0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSB611IYLT

TSB611IYLT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOT23-5

  • 描述:

    IC OPAMP GP 1 CIRCUIT SOT23-5

  • 数据手册
  • 价格&库存
TSB611IYLT 数据手册
TSB611, TSB612 Datasheet Low-power, rail-to-rail output, 36 V operational amplifiers Features SO8 MiniSO8 • • • • • • • • • • Low offset voltage: 1 mV max Low current consumption: 125 μA max. per amplifier at 36 V Wide supply voltage: 2.7 to 36 V Gain bandwidth product: 560 kHz typ Unity gain stable Rail-to-rail output Input common mode voltage includes ground High tolerance to ESD: 4 kV HBM Extended temperature range: -40 °C to 125 °C Automotive qualification SOT23-5 Applications • • • Industrial Power supplies Automotive Description Maturity status link TSB611, TSB612 The TSB611, TSB612 operational amplifiers (op amps) offer an extended supply voltage operating range and rail-to-rail output. They also offer an excellent speed/ power consumption ratio with 560 kHz gain bandwidth product while consuming less than 125 μA per amplifier at 36 V supply voltage. The TSB611, TSB612 operate over a wide temperature range from -40 °C to 125°C making this device ideal for industrial and automotive applications. Thanks to their small package size, the TSB611, TSB612 can be used in applications where space on the board is limited. They can thus reduce the overall cost of the PCB. DS11136 - Rev 4 - June 2021 For further information contact your local STMicroelectronics sales office. www.st.com TSB611, TSB612 Pin connection 1 Pin connection Figure 1. Pin connection (top view) Out1 VCC+ Out1 VCC+ In1- Out2 In1- Out2 In1+ In2- In1+ In2- VCC- In2+ VCC- In2+ SO8 MiniSO8 OUT VCCIN+ 1 5 VCC+ 4 IN- 2 + - 3 SOT23-5 DS11136 - Rev 4 page 2/22 TSB611, TSB612 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter Vcc Supply voltage (1) Vid Differential input voltage (2) Vin Input voltage Iin Input current (3) Tstg Rthja Tj ESD Value Unit 40 ±Vcc V (Vcc -) - 0.2 to (Vcc +) + 0.2 Storage temperature Thermal resistance junction to ambient (4) (5) 10 mA -65 to 150 °C SOT23-5 250 MiniSO8 190 SO-8 125 Maximum junction temperature 150 HBM: human body model (6) 4000 CDM: charged device model (7) 1500 °C/W °C V 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. Input current must be limited by a resistor in series with the inputs. 4. Rth are typical values. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. According to JEDEC standard JESD22-A114F. 7. According to ANSI/ESD STM5.3.1. Table 2. Operating conditions Symbol DS11136 - Rev 4 Parameter Vcc Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 2.7 to 36 (Vcc - ) - 0.1 to (Vcc +) - 1 -40 to 125 Unit V °C page 3/22 TSB611, TSB612 Electrical characteristics 3 Electrical characteristics Table 3. Electrical characteristics at V cc + = 2.7 V with V cc - = 0 V, Vicm = V cc /2, Tamb = 25 °C, and RL = 10 kΩ connected to V cc /2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio ΔVio/ΔT Input offset voltage Input offset voltage drift Iio Input offset current Iib Input bias current CMR Common mode rejection ratio: 20 log (ΔVicm/ΔVio) -40 °C < T< 125 °C -1 1 -1.6 1.6 -40 °C < T< 125 °C 1.8 6 1 5 -40 °C < T< 125 °C 10 5 -40 °C < T< 125 °C 10 mV μV/°C nA 15 Vicm = 0 V to Vcc+ -1 V, Vout = Vcc/2 90 -40 °C < T< 125 °C 85 115 Vout = 0.5 V to (Vcc+ - 0.5 V) Avd VOH VOL Large signal voltage gain High level output voltage (voltage drop from Vcc+) Low level output voltage Isink Iout Isource ICC Supply current (per channel) TSB611 98 - 40 °C< T < 125 °C 94 TSB612 90 - 40 °C< T < 125 °C 87 dB 102 100 13 -40 °C < T< 125 °C 25 30 26 -40 °C < T< 125 °C 30 mV 35 Vout = Vcc 13 -40 °C < T< 125 °C 10 Vout = 0 V 20 -40 °C < T< 125 °C 7 No load, Vout = Vcc/2 20 mA 28 92 -40 °C < T< 125 °C 110 125 µA AC performance Gain bandwidth product RL = 10 kΩ, CL = 100 pF 480 Fu Unity gain frequency RL = 10 kΩ, CL = 100 pF 430 ϕm Phase margin RL = 10 kΩ, CL = 100 pF 60 Degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 18 dB SR+ Positive slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.13 0.18 SR- Negative slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.10 0.14 GBP en DS11136 - Rev 4 Equivalent input noise voltage kHz V/μs f = 1 kHz 37 f = 10 kHz 32 nV/√Hz page 4/22 TSB611, TSB612 Electrical characteristics Symbol THD+N trec DS11136 - Rev 4 Parameter Conditions fin = 1 kHz, Gain = 1, RL = 100 kΩ, Total harmonic distortion + noise Vicm = (Vcc - 1 V)/2, BW = 22 kHz, Vout = 1 Vpp Overload recovery time Min. Typ. Max. Unit 0.005 % 2 µs page 5/22 TSB611, TSB612 Electrical characteristics Table 4. Electrical characteristics at Vcc+ = 12 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 °C, and RL = 10 kΩ connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio ΔVio/ΔT Iio Iib Input offset voltage Input offset voltage drift Input offset current Input bias current CMR Common mode rejection ratio: 20 log (ΔVicm/ΔVio) SVR Supply voltage rejection ratio: 20 log (ΔVcc/ΔVio) Avd Large signal voltage gain VOH High level output voltage drop from Vcc+ VOL Low level output voltage Isink Iout Isource ICC Supply current (per channel) -40 °C < T< 125 °C -1 1 -1.6 1.6 -40 °C < T< 125 °C 1.6 6 1 5 -40 °C < T< 125 °C 15 5 -40 °C < T< 125 °C 10 mV μV/°C nA 15 Vicm = 0 V to Vcc+ - 1 V, Vout = Vcc/2 95 -40 °C < T< 12 5°C 90 Vcc = 2.8 to 12 V 95 -40 °C < T< 125 °C 90 Vout = 0.5 V to (Vcc+ - 0.5 V) 105 -40 °C < T< 125 °C 100 126 124 dB 115 37 -40 °C < T< 125 °C 60 65 56 -40 °C < T< 125 °C 65 mV 75 Vout = Vcc 24 -40 °C < T< 125 °C 10 Vout = 0 V 28 -40 °C < T< 125 °C 10 No load, Vout = Vcc/2 35 mA 40 97 -40 °C < T< 125 °C 115 130 µA AC performance Gain bandwidth product RL = 10 kΩ, CL = 100 pF 510 Fu Unity gain frequency RL = 10 kΩ, CL = 100 pF 460 ϕm Phase margin RL = 10 kΩ, CL = 100 pF 60 Degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 18 dB SR+ Positive slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.13 Negative slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.11 GBP SR- en THD+N trec DS11136 - Rev 4 Equivalent input noise voltage Overload recovery time 0.19 V/μs 0.15 f = 1 kHz 31 f = 10 kHz 30 fin = 1 kHz, Gain = 1, RL = 100 kΩ, Total harmonic distortion + noise Vicm = (Vcc - 1 V)/2, BW = 22 kHz, Vout = 2 Vpp kHz nV/√Hz 0.004 % 2 µs page 6/22 TSB611, TSB612 Electrical characteristics Table 5. Electrical characteristics at Vcc+ = 36 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 °C, and RL = 10 kΩ connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio ΔVio/ΔT Iio Iib Input offset voltage Input offset voltage drift Input offset current Input bias current CMR Common mode rejection ratio: 20 log (ΔVicm/ΔVio) SVR Supply voltage rejection ratio 20 log (ΔVcc/ΔVio) Avd Large signal voltage gain VOH High level output voltage drop from VCC+ VOL Low level output voltage Isink Iout Isource ICC Supply current (per channel) -40 °C < T< 125 °C -1 1 -1.6 1.6 -40 °C < T< 125 °C 1.3 6 1 5 -40 °C < T< 125 °C 20 5 -40 °C < T< 125 °C 10 mV μV/°C nA 20 Vicm = 0 V to Vcc+ - 1 V, Vout = Vcc/2 105 -40 °C < T< 125 °C 100 Vcc = 12 to 36 V 100 -40 °C < T< 125 °C 95 Vout = 0.5 V to (Vcc+ - 0.5 V) 110 -40 °C < T< 125 °C 105 130 124 dB 120 80 -40 °C < T< 125 °C 110 150 90 -40 °C < T< 125 °C 110 mV 150 Vout = Vcc 40 -40 °C < T< 125 °C 10 Vout = 0 V 40 -40 °C < T< 125 °C 20 No load, Vout = Vcc/2 60 mA 70 103 -40 °C < T< 125 °C 125 140 µA AC performance Gain bandwidth product RL = 10 kΩ, CL = 100 pF 560 Fu Unity gain frequency RL = 10 kΩ, CL = 100 pF 500 ϕm Phase margin RL = 10 kΩ, CL = 100 pF 58 Degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 18 dB SR+ Positive slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.15 Negative slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 0.12 GBP SR- en THD+N trec DS11136 - Rev 4 Equivalent input noise voltage Overload recovery time 0.20 V/μs 0.16 f = 1 kHz 29 f = 10 kHz 28 fin = 1 kHz, Gain = 1, RL = 100 kΩ, Total harmonic distortion + noise Vicm = (Vcc - 1 V)/2, BW = 22 kHz, Vout = 2 Vpp RL = 10 kΩ, CL = 100 pF, Gain = 1 kHz nV/√Hz 0.004 % 2 µs page 7/22 TSB611, TSB612 Electrical characteristics Figure 2. Supply current vs. supply voltage at Vicm = VCC/2 Figure 3. Input offset voltage distribution at VCC = 2.7 V 20 Vcc=2.7V Vicm=1.35V T=25°C 200 Vicm=Vcc/2 15 150 125 100 75 T=-40°C T=25°C Population (%) Supply Current (µA) 175 10 5 T=125°C 50 25 0 4 8 12 16 20 24 28 Supply Voltage (V) 32 0 -1.0 36 Figure 4. Input offset voltage distribution at VCC = 12 V -0.8 -0.4 0.0 0.2 0.4 0.6 0.8 1.0 Figure 5. Input offset voltage distribution at VCC = 36 V 20 Vcc=12V Vicm=6V T=25°C Vcc=36V Vicm=18V T=25°C 15 Population (%) 15 10 10 5 0 -1.0 5 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0 -1.0 1.0 -0.8 -0.6 Input offset voltage (mV) 2.0 0.0 0.2 0.4 0.6 0.8 1.0 60 Vcc=36V Vicm=18V T=25°C 55 50 1.0 Population (%) 45 0.5 0.0 -0.5 -1.0 40 35 30 25 20 15 10 Vcc=36V Vicm=18V -1.5 DS11136 - Rev 4 -0.2 Figure 7. Input offset voltage temperature variation distribution at VCC = 36 V Vio limit 1.5 -2.0 -40 -0.4 Input offset voltage (mV) Figure 6. Input offset voltage vs. Temperature at VCC = 36 V Input offset voltage (mV) -0.2 Input offset voltage (mV) 20 Population (%) -0.6 -20 0 20 40 60 80 Temperature (°C) 5 100 120 0 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 ∆Vio/∆T (µV/°C) page 8/22 TSB611, TSB612 Electrical characteristics Figure 8. Input offset voltage vs. supply voltage Figure 9. Input offset voltage vs. common-mode voltage at VCC = 2.7 V 400 Vicm=Vcc/2 400 Input Offset Voltage (µV) Input Offset Voltage (µV) 600 200 0 -200 -400 -600 -800 T=125°C 4 8 12 T=25°C T=-40°C 16 20 24 28 Supply voltage (V) 32 0 -200 -400 36 -800 T=-40°C 0.5 1.0 1.5 Input Common Mode Voltage (V) 10 Vcc=4V 400 Input bias current (nA) Input Offset Voltage (µV) 0.0 T=25°C Figure 11. Input bias current vs common mode voltage at VCC = 4 V 600 Vcc=36V 200 0 -200 -600 0 T=125°C -600 Figure 10. Input offset voltage vs. common-mode voltage at VCC = 36 V -400 Vcc=2.7V 200 T=125°C 4 5 0 -5 T=125°C -10 T=25°C T=-40°C T=25°C T=-40°C -15 0.0 8 12 16 20 24 28 32 Input Common Mode Voltage (V) 0.5 1.0 1.5 2.0 2.5 Input common mode voltage (V) 3.0 Figure 12. Input bias current vs common mode voltage at Figure 13. Output current vs. output voltage at VCC = 2.7 V VCC = 36 V 30 10 Sink 23 Vid=-1V Output Current (mA) Input bias current (nA) Vcc=36V 5 0 -5 T=125°C -10 -15 0 DS11136 - Rev 4 T=25°C T=-40°C 15 8 0 T=125°C T=25°C T=-40°C -8 -15 -23 5 10 15 20 25 30 Input common mode voltage (V) 35 -30 0.0 Vcc=2.7V 0.5 1.0 1.5 2.0 Output Voltage (V) Source Vid=1V 2.5 page 9/22 TSB611, TSB612 Electrical characteristics Output Current (mA) 75 50 Sink Vid=-1V 25 0 T=-40°C T=25°C T=125°C -25 -50 -75 0 Source Vid=1V Vcc=36V 4 8 12 16 20 24 28 Output Voltage (V) 32 Figure 15. Output voltage (Voh) vs. supply voltage Output voltage (from Vcc+) (mV) Figure 14. Output current vs. output voltage at VCC = 36 V 125 Vid=0.1V Rl=10kΩ to Vcc/2 100 75 50 T=-40°C T=25°C 25 0 T=125°C 4 8 12 36 Figure 16. Output voltage (Vol) vs. supply voltage 16 20 24 28 Supply Voltage (V) 32 36 Figure 17. Amplifier behavior close to negative rail at VCC =5V 25 Vin Vout 0.00 4 8 12 16 20 24 28 Supply Voltage (V) 32 0.00 0 0.05 36 0.05 T=125°C 0.04 T=25°C 0.03 T=-40°C 50 0.10 0.02 75 Vcc=5V Follower configuration Rl=10kΩ Cl=100pF T=25°C 0.01 100 0.15 Vid=-0.1V Rl=10kΩ to Vcc/2 Input & Output Voltages (V) Output voltage (mV) 125 Time (s) Figure 18. Amplifier behavior close to positive rail at VCC =5V Figure 19. Slew rate vs. supply voltage 0.3 2.58 2.56 Vout 2.55 4.87 2.51 4.85 2.50 DS11136 - Rev 4 0.05 2.52 0.04 2.53 4.89 0.03 4.91 0.02 2.54 0.01 4.93 Time (s) 0.2 2.57 Slew rate (V/µs) Vin Input Voltage (V) Vcc=5V 4.99 Vicm=2.5V Gain=2 4.97 Rl=10kΩ Cl=100pF 4.95 T=25°C 0.00 Output Voltage (V) 5.01 0.1 T=125°C 0.0 T=25°C Vicm=Vcc/2 Vload=Vcc/2 T=-40°C Rl=10kΩ Cl=100pF -0.1 -0.2 -0.3 4 8 12 16 20 24 28 Supply Voltage (V) 32 36 page 10/22 TSB611, TSB612 Electrical characteristics Figure 20. Negative slew rate behavior vs. temperature at VCC = 36 V Figure 21. Positive slew rate behavior vs. temperature at VCC = 36 V 8 6 Signal Amplitude (V) 6 4 T=-40°C 2 T=25°C 0 4 Signal Amplitude (V) Vcc=36V Vicm=Vcc/2 Rl=10kΩ Cl=100pF T=125°C -2 2 T=25°C -2 -4 -4 -6 -20 20 40 60 Time (µs) 80 100 Vcc=36V Vicm=Vcc/2 Rl=10kΩ Cl=100pF T=-40°C -6 0 0 120 Figure 22. Small step response vs. time at VCC = 36 V 20 40 Time (µs) 60 80 Figure 23. Output desaturation vs. time 0.10 20 Vcc=36V Vicm=18V Rl=10kΩ Cl=100pF T=25°C 0.05 Input & Output Voltages (V) Signal Amplitude (V) T=125°C 0 0.00 -0.05 Vcc=36V Vicm=18V Gain=2 Rl=10kΩ Cl=100pF T=25°C 16 12 8 4 0 -4 -8 -12 -16 3 6 Time (µs) 9 Figure 24. Gain and phase vs. frequency at VCC = 2.7 V 0 50 -30 50 40 -60 40 30 -90 T=125°C 20 10 Vcc=2.7V Vicm=1.35V Rl=10kΩ Cl=100pF Gain=101 0 -10 -20 1k 10k -120 -150 T=25°C -210 T=-40°C 100k Frequency (Hz) DS11136 - Rev 4 -180 1M -240 10M 200 300 400 Time (µs) 500 60 Gain (dB) Phase Gain 100 600 700 Figure 25. Gain and phase vs. frequency at VCC = 36 V 60 Phase (°) Gain (dB) -20 0 12 0 Phase -30 -60 Gain 30 -90 T=-40°C 20 10 Vcc=36V Vicm=18V Rl=10kΩ Cl=100pF Gain=101 0 -10 -120 -150 T=25°C -180 -210 T=125°C -20 1k 10k 100k Phase (°) -0.10 0 1M -240 10M Frequency (Hz) page 11/22 TSB611, TSB612 Electrical characteristics Figure 26. Phase margin vs. output current at VCC = 2.7 V and 36 V Figure 27. Phase margin vs. capacitive load at VCC = 2.7 V and 36 V 60 90 80 50 Phase margin (°) Phase margin (°) 70 60 Vcc=2.7V 50 Vcc=36V 40 30 Vicm=Vcc/2 Rl=10kΩ Cl=100pF T=25°C 20 10 0 -1.00 -0.75 40 Vcc=2.7V 30 Vcc=36V 20 Vicm=Vcc/2 Rl=10kΩ T=25°C 10 -0.50 -0.25 0.00 0.25 0.50 0.75 0 100 1.00 200 Output current (pF) Overshoot (%) 80 Sustained oscillations Vcc=2.7V 40 Vcc=36V 20 0 10 100 1000 Cload (pF) 10000 1000 Vcc=36V Vicm=Vcc/2 T=25°C 80 60 40 20 0 10 100 1k Frequency (Hz) 10k 1 Vcc=36V 600 Vicm=18V T=25°C 400 THD + N (%) Input voltage noise (nV) 700 Figure 31. THD+N vs. frequency 800 200 0 -200 Vicm=Vcc/2 Gain=1 Vin=1Vpp 0.1 BW=80kHz T=25°C 1E-4 4 6 Time (s) 8 10 Rl=10kΩ Vcc=2.7V Rl=100kΩ Vcc=2.7V -600 2 Rl=10kΩ Vcc=36V 0.01 1E-3 -400 DS11136 - Rev 4 500 100 Figure 30. Noise vs. time at VCC = 36 V -800 0 400 Figure 29. Noise vs. frequency at VCC = 36 V Equivalent Input Noise Voltage (nV/√Hz) Figure 28. Overshoot vs. capacitive load at VCC = 2.7 V and 36 V Vicm=Vcc/2 Rl=10kΩ Vin=100mVpp 60 Gain=1 T=25°C 300 Capacitive load (pF) 100 1000 Frequency (Hz) Rl=100kΩ Vcc=36V 10000 page 12/22 TSB611, TSB612 Electrical characteristics Figure 33. PSRR vs. frequency at VCC = 36 V Figure 32. THD+N vs. output voltage 1 120 Rl=10kΩ Vcc=2.7V PSRR+ 100 Rl=100kΩ Vcc=2.7V PSRR (dB) THD + N (%) 0.1 Rl=10kΩ Vcc=36V 0.01 Vicm=Vcc/2 1E-3 Gain=1 f=1kHz Rl=100kΩ BW=22kHz Vcc=36V T=25°C 1E-4 0.01 0.1 1 10 Output Voltage (Vpp) Figure 34. Output impedance vs. frequency at VCC = 2.7 V and 36 V 60 Vcc=36V Vicm=18V 40 Gain=1 Rl=10kΩ 20 Cl=100pF Vosc=200mVPP T=25°C 0 10 100 PSRR1k 10k Frequency (Hz) 100k Figure 35. Output series resistor recommended for stability vs. capacitive load 1000 1000 Vicm=Vcc/2 Gain=1 Vosc=30mVRMS 100 T=25°C Vcc=36V Vicm=18V Rl=10kΩ Gain=1 T=25°C Stable Riso(Ω) Output impedance (Ohm) 80 Vcc=2.7V 10 100 Unstable Vcc=36V 1 0.1 10 DS11136 - Rev 4 100 1k 10k 100k Frequency (Hz) 1M 10M 10 100p 1n Cload (F) 10n 100n page 13/22 TSB611, TSB612 Application information 4 Application information 4.1 Operating voltages The TSB611, TSB612 operational amplifiers can operate from 2.7 V to 36 V. The parameters are fully specified at 2.7 V, 12 V, and 36 V power supplies. However, parameters are very stable in the full Vcc range. Additionally, main specifications are guaranteed in the extended temperature range from -40 to 125 °C. 4.2 Input common-mode range The TSB611, TSB612 have an input common-mode range that includes ground. The input common-mode range is extended from (VCC-) - 0.1 V to (VCC+) - 1 V. 4.3 Rail-to-rail output The operational amplifier's output levels can go close to the rails: 100 mV maximum below the positive rail and 110 mV maximum above the negative rail when connected to a 10 kΩ resistive load to VCC/2 for a power supply voltage of 36 V. 4.4 Input offset voltage drift over temperature The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ∆V io V ( T ) – V io ( 25 °C) = ma x io ∆T T – 25 °C Where T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 2. DS11136 - Rev 4 page 14/22 TSB611, TSB612 Long term input offset voltage drift 4.5 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β . ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e E 1 1 -----a- . – k TU TS Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. Equation 5 Months = A F × 1000 h × 12 months / ( 24 h × 365.25 days ) To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC / 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 DS11136 - Rev 4 page 15/22 TSB611, TSB612 ESD structure of TSB611, TSB612 ∆V io = V io dr ift ( month s ) Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.6 ESD structure of TSB611, TSB612 The TSB611, TSB611 are protected against electrostatic discharge (ESD) with dedicated diodes (see Figure 36. ESD structure). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (VCC+ or VCC-). Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1. Absolute maximum ratings (AMR). A serial resistor or a Schottky diode can be used on the inputs to improve protection but the 10 mA limit of input current must be strictly observed. Figure 36. ESD structure TSB611 + Initialization time 4.7 The TSB611, TSB612 have a good power supply rejection ratio (PSRR), but as with all devices, it is recommended to use a 22 nF bypass capacitor as close as possible to the power supply pins. It prevents the noise present on the power supply impacting the signal conditioning. In addition, this bypass capacitor enhances the initialization time (see Figure 37. Startup behavior without bypass capacitor and Figure 38. Startup behavior with a 22 nF bypass capacitor). Figure 38. Startup behavior with a 22 nF bypass capacitor 6 6 5 4 Vcc Supply and output voltages (V) Supply and output voltages (V) Figure 37. Startup behavior without bypass capacitor Vcc=5V Vin=100mV Follower configuration Without bypass capacitor T=25°C 3 2 Vout 1 0 -1 0 DS11136 - Rev 4 4 8 12 Time (µs) 16 20 5 4 Vcc Vcc=5V Vin=100mV Follower configuration With 22nF bypass capacitor T=25°C 3 2 1 Vout 0 -1 0 4 8 12 Time (µs) 16 20 page 16/22 TSB611, TSB612 Package information 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 5.1 SOT23-5 package information Figure 39. SOT23-5 package outline Table 6. SOT23-5 mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 DS11136 - Rev 4 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0 degrees 10 degrees 0 degrees 10 degrees page 17/22 TSB611, TSB612 SO-8 package information 5.2 SO-8 package information Figure 40. SO-8 package outline 0016023_So-807_fig2_Rev10 Table 7. SO-8 mechanical data Dim. mm Min. Typ. A 1.75 A1 0.10 A2 1.25 b 0.31 0.51 b1 0.28 0.48 0.25 c 0.10 0.25 c1 0.10 0.23 D 4.80 4.90 5.00 E 5.80 6.00 6.20 E1 3.80 3.90 4.00 e 1.27 h 0.25 0.50 L 0.40 1.27 L1 1.04 L2 0.25 k ccc DS11136 - Rev 4 Max. 0° 8° 0.10 page 18/22 TSB611, TSB612 MiniSO8 package information 5.3 MiniSO8 package information Figure 41. MiniSO8 package outline Table 8. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k DS11136 - Rev 4 Max. 8° 0.1 0° 0.031 8° 0.004 page 19/22 TSB611, TSB612 Ordering information 6 Ordering information Table 9. Order codes Order code Temperature range TSB611ILT TSB612IYDT (1) TSB612IST TSB612IYST (1) Packing -40 °C to 125 °C SO8 MiniSO8 Marking K191 SΟΤ23-5 TSB611IYLT (1) TSB612IDT Package K194 Tape and reel TSB612I TSB612IY K191 K194 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent. DS11136 - Rev 4 page 20/22 TSB611, TSB612 Revision history Table 10. Document revision history Date Revision Changes 17-Aug-2015 1 Initial release 15-May-2017 2 Updated automotive footnote in Table 11. Order codes Added new part number TSB612, new Section 1 Pin connection 12-Nov-2020 3 Updated Section 6 Ordering information Minor text changes 21-Jun-2021 DS11136 - Rev 4 4 Updated Table 1, Avd min. and typ. values in Table 3 page 21/22 TSB611, TSB612 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS11136 - Rev 4 page 22/22
TSB611IYLT 价格&库存

很抱歉,暂时无法提供与“TSB611IYLT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSB611IYLT
  •  国内价格
  • 1+5.49936
  • 10+5.23800
  • 30+5.08248

库存:77