs feedback capacitor . . . . . . . . . . . . . . . . . . . . . . 15 Power supply rejection ratio (PSRR) vs bypass capacitor . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power supply rejection ratio (PSRR) vs input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power supply rejection ratio (PSRR) vs feedback resistor . . . . . . . . . . . . . . . . . . . . . . . . . 16 Pout @ THD + N = 1% vs supply voltage vs RL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Pout @ THD + N = 10% vs supply voltage vs RL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs Pout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs Pout (Vcc = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs Pout (Vcc = 2.6 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs Pout (F=1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 THD + N vs output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 THD + N vs output power (VCC=5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 THD + N vs output power (GV=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 THD + N vs output power (Vcc=3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 THD + N vs output power (Vcc=2.6 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 THD + N vs output power (RL=4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 THD + N vs output power (VCC=2.2 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 THD + N vs output power (Gv=10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 THD + N vs output power (RL=8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 THD + N vs output power (Vcc=5 V, RL= 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 THD + N vs output power (Vcc=3.3 V, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 HD + N vs output power (Vcc=3.3 V, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 THD + N vs output power (Vcc=2.6 V, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 THD + N vs output power (Vcc=2.6 V, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 THD + N vs output power (Vcc=2.2 V, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 THD + N vs output power (Vcc=2.2 V, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 THD + N vs output power (Vcc=5 V, Gv= 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD + N vs output power (Vcc=5 V, Gv= 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD + N vs output power (Vcc=3.3 V, RL= 8 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD + N vs output power (Vcc=3.3 V, RL= 8 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD + N vs output power (Vcc=2.6 V, RL= 8 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD + N vs output power (Vcc=2.6 V, RL= 8 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . 20 DocID8396 Rev 7 TS4890 Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. Figure 99. Figure 100. List of figures THD + N vs output power (Vcc=2.2 V, RL= 8 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD + N vs output power (Vcc=2.2 V, RL= 8 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD + N vs output power (Vcc=5 V, RL= 16 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD + N vs output power (Vcc=5 V, RL= 16 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD + N vs output power (Vcc=3.3 V, RL= 16 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD + N vs output power (Vcc=3.3 V, RL= 16 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . 21 THD + N vs output power (Vcc=2.6 V, RL= 16 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . 22 THD + N vs output power (Vcc=2.6 V, RL= 16 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . 22 THD + N vs output power (Vcc=2.2 V, RL= 16 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . 22 THD + N vs output power (Vcc=2.2 V, RL= 16 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . 22 THD + N vs frequency (Vcc=5 V, RL= 4 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 THD + N vs frequency (Vcc=5 V, RL= 4 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 THD + N vs frequency (Vcc=3.3 V, RL= 4 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 THD + N vs frequency (Vcc=3.3 V, RL= 4 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 THD + N vs frequency (Vcc=2.6 V, RL= 4 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 THD + N vs frequency (Vcc=2.6 V, RL= 4 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 THD + N vs frequency (Vcc=2.2 V, RL= 4 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 THD + N vs frequency (Vcc=2.2 V, RL= 4 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 THD + N vs frequency (Vcc=5 V, RL= 8 Ω, Gv= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 THD + N vs frequency (Vcc=5 V, RL= 8 Ω, Gv= 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 THD + N vs frequency (Vcc=5 V, RL= 8 Ω, Gv= 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 THD + N vs frequency (Pout= 450 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 THD + N vs frequency (Pout= 400 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 THD + N vs frequency (Pout= 200 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 THD + N vs frequency (Vcc=3.3 V, RL= 8 Ω, Gv= 10, Pout= 400 mW) . . . . . . . . . . . . . . . 25 THD + N vs frequency (Pout= 200 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 THD + N vs frequency (Pout= 220 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 THD + N vs frequency (Pout= 110 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 THD + N vs frequency (VCC=2.6 V, Pout= 220 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 THD + N vs frequency (Pout=110 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 THD + N vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD + N vs frequency (Pout=75 mW ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD + N vs frequency (Pout=150 mW ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD + N vs frequency (Vcc=2.2 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD + N vs frequency (Pout=310 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD + N vs frequency (Vcc=5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD + N vs frequency (Gv=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD + N vs frequency (Vcc=3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD + N vs frequency (Gv=10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD + N vs frequency (Vcc=2.6 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD + N vs frequency (Vcc=2.2 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD + N vs frequency (Pout=50 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Signal-to-noise ratio vs power supply with unweighted filter (Gv=2) . . . . . . . . . . . . . . . . . 28 Signal-to-noise ratio vs power supply with unweighted filter (20Hz to 20kHz) . . . . . . . . . . 28 Signal-to-noise ratio vs power supply Gv=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Signal-to-noise ratio vs power supply with weighted filter type A . . . . . . . . . . . . . . . . . . . . 28 Frequency response gain vs Cin, and Cfeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Current consumption vs power supply voltage (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Current consumption vs standby voltage @ Vcc = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Current consumption vs standby voltage @ Vcc = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Current consumption vs standby voltage @ Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Current consumption vs standby voltage @ Vcc = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID8396 Rev 7 5/46 46 List of figures Figure 101. Figure 102. Figure 103. Figure 104. Figure 105. Figure 106. Figure 107. Figure 108. Figure 109. Figure 110. Figure 111. Figure 112. 6/46 TS4890 Clipping voltage vs power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Clipping voltage vs power supply voltage and load resistor . . . . . . . . . . . . . . . . . . . . . . . . 29 Vout1+Vout2 unweighted noise floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Vout1+Vout2 A-weighted noise floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Demoboard schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SO8 and MiniSO8 demoboard component side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SO8 and MiniSO8 demoboard top solder layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SO8 and MiniSO8 demoboard bottom solder layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 PSRR changes with Cb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 PSRR measurement schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID8396 Rev 7 TS4890 General information 1 General information 1.1 Pin connections (top view) Figure 1. Pin connections (top view) 76,'762 6WDQGE\   9287 %\SDVV   *1' 9,1   9&& 9,1   9287 6WDQGE\   9287 %\SDVV   *1' 9,1   9&& 9,1   9287 Typical application schematic Figure 2. Typical application schematic &IHHG 5IHHG 9FF  5LQ &LQ &V 9FF $XGLR ,QSXW   9LQ 9LQ  9RXW   5/  2KPV 9FF 5VWE &E  %\SDVV  6WDQGE\  $Y   %LDV *1' 1.2 76,670LQL62 9RXW  76  Table 2. Component description Components Functional description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply bypass capacitor which provides power supply filtering Cb Bypass pin capacitor which provides half supply filtering Cfeed Low pass filter capacitor allowing the high frequency to be cut (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) DocID8396 Rev 7 7/46 46 General information TS4890 Table 2. Component description Components Rstb Gv 8/46 Functional description Pull-down resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) DocID8396 Rev 7 TS4890 2 Absolute maximum ratings Absolute maximum ratings Table 3. Absolute maximum ratings Symbol VCC Vi Parameter Value Supply volatge(1) Input voltage (2) 6 V GND to VCC Toper Operating free air temperature range -40 to + 85 Tstg Storage temperature -65 to +150 Tj Rthja Pd Maximum junction temperature Thermal resistance junction to ambient (3) Unit °C 150 175 (SO8) °C/W 215 (MiniSO8) Power dissipation(4) See W Human body model 2 kV 200 V ESD Machine model Latch-up immunity Class A Lead temperature (soldering, 10 s) 260 °C 1. All voltages values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V. 3. The device is protected in case of overtemperature by a thermal shutdown active @ 150 °C. 4. Exceeding the power derating curves during a long period may involve abnormal working of the device. Table 4. Operating conditions Symbol Parameter Value VCC Supply volatge VICM Common mode input voltage range GND + 1 V to VCC VSTB Standby voltage input: device on device off 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.5 RL Rthja Load resistor Thermal resistance junction-to-ambient (1) Unit 2.2 to 5.5 V 4 -32 Ω 150 (SO8) °C/W 190 (MiniSO8) 1. This thermal resistance can be reduced with a suitable PCB layout (see Fig. 24). DocID8396 Rev 7 9/46 46 Electrical characteristics 3 TS4890 Electrical characteristics VCC = +5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Table 5. Electrical characteristics Symbol Typ. Max. Unit Supply current no input signal, no load 6 8 mA Standby current (1), no input signal, Vstdby = GND, RL = 8 Ω 10 1000 nA Voo Output offset voltage no input signal, RL = 8 Ω 5 20 mV Po Output power THD = 1% max., f = 1 kHz, RL = 8 Ω 1 W 0.15 % Power supply rejection ratio (2) f = 217 Hz, RL = 8 Ω, RFeed = 22 kΩ, Vripple = 200 mV RMS 77 dB ɸM Phase margin at unity gain RL = 8 Ω, CL = 500 pF 70 Degrees GM Gain margin RL = 8 Ω, CL = 500 pF 20 dB GBP Gain bandwidth product RL = 8 Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. Total harmonic distortion + noise Po = 250 mW RMS, Gv = 2, 20 Hz < f < 20 kHz, RL = 8 Ω 1. Standby mode is active when Vstdby is tied to GND. 2. Dynamic measurements - 20*log(RMS(Vout)/RMS(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz. Table 6. Electrical characteristics (VCC= +3.3 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) Symbol Typ. Max. Unit Supply current no input signal, no load 5.5 8 mA Standby current (1), no input signal, Vstdby = GND, RL = 8 Ω 10 1000 nA Voo Output offset voltage no input signal, RL = 8 Ω 5 20 mV Po Output power THD = 1% max., f = 1 kHz, RL = 8 Ω ICC ISTANDBY 10/46 Parameter DocID8396 Rev 7 Min. 450 mW TS4890 Electrical characteristics Table 6. Electrical characteristics (VCC= +3.3 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) Symbol THD + N Parameter Min. Total harmonic distortion + noise Po = 250 mW RMS, Gv = 2, 20 Hz < f < 20 kHz, RL = 8 Ω Typ. Max. Unit 0.15 % Power supply rejection ratio (2) f = 217 Hz, RL = 8 Ω, RFeed = 22 kΩ, Vripple = 200 mV RMS 77 dB ɸM Phase margin at unity gain RL = 8 Ω, CL = 500 pF 70 Degrees GM Gain margin RL = 8 Ω, CL = 500 pF 20 dB GBP Gain bandwidth product RL = 8 Ω 2 MHz PSRR 1. Standby mode is active when Vstdby is tied to GND. 2. Dynamic measurements - 20*log(RMS(Vout)/RMS(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz. Table 7. Electrical characteristics (VCC= +2.6 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) Symbol Typ. Max. Unit Supply current no input signal, no load 5 8 mA Standby current (1), no input signal, Vstdby = GND, RL = 8 Ω 10 1000 nA Voo Output offset voltage no input signal, RL = 8 Ω 5 20 mV Po Output power THD = 1% max., f = 1 kHz, RL = 8 Ω 260 mW Total harmonic distortion + noise Po = 200 mW RMS, Gv = 2, 20 Hz < f < 20 kHz, RL = 8 Ω 0.15 % Power supply rejection ratio (2) f = 217 Hz, RL = 8 Ω, RFeed = 22 kΩ, Vripple = 200 mV RMS 77 dB ɸM Phase margin at unity gain RL = 8 Ω, CL = 500 pF 70 Degrees GM Gain margin RL = 8 Ω, CL = 500 pF 20 dB GBP Gain bandwidth product RL = 8 Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter DocID8396 Rev 7 Min. 11/46 46 Electrical characteristics TS4890 1. Standby mode is active when Vstdby is tied to GND. 2. Dynamic measurements - 20*log(RMS(Vout)/RMS(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz. Table 8. Electrical characteristics (VCC= +2.2 V, GND= 0 V, Tamb = 25 °C, unless otherwise specified) Symbol Typ. Max. Unit Supply current no input signal, no load 5 8 mA Standby current (1), no input signal, Vstdby = GND, RL = 8 Ω 10 1000 nA Voo Output offset voltage no input signal, RL = 8 Ω 5 20 mV Po Output power THD = 1% max., f = 1 kHz, RL = 8 Ω 180 mW Total harmonic distortion + noise Po = 200 mW RMS, Gv = 2, 20 Hz < f < 20 kHz, RL = 8 Ω 0.15 % Power supply rejection ratio (2) f = 217 Hz, RL = 8 Ω, RFeed = 22 kΩ, Vripple = 100 mV RMS 77 dB ɸM Phase margin at unity gain RL = 8 Ω, CL = 500 pF 70 Degrees GM Gain margin RL = 8 Ω, CL = 500 pF 20 dB GBP Gain bandwidth product RL = 8 Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is active when Vstdby is tied to GND. 2. Dynamic measurements - 20*log(RMS(Vout)/RMS(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz. 12/46 DocID8396 Rev 7 TS4890 Electrical characteristics curves 4 Electrical characteristics curves Figure 3. Open loop frequency response Figure 4. Open loop frequency response (ZL=8 Ω)                          *DLQ  3KDVH 'HJ 3KDVH   )UHTXHQF\ N+]  9FF 9 =/ :S) 7DPE q&  3KDVH     )UHTXHQF\ N+]                                *DLQ G% 9FF 9 5/ : 7DPE q&  Figure 6. Open loop frequency response (560 pF)  *DLQ   Figure 5. Open loop frequency response (VCC=3.3 V)      )UHTXHQF\ N+]    3KDVH  *DLQ G% 9FF 9 =/ :S) 7DPE q&     *DLQ 3KDVH 'HJ      3KDVH   3KDVH 'HJ *DLQ G%   *DLQ G% 9FF 9 5/ : 7DPE q& *DLQ 3KDVH 'HJ    DocID8396 Rev 7     )UHTXHQF\ N+]   13/46 46 Electrical characteristics curves TS4890         3KDVH               )UHTXHQF\ N+]     Figure 9. Open loop frequency response (Vcc=2.2 V) 9FF 9 5/ : 7DPE q& *DLQ          9FF 9 5/ :S) 7DPE q& *DLQ   3KDVH        )UHTXHQF\ N+]     Figure 11. Open loop frequency response (Vcc=5 V)  3KDVH        *DLQ G% *DLQ       14/46    9FF 9 &/ S) 7DPE q&   3KDVH 'HJ    )UHTXHQF\ N+]     3KDVH            *DLQ    )UHTXHQF\ N+]  Figure 12. Open loop frequency response (Vcc=5 V+ 560 pF) *DLQ G%                    3KDVH 'HJ *DLQ G% 3KDVH   )UHTXHQF\ N+]          Figure 10. Open loop frequency response (Vcc=2.2 V+560 pF) *DLQ G%         3KDVH 'HJ  3KDVH 'HJ 3KDVH      9FF 9 =/ :S) 7DPE q& *DLQ   DocID8396 Rev 7  9FF 9 &/ S) 7DPE q&      )UHTXHQF\ N+]   3KDVH 'HJ   *DLQ G% 9FF 9 5/ : 7DPE q& *DLQ     *DLQ G% Figure 8. Open loop frequency response (Vcc=2.6 V+560 pF) 3KDVH 'HJ Figure 7. Open loop frequency response (Vcc=2.6 V) TS4890 Electrical characteristics curves Figure 14. Open loop frequency response (Vcc=2.2 V; CL=560 pF)       3KDVH               )UHTXHQF\ N+]         9FF 9 &/ S) 7DPE q&      )UHTXHQF\ N+]   Figure 16. Power Supply Rejection Ratio (PSRR) vs feedback capacitor  9ULSSOH P9UPV 5IHHG N: ,QSXW IORDWLQJ 5/ : 7DPE q&   3655 G% 3655 G%         Figure 15. Power supply rejection ratio (PSRR) vs power supply   *DLQ  9FF 9 &/ S) 7DPE q&  3KDVH  *DLQ G% *DLQ 3KDVH 'HJ *DLQ G%   3KDVH 'HJ Figure 13. Open loop frequency response (Vcc=2.6 V; CL=560 pF) 9FF 9WR9 &E P) P)  9FF WR9 &E P) P) 5IHHG N: 9ULSSOH P9UPV ,QSXW IORDWLQJ 5/ : 7DPE q& &IHHG  &IHHG S) &IHHG S)     &IHHG S)      )UHTXHQF\ +]       )UHTXHQF\ +]  Figure 17. Power supply rejection ratio (PSRR) Figure 18. Power supply rejection ratio (PSRR) vs bypass capacitor vs input capacitor   &E P) &E P) 3655 G%  9FF WR9 5IHHG N 5LQ N&LQ P) 5J :5/ : 7DPE q& &LQ P) 9FF WR9 5IHHG N5LQ N &E P) 5J :5/ : 7DPE q& &LQ Q)  3655 G%   &E P)  &LQ Q)    &LQ Q)   &LQ Q) &E P)         )UHTXHQF\ +]     )UHTXHQF\ +] DocID8396 Rev 7 15/46 46 Electrical characteristics curves TS4890 Figure 19. Power supply rejection ratio (PSRR) vs feedback resistor Figure 20. Pout @ THD + N = 1% vs supply voltage vs RL  3655 G%   2XWSXWSRZHU#7+'1 :   9FF WR9 &E P) P) 9ULSSOH P9UPV ,QSXW IORDWLQJ 5/ : 7DPE q& 5IHHG N: 5IHHG N:   5IHHG N:      )UHTXHQF\ +]  : *Y   &E P) ) N+] %:N+] 7DPE q& : :  :    : 5IHHG N:           9FF 9 Figure 21. Pout @ THD + N = 10% vs supply voltage vs RL Figure 22. Power dissipation vs Pout 2XWSXWSRZHU#7+'1 :     *Y   &E P) ) N+] %:N+] 7DPE q& 3RZHU'LVVLSDWLRQ :  : : :   :  9FF 9  ) N+] 7+'1 5/ :    5/ :     5/ :      :             2XWSXW3RZHU : 9FF 9 Figure 23. Power dissipation vs Pout (Vcc = 3.3 V) Figure 24. Power dissipation vs Pout (Vcc = 2.6 V)    5/ : 3RZHU'LVVLSDWLRQ : 3RZHU'LVVLSDWLRQ : 9FF 9 ) N+]  7+'1    5/ : 9FF 9 ) N+] 7+'1  5/ :    5/ :    5/ :       2XWSXW3RZHU : 16/46   5/ :   2XWSXW3RZHU : DocID8396 Rev 7   TS4890 Electrical characteristics curves Figure 25. Power dissipation vs Pout (F=1 kHz) Figure 26. Power derating curves  9FF 9  ) N+] 7+'1    3RZHU'LVVLSDWLRQ : 3RZHU'LVVLSDWLRQ :  5/ :    5/ :     62      2XWSXW3RZHU :  0LQL62        Figure 28. THD + N vs output power (VCC=5 V)  5O : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  5/ :9FF 9 *Y  &E &LQ P) %:N+]7DPE q&  N+] N+]  +] +]N+]  (   2XWSXW3RZHU : N+]  (  Figure 29. THD + N vs output power (GV=2)   2XWSXW3RZHU :  Figure 30. THD + N vs output power (Vcc=3.3 V)   5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  7+'1   $PELDQW7HPSHUDWXUH ƒ& Figure 27. THD + N vs output power 7+'1    5/ :   4)1   5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& N+]  N+]   (   2XWSXW3RZHU : +] N+] +]N+]  DocID8396 Rev 7 (   2XWSXW3RZHU :  17/46 46 Electrical characteristics curves TS4890 Figure 31. THD + N vs output power (Vcc=2.6 V)  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  7+'1   Figure 32. THD + N vs output power (RL=4 Ω)   N+] N+] +]  N+] +]N+]  (  2XWSXW3RZHU :  ( Figure 33. THD + N vs output power (VCC=2.2 V)  Figure 34. THD + N vs output power (Gv=10)   5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  7+'1   2XWSXW3RZHU :  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& N+]  N+] +]  +]N+]  (  2XWSXW3RZHU :  N+] ( Figure 35. THD + N vs output power (RL=8 Ω)  2XWSXW3RZHU :  Figure 36. THD + N vs output power (Vcc=5 V, RL= 8 Ω)  5/ : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& +]N+]  7+'1  7+'1   N+]  5/ : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& +] N+]   (   2XWSXW3RZHU :  N+] ( 18/46 DocID8396 Rev 7   2XWSXW3RZHU :  TS4890 Electrical characteristics curves Figure 37. THD + N vs output power (Vcc=3.3 V, Gv= 2) Figure 38. HD + N vs output power (Vcc=3.3 V, Gv= 10)  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  7+'1     N+] +] N+] +]N+]   N+] (   2XWSXW3RZHU :  (   2XWSXW3RZHU :  Figure 39. THD + N vs output power (Vcc=2.6 V, Figure 40. THD + N vs output power (Vcc=2.6 V, Gv= 2) Gv= 10)  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  7+'1    +]N+] 5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q&  +] N+]  N+]  (  2XWSXW3RZHU :  ( N+]  2XWSXW3RZHU :  Figure 41. THD + N vs output power (Vcc=2.2 V, Figure 42. THD + N vs output power (Vcc=2.2 V, Gv= 2) Gv= 10)  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 7+'1  7+'1    N+] +]  +] N+]  ( 5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q&   2XWSXW3RZHU :  ( DocID8396 Rev 7 N+] N+]  2XWSXW3RZHU :  19/46 46 Electrical characteristics curves TS4890 Figure 43. THD + N vs output power (Vcc=5 V, Gv= 2) Figure 44. THD + N vs output power (Vcc=5 V, Gv= 10)  5/ : 9FF 9 *Y  &E P) &LQ P) %:N+] 7DPE q&  N+] 5/ :9FF 9*Y  &E P) &LQ P) %:N+]7DPE q& +] N+] 7+'1  7+'1   +]  N+] N+]   (   2XWSXW3RZHU :  (   2XWSXW3RZHU :  Figure 45. THD + N vs output power (Vcc=3.3 V, Figure 46. THD + N vs output power (Vcc=3.3 V, RL= 8 Ω, Gv= 2) RL= 8 Ω, Gv= 10)  5/ :9FF 9 *Y  &E P) &LQ P) %:N+] 7DPE q& 5/ :9FF 9*Y  &E P) &LQ P) %:N+]7DPE q& 7+'1  7+'1    +] N+]  N+] +] N+] N+]   (   2XWSXW3RZHU :  (   2XWSXW3RZHU :  Figure 47. THD + N vs output power (Vcc=2.6 V, Figure 48. THD + N vs output power (Vcc=2.6 V, RL= 8 Ω, Gv= 2) RL= 8 Ω, Gv= 10)  5/ :9FF 9 *Y  &E P) &LQ P) %:N+] 7DPE q& 5/ :9FF 9*Y  &E P) &LQ P) %:N+]7DPE q& 7+'1  7+'1    +] N+]  N+] N+] N+]  ( 20/46 +]   2XWSXW3RZHU :  ( DocID8396 Rev 7  2XWSXW3RZHU :  TS4890 Electrical characteristics curves Figure 49. THD + N vs output power (Vcc=2.2 V, Figure 50. THD + N vs output power (Vcc=2.2 V, RL= 8 Ω, Gv= 2) RL= 8 Ω, Gv= 10)  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 5/ :9FF 9*Y  &E P) &LQ P) %:N+]7DPE q& 7+'1  7+'1    +] N+]  N+] +] N+] N+]   (  2XWSXW3RZHU :  ( Figure 51. THD + N vs output power (Vcc=5 V, RL= 16 Ω, Gv= 2)  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q&  7+'1  7+'1   Figure 52. THD + N vs output power (Vcc=5 V, RL= 16 Ω, Gv= 10)    2XWSXW3RZHU : N+]  5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& N+]  N+] +]N+]  (   2XWSXW3RZHU :   ( +]   2XWSXW3RZHU :  Figure 53. THD + N vs output power (Vcc=3.3 V, Figure 54. THD + N vs output power (Vcc=3.3 V, RL= 16 Ω, Gv= 2) RL= 16 Ω, Gv= 10)   5/ :9FF 9 *Y  &E &LQ P) %:N+] 7DPE q&  7+'1  7+'1   N+]  5/ : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& N+]  N+] +]N+]  (  2XWSXW3RZHU :   ( DocID8396 Rev 7 +]  2XWSXW3RZHU :  21/46 46 Electrical characteristics curves TS4890 Figure 55. THD + N vs output power (Vcc=2.6 V, Figure 56. THD + N vs output power (Vcc=2.6 V, RL= 16 Ω, Gv= 2) RL= 16 Ω, Gv= 10)   N+] 5/ : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q&  7+'1  7+'1   5/ : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& +] N+]   N+] +]N+]  (  2XWSXW3RZHU :  (   2XWSXW3RZHU :  Figure 57. THD + N vs output power (Vcc=2.2 V, Figure 58. THD + N vs output power (Vcc=2.2 V, RL= 16 Ω, Gv= 2) RL= 16 Ω, Gv= 10)   5/ : 9FF 9 *Y  &E &LQ P) %:N+] 7DPE q& 5/ :9FF 9 *Y &E &LQ P) %:N+]7DPE q& N+] +]  7+'1  7+'1    N+]  +] N+]  ( N+]  2XWSXW3RZHU :   (  2XWSXW3RZHU :  Figure 59. THD + N vs frequency (Vcc=5 V, RL= Figure 60. THD + N vs frequency (Vcc=5 V, RL= 4 Ω, Gv= 2) 4 Ω, Gv= 10) 3RXW : 22/46   )UHTXHQF\ +]  3RXW P:  5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ& 3RXW P:   3RXW :  7+'1  7+'1   5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ&   DocID8396 Rev 7   )UHTXHQF\ +]  TS4890 Electrical characteristics curves Figure 61. THD + N vs frequency (Vcc=3.3 V, RL= 4 Ω, Gv= 2) 5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ&  7+'1  7+'1   Figure 62. THD + N vs frequency (Vcc=3.3 V, RL= 4 Ω, Gv= 10) 3RXW P: 5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ& 3RXW P: 3RXW P:    3RXW P:  )UHTXHQF\ +]    Figure 63. THD + N vs frequency (Vcc=2.6 V, RL= 4 Ω, Gv= 2)  )UHTXHQF\ +] 5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ&  3RXW P:  Figure 64. THD + N vs frequency (Vcc=2.6 V, RL= 4 Ω, Gv= 10) 7+'1  7+'1   5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ&  3RXW  P: 3RXW P:     )UHTXHQF\ +]    Figure 65. THD + N vs frequency (Vcc=2.2 V, RL= 4 Ω, Gv= 2)  3RXW P:  )UHTXHQF\ +]  Figure 66. THD + N vs frequency (Vcc=2.2 V, RL= 4 Ω, Gv= 10) 7+'1  7+'1   5/ :9FF 9 *Y  &E P) %:N+] 7DPE q&  5/ :9FF 9 *Y  &E P) %:N+] 7DPE q& 3RXW P: 3RXW P: 3RXW P:     )UHTXHQF\ +]    DocID8396 Rev 7   )UHTXHQF\ +]  23/46 46 Electrical characteristics curves TS4890 Figure 67. THD + N vs frequency (Vcc=5 V, RL= Figure 68. THD + N vs frequency (Vcc=5 V, RL= 8 Ω, Gv= 2) 8 Ω, Gv= 2  5/ : 9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& &E —) 5/ : 9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& 7+'1  7+'1   &E —) &E —) &E —)     )UHTXHQF\ +]    Figure 69. THD + N vs frequency (Vcc=5 V, RL= 8 Ω, Gv= 10) 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ&  &E —)  5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& &E —) &E —) &E —)      )UHTXHQF\ +]   Figure 71. THD + N vs frequency (Pout= 400 mW)  )UHTXHQF\ +]   &E —) &E —)  5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& 7+'1  7+'1  5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ&   Figure 72. THD + N vs frequency (Pout= 200 mW)  24/46  )UHTXHQF\ +] Figure 70. THD + N vs frequency (Pout= 450 mW) 7+'1  7+'1    &E —) &E —)    )UHTXHQF\ +]   DocID8396 Rev 7   )UHTXHQF\ +]  TS4890 Electrical characteristics curves Figure 73. THD + N vs frequency (Vcc=3.3 V, RL= 8 Ω, Gv= 10, Pout= 400 mW) 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ&  7+'1  7+'1   Figure 74. THD + N vs frequency (Pout= 200 mW) &E —) &E —) &E —) &E —)      )UHTXHQF\ +]   Figure 75. THD + N vs frequency (Pout= 220 mW)   )UHTXHQF\ +]  Figure 76. THD + N vs frequency (Pout= 110 mW)   5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& 7+'1  7+'1  &E —) 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& &E —) &E —) &E —)      )UHTXHQF\ +]   Figure 77. THD + N vs frequency (VCC=2.6 V, Pout= 220 mW) 7+'1   &E —)  &E —) 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ& &E —)      &E —)   )UHTXHQF\ +] Figure 78. THD + N vs frequency (Pout=110 mW) 7+'1  5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE ƒ&   )UHTXHQF\ +]   )UHTXHQF\ +]   DocID8396 Rev 7 25/46 46 Electrical characteristics curves TS4890 Figure 79. THD + N vs frequency Figure 80. THD + N vs frequency (Pout=75 mW )   5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE q& 7+'1  7+'1  &E P) 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE q& &E P) &E P) &E P)      )UHTXHQF\ +]   Figure 81. THD + N vs frequency (Pout=150 mW ) 5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE q& &E P) &E P) &E P)      5/ :9FF 9 *Y  3RXW P: %:N+] 7DPE q&  &E P)   )UHTXHQF\ +] Figure 82. THD + N vs frequency (Vcc=2.2 V) 7+'1  7+'1     )UHTXHQF\ +]   Figure 83. THD + N vs frequency (Pout=310 mW)  )UHTXHQF\ +]  Figure 84. THD + N vs frequency (Vcc=5 V)  5/ :9FF 9 *Y &E —) %:N+] 7DPE ƒ& 7+'1  5/ :9FF 9 *Y &E —) %:N+] 7DPE ƒ& 3RXW P:  7+'1   3RXW P:  3RXW P: 3RXW P:     26/46   )UHTXHQF\ +]  DocID8396 Rev 7   )UHTXHQF\ +]  TS4890 Electrical characteristics curves Figure 85. THD + N vs frequency (Gv=2) Figure 86. THD + N vs frequency (Vcc=3.3 V)   7+'1  7+'1  5/ :9FF 9 *Y &E —) %:N+] 7DPE ƒ& 3RXW P:  5/ :9FF 9 *Y  &E —) %:N+] 7DPE ƒ& 3RXW P:  3RXW P: 3RXW P:     )UHTXHQF\ +]   Figure 87. THD + N vs frequency (Gv=10)   5/ :9FF 9 *Y &E P) %:N+] 7DPE q& 3RXW P: 7+'1  5/ :9FF 9 *Y &E P) %:N+] 7DPE q& 7+'1   )UHTXHQF\ +] Figure 88. THD + N vs frequency (Vcc=2.6 V)   3RXW P:  3RXW P:     )UHTXHQF\ +] 3RXW P:    Figure 89. THD + N vs frequency (Vcc=2.2 V)  )UHTXHQF\ +]   5/ :9FF 9 *Y &E P) %:N+] 7DPE q& 7+'1  5/ :9FF 9 *Y &E P) %:N+] 7DPE q&   Figure 90. THD + N vs frequency (Pout=50 mW)  7+'1   3RXW  P: 3RXW P:  3RXW P:     )UHTXHQF\ +]    DocID8396 Rev 7   )UHTXHQF\ +]  27/46 46 Electrical characteristics curves TS4890 Figure 91. Signal-to-noise ratio vs power supply Figure 92. Signal-to-noise ratio vs power supply with unweighted filter (Gv=2) with unweighted filter (20Hz to 20kHz)     5/ : 5/ : 615 G% 615 G% 5/ :        9FF 9   5/ : 5/ : *Y  &E &LQ P) 7+'1 7DPE q&  *Y  &E &LQ P) 7+'1 7DPE q&  5/ :        9FF 9    Figure 93. Signal-to-noise ratio vs power supply Figure 94. Signal-to-noise ratio vs power supply Gv=2 with weighted filter type A     5/ :  615 G% 615 G% 5/ : 5/ :       9FF 9      &IHHG S) &IHHG S)     28/46 &LQ Q) &IHHG Q)  9FF 9    9VWDQGE\ 9FF 7DPE q&    &LQ Q) &LQ Q)   ,FF P$ *DLQ G%   Figure 96. Current consumption vs power supply voltage (no load)   5/ : *Y  &E &LQ P) 7+'1 7DPE q&    Figure 95. Frequency response gain vs Cin, and Cfeed  5/ :  *Y  &E &LQ P) 7+'1 7DPE q&  5/ :   5LQ 5IHHG N: 7DPE q&   )UHTXHQF\ +]       9FF 9 DocID8396 Rev 7   TS4890 Electrical characteristics curves Figure 97. Current consumption vs standby voltage @ Vcc = 5 V Figure 98. Current consumption vs standby voltage @ Vcc = 3.3 V      ,FF P$ ,FF P$           9FF 9 7DPE q&        9VWDQGE\ 9      9FF 9 7DPE q&       9VWDQGE\ 9 Figure 99. Current consumption vs standby voltage @ Vcc = 2.6 V Figure 100. Current consumption vs standby voltage @ Vcc = 2.2 V     ,FF P$ ,FF P$       9FF 9 7DPE q&      9VWDQGE\ 9     9VWDQGE\ 9  Figure 102. Clipping voltage vs power supply voltage and load resistor   7DPE q&   9RXW 9RXW &OLSSLQJ9ROWDJH/RZVLGH 9 9RXW 9RXW &OLSSLQJ9ROWDJH+LJKVLGH 9 9FF 9 7DPE q&    Figure 101. Clipping voltage vs power supply voltage      5/ : 5/ :       5/ :       7DPE q&    5/ :  5/ :       5/ :       3RZHUVXSSO\9ROWDJH 9 3RZHUVXSSO\9ROWDJH 9 DocID8396 Rev 7 29/46 46 Electrical characteristics curves TS4890 Figure 103. Vout1+Vout2 unweighted noise floor Figure 104. Vout1+Vout2 A-weighted noise floor   2XWSXW1RLVH9RO WDJH 9  $Y     6WDQGE\PRGH $Y  30/46  $Y    6WDQGE\PRGH $Y     9FF 9WR97D PE  & &E &LQ  ) ,QSXW*URXQGHG %: +]WRN+] $:HLJKWHG  2XWSXW1RLVH9ROW DJH 9 9FF 9WR97DPE  & &E &LQ  ) ,QSXW*URXQGHG %: +]WRN+] 8QZHLJKWHG    )UHTXHQF\ +]   DocID8396 Rev 7    )UHTXHQF\ +]  TS4890 Application information Figure 105. Demoboard schematic & 5 & 5 6 9FF 9FF 9FF 6 *1' &  5 3RV LQSXW 3 9FF 5 N 5 & & 5  9LQ 9LQ   9RXW   &  — 6 3RVLWLYH ,QSXW PRGH  6 6WDQGE\ 287 6 *1' 6 *1' 6 5  5 N 6 9FF 3 & Q  — & 1HJ LQSXW  $Y   %\SDVV 9RXW  &  — 6WDQGE\ %LDV ' 3: 21 *1' 5 Application information 76   &  & X & Figure 106. SO8 and MiniSO8 demoboard component side DocID8396 Rev 7 31/46 46 Application information TS4890 Figure 107. SO8 and MiniSO8 demoboard top solder layer Figure 108. SO8 and MiniSO8 demoboard bottom solder layer 5.1 BTL configuration principle The TS4890 is a monolithic power amplifier with a BTL output type. BTL (bridge tied load) means that each end of the load are connected to two single ended output amplifiers. Thus, we have: • Single ended output 1 = Vout1 = Vout (V) • Single ended output 2 = Vout2 = Vout (V) • and Vout1 - Vout2 = 2Vout (V) The output power is: 32/46 DocID8396 Rev 7 TS4890 Application information 2 ( 2VoutRMS ) Pout = ------------------------------------ ( W ) RL For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. 5.2 Gain in typical application schematic In flat region (no effect of Cin), the output voltage of the first stage is: Rfeed Vout1 = – Vin ----------------- ( V ) Rin For the second stage: Vout2 = -Vout1 (V) The differential output voltage is: Rfeed Vout2 – Vout1 = 2Vin ----------------- ( V ) Rin The differential gain named gain (Gv) for more convenient usage is: Vout2 – Vout1 Rfeed Gv = ---------------------------------------- = 2 ----------------Vin Rin Remark: Vout2 is in phase with Vin and Vout1 is 180 phased with Vin. It means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1. 5.3 Low and high frequency response In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a 3 dB cut-off frequency. 1 FCL = --------------------------- ( Hz ) 2πRinCin In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Rfeed. Its form a low pass filter with a -3 dB cut-off frequency. 1 F CH = ------------------------------------------ ( Hz ) 2πRfeedCfeed DocID8396 Rev 7 33/46 46 Application information 5.4 TS4890 Power dissipation and efficiency Hypothesis: • Voltage and current in the load are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) Regarding the load we have: VOUT = V PEAK sin ωt ( V ) and V OUT IOUT = -------------- ( A ) RL and V 2 PEAK P OUT = ------------------- ( W ) 2R L Then, the average current delivered by the supply voltage is: VPEAK Icc AVG = 2 ----------------- ( A ) πR L The power delivered by the supply voltage is Psupply = Vcc IccAVG (W). Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W) 2 2Vcc Pdiss = ---------------------- P OUT – P OUT ( W ) π R L and the maximum value is obtained when ∂Pdiss ------------------- = 0 ∂POUT and its value is 2 2Vcc Pdissmax = ---------------(W) 2 π RL Remark: This maximum value is only depending on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply. 34/46 DocID8396 Rev 7 TS4890 Application information P OUT πV PEAK η = ----------------------- = --------------------Psupply 4Vcc The maximum theoretical value is reached when Vpeak = Vcc, so π --- = 78.5percentage 4 5.5 Decoupling of the circuit Two capacitors are needed to bypass properly the TS4890. A power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb. Cs has especially an influence on the THD+N in high frequency (above 7kHz) and indirectly on the power supply disturbances. With 100 µF, you can expect similar THD+N performance like shown in the datasheet. If Cs is lower than 100 µF, in high frequency THD+N increases and disturbances on the power supply rail are less filtered. To the contrary, if Cs is higher than 100ìF, those disturbances on the power supply rail are more filtered. Cb has an influence on THD+N in lower frequency, but its function is critical on the final result of PSRR with input grounded in lower frequency. If Cb is lower than 1 µF, THD+N increases in lower frequency (see THD+N vs frequency curves) and the PSRR worsens up. If Cb is higher than 1 µF, the benefit on THD+N in lower frequency is small but the benefit on PSRR is substantial (see PSRR vs. Cb curves). Note that Cin has a non-negligible effect on PSRR in lower frequency. Lower is its value, higher is the PSRR. 5.6 Pop and click performance In order to have the best performances with the pop and click circuitry, the formula below must be followed: τ in ≤ τ b with τin = ( R in + R feed ) × C in ( s ) DocID8396 Rev 7 35/46 46 Application information TS4890 and τb = 50kΩ × C b ( s ) 5.7 Power amplifier design examples Given: • Load impedance: 8 Ω • Output power @ 1% THD+N: 0.5 W • Input impedance:10 kΩ min. • Input voltage peak to peak: 1 Vpp • Bandwidth frequency: 20 Hz to 20 kHz (0, -3 dB) • THD+N in 20 Hz to 20 kHz < 0.5% @Pout=0.45 W • Ambient temperature max. = 50 °C • SO8 package First of all, we must calculate the minimum power supply voltage to obtain 0.5 W into 8 W. See curves in Figure 15, we can read 3.5 V. Thus, the power supply voltage value min. is 3.5 V. Following the maximum power dissipation equation: 2 2Vcc Pdissmax = ---------------(W) 2 π RL with 3.5 V we have Pdissmax = 0.31 W. Refer to power derating curves (Figure 24), with 0.31 W the maximum ambient temperature is 100 °C. This last value could be higher if you follow the example layout shows on the demoboard (better dissipation). The gain of the amplifier in flat region is: V OUTPP 2 2R L POUT G V = --------------------- = ------------------------------- = 5.65 VINPP V INPP We have Rin > 10 kW. Let us take Rin = 10 kΩ, then Rfeed = 28.25 kΩ. We could use for Rfeed = 30 kΩ in normalized value and the gain is Gv = 6. In lower frequency we want 20 Hz (-3dB cut off frequency). Then: 1 C IN = --------------------------- = 795nF 2πRinFCL So, we could use for CIN a 1 µF capacitor value that gives 16 Hz. In higher frequency we want 20 kHz (-3dB cut off frequency). The Gain bandwidth product of the TS4890 is 2 MHz typical and does not change when the amplifier delivers power into the load. The first amplifier has a gain of: 36/46 DocID8396 Rev 7 TS4890 Application information Rfeed ----------------- = 3 Rin and the theoretical value of the -3 dB cut of higher frequency is 2 MHz/3 = 660 kHz. We can keep this value or limiting the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then: 1 C FEED = ------------------------------------ = 265pF 2πR FEED F CH So, we could use for Cfeed a 220 pF capacitor value that gives 24 kHz. Now, we can choose the value of Cb with the constraint THD+N in 20 Hz to 20 kHz < 0.5% @ Pout=0.45 W. If you refer to the closest THD+N vs frequency measurement: Figure 71 (Vcc=3.3 V, Gv=10), with Cb = 1 µF, the THD+N vs frequency is always below 0.4%. As the behavior is the same with Vcc = 5 V (Figure 67), Vcc = 2.6 V (Figure 67). As the gain for these measurements is higher (worst case), we can consider with Cb = 1 µF, Vcc = 3.5 V and Gv = 6, that the THD+N in 20 Hz to 20 kHz range with Pout = 0.45 W is lower than 0.4%. In the following tables, you could find three another examples with values required for the demoboard. Remark: components with (*) marking are optional. Application n°1: 20 Hz to 20 kHz bandwidth and 6 dB gain BTL power amplifier Table 9. Components Designator Part type R1 22 k / 0.125 W R4 22 k / 0.125 W R6 Short-circuit R7 (Vcc-Vf_led)/If_led R8 10 k/0.125 W C5 470 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 connector 2.54 mm pitch P1 PCB phono jack D1 Led 3 mm U1 TS4890ID or TS4890IS DocID8396 Rev 7 37/46 46 Application information TS4890 Application n°2: 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier Table 10. Components 2 Designator Part type R1 110 k / 0.125 W R4 22 k / 0.125 W R6 Short-circuit R7 (Vcc-Vf_led)/If_led R8 10 k/0.125 W C5 470 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 connector 2.54 mm pitch P1 PCB phono jack D1 Led 3 mm U1 TS4890ID or TS4890IS Application n°3: 50 Hz to 10 kHz bandwidth and 10 dB gain BTL power amplifier Table 11. Components 3 Designator 38/46 Part type R1 33 k / 0.125 W R2 Short-circuit R4 22 k / 0.125 W R6 Short-circuit R7 (Vcc-Vf_led)/If_led R8 10 k/0.125 W C2 470 nF C5 150 nF C6 100 µF DocID8396 Rev 7 TS4890 Application information Table 11. Components 3 Designator Part type C7 100 nF C9 Short-circuit C10 Short-circuit C12 1 µF S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 connector 2.54 mm pitch P1 PCB phono jack D1 Led 3 mm U1 TS4890ID or TS4890IS Application n°4: differential inputs BTL power amplifier In this configuration, we need to place these components: R1, R4, R5, R6, R7, C4, C5, C12. We have also: R4 = R5, R1 = R6, C4 = C5. The gain of the amplifier is: R1 G VDIFF = 2 -------R4 For Vcc=5 V, a 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier you could follow the bill of material below: Table 12. Components 4 Designator Part type R1 110 k / 0.125 W R4 22 k / 0.125 W R5 22 k / 0.125 W R6 Short-circuit R7 (Vcc-Vf_led)/If_led R8 10 k/0.125 W C4 470 nF C5 470 nF C6 100 µF C7 100 nF C9 Short-circuit C10 Short-circuit DocID8396 Rev 7 39/46 46 Application information TS4890 Table 12. Components 4 Designator Part type C12 1 µF D1 Led 3 mm S1, S2, S6, S7 2 mm insulated plug 10.16 mm pitch S8 3 connector 2.54 mm pitch P1, P2 PCB phono jack U1 TS4890ID or TS4890IS How to use the PSRR curves We have finished a design and we have chosen for the components: • Rin = Rfeed = 22 kΩ • Cin=100 nF • Cb=1 µF Now, in Figure 16, we can see the PSRR (input grounded) vs frequenc y curves. At 217 Hz, we have a PSRR value of -36 dB. In reality we want a value about -70dB. So, we need a gain of 34 dB. Now, in Figure 15 we can see the effect of Cb on the PSRR (input grounded) vs frequency. With Cb=100 µF, we can reach the -70 dB value. The process to obtain the final curve (Cb=100 µF, Cin=100 nF, Rin=Rfeed=22 kΩ) is a simple transfer point by point on each frequency of the curve on Figure 16 to the curve on Figure 15. The measurement result is shown on the next figure. Figure 109. PSRR changes with Cb 9FF DQG9 5IHHG N5LQ N 5J :5/ : 7DPE q&  3655 G%  &LQ Q) &E P)   &LQ Q) &E P)       )UHTXHQF\ +] The PSRR is the power supply rejection ratio. It is a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output. 40/46 DocID8396 Rev 7 TS4890 Application information Figure 110. PSRR measurement schematic 9FF DQG9 5IHHG N5LQ N 5J :5/ : 7DPE q&  &LQ Q) &E P) 3655 G%   &LQ Q) &E P)        )UHTXHQF\ +] Principle of operation • We fixed the DC voltage supply (Vcc) • We fixed the AC sinusoidal ripple voltage (Vripple) • No bypass capacitor Cs is used The PSRR value for each frequency is: Rms ( V ripple ) PSRR ( dB ) = 20 × Log 10 ------------------------------------------Rms ( Vs - – Vs + ) Remark: The measure of the Rms voltage is not an Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. DocID8396 Rev 7 41/46 46 Package information 6 TS4890 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 6.1 SO8 package information (TS4890IDT) Figure 111. SO8 package outline Table 13. SO8 package mechanical data Dimensions Ref. Min. Typ. A 42/46 Inches(1) Millimeters Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.1 0.004 0.01 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.01 D 4.8 5 0.189 0.049 4.9 DocID8396 Rev 7 0.193 0.197 TS4890 Package information Table 13. SO8 package mechanical data Dimensions Ref. Inches(1) Millimeters Min. Typ. Max. Min. Typ. Max. E 5.8 6 6.2 0.228 0.236 0.244 E1 3.8 3.9 4 0.15 0.154 0.157 e 1.27 0.05 h 0.25 0.5 0.01 0.02 L 0.4 1.27 0.016 0.05 L1 k ccc 1.04 0.04 0 8° 0.1 0.004 1. Values in inches are converted from mm and rounded to 4 decimal digits. 6.2 MiniSO8 package information (TS4890IST) Figure 112. MiniSO8 package outline DocID8396 Rev 7 43/46 46 Package information TS4890 Table 14. MiniSO8 package mechanical data Dimensions Ref. Inches(1) Millimeters Min. Typ. A Max. Min. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k 8° 0° 0.1 1. Values in inches are converted from mm and rounded to 4 decimal digits. 44/46 Typ. DocID8396 Rev 7 0.031 8° 0.004 TS4890 7 Revision history Revision history Table 15. Document revision history Date Revision 15-Feb-2019 7 Changes Removed DFN8 package. Updated the document accordingly DocID8396 Rev 7 45/46 46 TS4890 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved 46/46 DocID8396 Rev 7
TS4890IQT 价格&库存

很抱歉,暂时无法提供与“TS4890IQT”相匹配的价格&库存,您可以联系我们找货

免费人工找货