0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSDC4872IJT

TSDC4872IJT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TSDC4872IJT - RAIL TO RAIL INPUT/OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE - STMicroelectron...

  • 数据手册
  • 价格&库存
TSDC4872IJT 数据手册
TS4872 RAIL TO RAIL INPUT/OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE NOT FOR NEW DESIGN ■ OPERATING FROM VCC = 2.2V to 5.5V ■ RAIL TO RAIL INPUT/OUTPUT ■ 1W OUTPUT POWER @ Vcc=5V, THD=1%, ■ ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA) PIN CONNECTIONS (Top View) ■ 75dB PSRR @ 217Hz @ 5 & 2.6V ■ ULTRA LOW POP & CLICK ■ ULTRA LOW DISTORTION (0.05%) ■ UNITY GAIN STABLE ■ 8 X170µm BUMPS FLIP CHIP PACKAGE DESCRIPTION The TS4872 is an Audio Power Amplifier capable of delivering 1W of continuous RMS Ouput Power into 8Ω load @ 5V. 8 Vout1 7 Vin + IG 6 5 Vcc STDBY Vout2 GND BYPASS S Vin This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal shutdown protection is provided. The TS4872 has been designed for high quality audio applications such as mobile phones and to minimize the number of external components. F The unity-gain stable amplifier can be configured by external gain setting resistors. APPLICATIONS ■ Mobile Phones (Cellular / Cordless) ■ Portable Audio Devices N O ■ PDAs ■ Laptop/Notebook computers bs O let o T ro P e du O (s) ct so Ob - R N E W D 1 te le ro P 2 uc d 3 TYPICAL APPLICATION SCHEMATIC E Audio Input Cin Rin 1 7 VinVin+ + Cfeed Rfeed Vcc 6 Cs Vcc N s) t( 4 Vout1 8 RL 8 Ohms Vout2 4 TS4872 f=1kHz, with 8Ω Load TS4872IJT - FLIP CHIP Vcc 3 Bypass Standby Bias Av=-1 + ORDER CODE Part Number TS4872IJT Temperature Range -40, +85°C Package Marking J ● YW4872 Rstb 5 Cb J = Flip Chip Package - only available in Tape & Reel (JT) April 2005 GND 2 1/29 TS4872 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Toper Tstg Tj Rthja Supply voltage 1) Input Voltage 2) Parameter Value 6 -40 to + 85 150 Unit V Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature N GND to VCC V °C °C °C °C/W kV V °C OPERATING CONDITIONS Symbol VCC VICM Supply Voltage Common Mode Input Voltage Range VCC from 2.6V to 5V VCC < 2.6V Standby Voltage Input : Device ON Device OFF Load Resistor Parameter W 1. All voltages values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed VCC + 0.3V / G ND - 0.3V 3. Device is protected in case of over temperature by a thermal shutdown active @ 150°C D Flip Chip Thermal Resistance Junction to Ambient 3) Pd Power Dissipation ESD Human Body Model ESD Machine Model Latch-up Latch-up Immunity Lead Temperature (soldering, 10sec) E S so te le Internally Limited 2 200 Class A 250 IG 200 Value -65 to +150 ro P 2.2 to 5.5 N uc d E s) t( Unit V GND to VCC VCC / 2 V R VSTB RL Rthja O Flip Chip Thermal Resistance Junction to Ambient 1. With Heat Sink Surface = 125mm 2 bs O let o Pr e 2/29 N du o O (s) ct Ob 1) GND ≤ VSTB ≤ 0.5V VCC - 0.5V ≤ VSTB ≤ VCC 4 - 32 95 Ω °C/W T F TS4872 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po THD + N PSRR Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Parameter Min. Typ. 6 10 5 1 0.1 75 70 Max. Unit mA nA mV W % dB IG D E S W 20 2 Power Supply Rejection Ratio 2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω ΦM GM GBP N 1000 20 Max. 8 1000 20 8 R 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz ICC ISTANDBY Voo Po Supply Current No input signal, no load F Symbol O VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 3) Parameter O Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω THD + N O bs ΦM PSRR let o Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio 2) f = 217Hz, RL = 8Ω, RFeed = 22KΩs, Vripple = 100mV rms Pr e N od ct u (s) so Ob - te le ro P Min. N uc d E s) t( Degrees dB MHz Typ. 5.5 10 5 450 0.1 68 70 20 2 Unit mA nA mV mW % dB Degrees dB MHz Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8Ω GM GBP 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 3 All electrical values are made by correlation between 2.6v and 5v measurements T 3/29 TS4872 ELECTRICAL CHARACTERISTICS VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTANDBY Voo Po THD + N PSRR Parameter Supply Current No input signal, no load Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Min. Typ. 5.5 10 5 Max. Unit mA nA mV mW % dB IG S E D 260 0.1 75 70 20 2 Power Supply Rejection Ratio 2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8 Ω ΦM GM GBP W N 8 1000 20 Max. R 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = 2.2V, GND = 0V, Tamb = 25°C (unless otherwise specified) F Symbol ICC ISTANDBY Voo Po Parameter Supply Current No input signal, no load O Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω Output Offset Voltage No input signal, RL = 8Ω THD + N bs O PSRR let o Output Power THD = 1% Max, f = 1kHz, RL = 8Ω Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω Power Supply Rejection Ratio 2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 100mVpp od Pr e ct u (s) so Ob - O te le ro P N uc d E s) t( Degrees dB MHz Min. Typ. 4.5 10 2 180 0.1 75 70 20 2 Unit mA nA mV mW % dB Degrees dB MHz N ΦM GM GBP 4/29 Phase Margin at Unity Gain RL = 8Ω, CL = 500pF Gain Margin RL = 8Ω, CL = 500pF Gain Bandwidth Product RL = 8 Ω 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz T TS4872 Components Rin Cin Rfeed Cs Cb Cfeed Rstb Gv Functional Description Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass pin capacitor which provides half supply filtering Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) Pull-up resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) REMARKS D E ro P uc d s) t( N 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 2. External resistors are not needed for having better stability when supply @ Vcc down to 3V. By the way, the quiescent current remains the same. 3. The standby response time is about 1µs. E W bs O let o Pr e N du o O (s) ct so Ob - T F O te le R S 5/29 IG N TS4872 Fig. 1 : Open Loop Frequency Response Fig. 2 : Open Loop Frequency Response 0 60 0 60 -40 -60 Phase (Deg) N 10000 0 10000 0 10000 Gain 40 Gain (dB) Vcc = 5V RL = 8Ω Tamb = 25°C -20 Gain 40 Phase Gain (dB) Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C -20 -40 -60 Phase (Deg) 20 -100 -120 IG S 10 100 1000 Frequency (kHz) Gain Phase -80 -80 -100 -120 -140 -160 -180 -200 -220 20 0 -140 -160 0 -20 -180 -200 -20 -40 0.3 1 10 100 Frequency (kHz) 1000 10000 -220 -40 0.3 1 D E W Fig. 3 : Open Loop Frequency Response Fig. 4 : Open Loop Frequency Response E 80 60 40 Gain Vcc = 3.3V RL = 8Ω Tamb = 25°C 0 -20 -40 -60 -80 80 60 40 Phase 20 0 Phase (Deg) Gain (dB) Phase 20 -100 -120 -140 -160 -180 -200 -220 -240 0 -20 -40 0.3 F 1 10 100 1000 Frequency (kHz) 10000 Fig. 5 : Open Loop Frequency Response 80 60 40 Gain (dB) Gain O bs 0 -20 20 let o Phase 1 Phase (Deg) -100 -120 -140 -160 -180 -200 -220 -240 Phase 20 0 -20 -40 0.3 -100 -120 -140 -160 -180 -200 -220 -240 -40 0.3 10 100 1000 Frequency (kHz) 10000 1 10 100 1000 Frequency (kHz) 6/29 Phase (Deg) Gain (dB) Pr e N du o O (s) ct 0 -20 -40 -60 -80 Ob - so -20 -40 0.3 O te le 1 10 -100 -120 -140 -160 -180 -200 -220 -240 R 100 1000 Frequency (kHz) T Fig. 6 : Open Loop Frequency Response 80 Gain 60 40 Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C Vcc = 2.6V RL = 8Ω Tamb = 25°C -20 -40 -60 -80 Phase (Deg) Gain (dB) Pr N od Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C uc s) t( -20 -40 -60 -80 TS4872 Fig. 7 : Open Loop Frequency Response Fig. 8 : Open Loop Frequency Response 100 80 60 Gain Gain (dB) -80 Phase -100 -120 Phase (Deg) 100 -80 N 10000 80 60 Gain Gain (dB) Phase -100 -120 -140 -160 -180 -200 -220 -240 Phase (Deg) 40 20 0 -20 -40 0.3 -140 -160 -180 Vcc = 5V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -200 40 20 0 -20 -40 0.3 1 D E 10 -220 Vcc = 3.3V CL = 560pF Tamb = 25°C S 100 1000 Frequency (kHz) IG ro P uc d 100 80 60 Gain Gain (dB) -80 Phase -100 -120 -140 -160 40 20 0 -20 -40 0.3 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 Phase (Deg) N E W Fig. 9 : Open Loop Frequency Response s) t( -180 -200 -220 F 100 1000 Frequency (kHz) 10000 -240 bs O let o Pr e N du o O (s) ct so Ob - T O te le R 7/29 TS4872 Fig. 10 : Power Supply Rejection Ratio (PSRR) vs Power Supply -30 Rfeed = 22kΩ Cb = 1µF & 0.1µF Input = floating RL = 8Ω Tamb = 25°C Vcc=3.3V Ripple=100mVrms -60 Vcc=5V Ripple=200mVrms -70 Vcc=2.6V Ripple=200mVrms -80 10 100 1000 10000 Frequency (Hz) 100000 -70 -80 10 Fig. 11 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor -10 -20 -30 PSRR (dB) -40 PSRR (dB) -50 -40 -50 -60 Vcc = 5V Cb = 1µF & 0.1µF Rfeed = 22kΩ Rfeed = 22kΩ Vripple = 200mVms Input = floating RL = 8Ω Tamb = 25°C Cfeed=0 E 100 Cin=1µF Cin=330nF S Cfeed=680pF 1000 10000 Frequency (Hz) 100000 D IG 1000 Cfeed=150pF Cfeed=330pF Fig. 12 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor -10 -20 -30 PSRR (dB) W Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor -10 Cb=1µF Cb=10µF R -40 -50 -60 -70 Cb=100µF -80 10 100 Cb=47µF T 1000 Frequency (Hz) O PSRR (dB) bs O -30 -40 -50 -60 -70 N Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor -10 -20 let o od Pr e Rfeed=22kΩ ct u 10000 (s) so Ob -40 -50 -60 10 O PSRR (dB) Vcc = 5 & 2.6V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C -20 -30 te le Cin=22nF 100 Cin=220nF ro P N uc d E Vcc = 5 & 2.6V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C Cin=100nF F N s) t( 10000 100000 100000 Frequency (Hz) Vcc = 5V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Rfeed=110kΩ Rfeed=47kΩ Rfeed=10kΩ -80 10 100 1000 10000 Frequency (Hz) 100000 8/29 TS4872 Fig. 15 : Pout @ THD + N = 1% vs Supply Voltage vs RL 1.4 Output power @ 10% THD + N (W) Output power @ 1% THD + N (W) Fig. 16 : Pout @ THD + N = 10% vs Supply Voltage vs RL 2.0 1.2 1.0 0.8 0.6 0.4 0.2 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2.5 16Ω IG 3.5 Vcc (V) Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 6Ω 4Ω 1.8 1.6 4Ω 6Ω E 3.0 4.0 4.5 S 32Ω 5.0 32Ω 0.0 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5.0 D Fig. 17 : Power Dissipation vs Pout 1.4 Vcc=5V 1.2 F=1kHz THD+N 4.4ms). Increase Cin value increases the pop and click phenomena to an unpleasant sound at power supply ON and standby function ON/OFF. Why Cs is not important in pop and click consideration ? Hypothesis : • Cs = 100µF • Supply voltage = 5V • Supply voltage internal resistor = 0.1Ω • Supply current of the amplifier Icc = 6mA First of all, we must calculate the minimum power supply voltage to obtain 0.5W into 8Ω. With curves in fig. 15, we can read 3.5V. Thus, the power supply voltage value min. will be 3.5V. with 3.5V we have Pdissmax=0.31W. Referring to power derating curves (fig. 20), with 0.31W the maximum ambient temperature will be 100°C. This last value could be higher if you follow the example layout shown on the demoboard (better dissipation). The gain of the amplifier in flat region will be V OUTP P 2 2 R L P OUT G V = -------------------- = ----------------------------------- = 5.65 VINPP VINPP We have Rin > 10kΩ. Let's take Rin = 10kΩ, then Rfeed = 28.25kΩ. We could use for Rfeed = 30kΩ in normalized value and the gain will be Gv = 6. In lower frequency we want 20 Hz (-3dB cut off frequency). Then 1 C IN = ----------------------------- = 795nF 2 π R inF C L So, we could use for Cin a 1µF capacitor value that gives 16Hz. In Higher frequency we want 20kHz (-3dB cut off frequency). The Gain Bandwidth Product of the TS4872 is 2MHz typical and doesn't change when the amplifier delivers power into the load. The first amplifier has a gain of Rfee d ----------------- = 3 R in and the theoretical value of the -3dB cut-off higher frequency is 2MHz/3 = 660kHz. We can keep this value or limit the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. 23/29 D E S Pdiss max = IG 2 Vcc 2 π2RL Following equation the maximum power W At power ON of the supply, the supply capacitor is charged through the internal power supply resistor. So, to reach 5V you need about five to ten times the charging time constant of Cs (τs = 0.1xCs (s)). Then, this time equal 50µs to 100µs > tdischCs. let o Pr e ■ Power amplifier design examples Given : Load impedance : 8Ω Output power @ 1% THD+N : 0.5W Input impedance : 10kΩ min. Input voltage peak to peak : 1Vpp Bandwidth frequency : 20Hz to 20kHz (0, -3dB) Ambient temperature max = 50°C N du o (s) ct so Ob - F O te le ro P R N uc d E N (W) dissipation s) t( TS4872 Then 1 C FE E D = -------------------------------------- = 265pF 2π R F EEDFC H So, we could use for Cfeed a 220pF capacitor value that gives 24kHz. Now, we can calculate the value of Cb with the formula τb = 50kΩxCb >> τin = (Rin+Rfeed)xCin which permits to reduce the pop and click effects. Then Cb >> 0.8µF. We can choose for Cb a normalized value of 2.2µF that gives good results in THD+N and PSRR. In the following tables, you could find three another examples with values required for the demoboard. Remark : components with (*) marking are optional. Application n°2 : 20Hz to 20kHz bandwidth and 20dB gain BTL power amplifier. Components : Designator R1 R4 R6 R7 C5 C6 C7 E D te le Designator S IG 470nF 100µF 100nF 110k / 0.125W 22k / 0.125W Short Cicuit 330k / 0.125W W C9 Short Circuit Short Circuit C10 C12 Application n°1 : 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier. S1, S2, S6, S7 S8 ro P 1 µF N 2mm insulated Plug 10.16mm pitch 2 pts connector 2.54mm pitch uc d Components : Designator R1 R4 R6 R7 C5 C6 C7 R E Part Type F 22k / 0.125W 22k / 0.125W Short Cicuit O bs O C10 C12 S8 J1 U1 C9 let o od Pr e 470nF 100µF 100nF 1 µF 330k / 0.125W ct u (s) so Ob J1 U1 R1 R2 R4 R6 R7 C2 C5 O SMB Plug TS4872IJ T Application n°3 : 50Hz to 10kHz bandwidth and 10dB gain BTL power amplifier. Components : Part Type 33k / 0.125W Short Circuit 22k / 0.125W Short Cicuit 330k / 0.125W 470pF 150nF 100µF 100nF Short Circuit N Short Circuit Short Circuit S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch 2 pts connector 2.54mm pitch SMB plug TS4872IJ C6 C7 C9 24/29 N Part Type s) t( TS4872 Designator C10 C12 S1, S2, S6, S7 S8 J1 U1 Part Type Short Circuit 1 µF 2mm insulated Plug 10.16mm pitch 2 pts connector 2.54mm pitch SMB Plug TS4872IJ S8 C6 C7 C9 C10 C12 Designator 100µF Part Type Short Circuit S1, S2, S6, S7 E D te le Application n°4 : Differential inputs BTL power amplifier. In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12. We have also : R4 = R5, R1 = R6, C4 = C5. The gain of the amplifier is : G V D I FF J1, J3 S IG 1 µF SMB Plug TS4872IJ Short Circuit 2mm insulated Plug 10.16mm pitch 2 pts connector 2.54mm pitch W U1 E ■ Note on how to use the PSRR curves (page 8) R R1 = 2 ------- (Pos. Input - Neg.Input) R4 We have finished a design and we have chosen the components : ro P N uc d For a 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier you could follow the bill of material below. Components : Designator T Part Type 22k / 0.125W R4 R5 R6 R7 C4 O R1 O C5 bs let o Pr e 22k / 0.125W 22k / 0.125W 22k / 0.125W 330k / 0.125W 470nF 470nF N du o (s) ct so Ob - ■ Rin=Rfeed=22kΩ ■ Cin=100nF ■ Cb=1µF Now, on fig. 13, we can see the PSRR (input grounded) vs frequency curves. At 217Hz we have a PSRR value of -36dB. In reality we want a value about -70dB. So, we need a gain of 34dB ! Now, on fig. 12 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With Cb=100µF, we can reach the -70dB value. The process to obtain the final curve (Cb=100µF, Cin=100nF, Rin=Rfeed=22kΩ) is a simple transfer point by point on each frequency of the curve on fig. 13 to the curve on fig. 12. The measurement results is shown on figure 84. F O N s) t( 25/29 100nF TS4872 Fig. 84 : PSRR changes with Cb Fig. 85 : PSRR measurement schematic -30 Cin=100nF Cb=1µF -40 PSRR (dB) Vcc 1 Rin Cin 7 VinVin+ + IG Av=-1 + N Vout1 8 VsRL Vout2 4 Vs+ TS4872 Vcc = 5 & 2.6V Rfeed = 22k, Rin = 22k Rg = 100Ω, RL = 8Ω Tamb = 25°C Rfeed Vripple 6 -50 Cin=100nF Cb=100µF -60 3 Bypass -70 10 100 1000 Frequency (Hz) E Rg 100 Ohms 5 Standby 10000 100000 Cb D What is the PSRR ? The PSRR is the Power Supply Rejection Ratio. It’s a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. W ■ Note on PSRR measurement GND 2 S Bias Vcc ■ Principle of operation N • We fixed the DC voltage supply (Vcc) • We fixed the AC sinusoidal ripple voltage (Vripple) • No bypass capacitor Cs is used The PSRR value for each frequency is : PSRR ( d B ) = 20 x Log 10 O We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output. How we measure the PSRR ? T For PSRR measurement schematic see figure 85 bs O let o Pr e 26/29 N du o O (s) ct so Ob - te le ro P uc d R E s) t( R ms ( V r i p pl e ) -------------------------------------------Rms ( Vs + - Vs - ) Remark : The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. F TS4872 TOP VIEW OF THE DAISY CHAIN MECHANICAL DATA ( all drawings dimensions are in millimeters ) 7 Vin + 6 Vcc 5 Vin GND BYPASS 1 2 D 3 E ro P uc d s) t( R REMARKS Daisy chain sample is featuring pins connection two by two. The schematic above is illustrating the way connecting pins each other. This sample is used for testing continuity on board. PCB needs to be designed on the opposite way, where pin connections are not done on daisy chain samples. By that way, just connecting an Ohmeter between pin 8 and pin 1, the soldering process continuity can be tested. N E W 3.02 ORDER CODE Part Number TSDC4872IJT F Temperature Range -40, +85°C Package J bs O let o Pr e N du o O (s) ct • so Ob Marking DC01 T O te le S 27/29 8 Vout1 Vout2 4 IG 1.52 STDBY N TS4872 TAPE & REEL SPECIFICATION ( top view ) User direction of feed 7 6 5 D 8 XXX4872 E 4 3 5 S ro P 4 IG uc d s) t( te le 3 1 N 7 E R O 8 bs O let o ro P e 28/29 N uc d O (s) t 1 Ob 2 T F W 2 6 XXX4872 o s N TS4872 PIN OUT (top view) 7 Vin + MARKING (top view) 6 Vcc 5 8 Vout1 Vout2 4 Vin GND BYPASS 1 2 3 PACKAGE MECHANICAL DATA FLIP CHIP - 8 BUMPS D E ■ Balls are underneath ■ Y : Year ■ W : Week with two digits ■ Example : 1254872 S IG uc d s) t( 29/29 ■ ■ ■ ■ ■ Die size : (3.02mm±10%) x (1.52mm ±10%) Die height (including bumps) : 540µm ±50µm Bump height : 140µm ±15µm (i.e. bump diameter of 185µm ±15µm) Silicon thickness : 400µm±25µm Pitch: 500µm ±10µm and 750µm±10µm E W bs O let o Pr e Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com N du o O (s) ct so Ob - T F O te le ro P R N N STDBY
TSDC4872IJT 价格&库存

很抱歉,暂时无法提供与“TSDC4872IJT”相匹配的价格&库存,您可以联系我们找货

免费人工找货