0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSH300ID

TSH300ID

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC-8

  • 描述:

    IC OPAMP VFB 1 CIRCUIT 8SO

  • 数据手册
  • 价格&库存
TSH300ID 数据手册
TSH300 Ultra Low-Noise High-Speed Operational Amplifier ■ ■ ■ ■ ■ ■ ■ ■ ■ Structure: VFA 200 MHz bandwidth Input noise: 0.65 nV/√ Hz Stable for gains > 5 Slew rate: 230 V/µs Specified on 100Ω load Tested on 5 V power supply Single or dual supply operation Minimum and maximum limits are tested in full production Pin Connections (top view) OUT 1 -VCC 2 +IN 3 SOT23-5 5 +VCC +4 -IN Description The TSH300 is a voltage feedback amplifier featuring ultra-low input voltage and current noise. This feature, associated with a large bandwidth, large slew rate and a good linearity, makes the TSH300 a good choice for high-speed data acquisition systems where sensitivity and signal integrity are the main priorities. The TSH300 is a single operator available in SO8 and the tiny SOT23-5L plastic package, saving board space as well as providing excellent thermal performances. NC 1 8 NC _ + 7 +VCC +VCC 6 5 NC SO8 Applications ■ ■ ■ ■ ■ -IN 2 +IN 3 -VCC 4 High speed data acquisition systems Probe equipment Communication & video test equipment Medical instrumentation ADC drivers Order Codes Part Number TSH300ILT TSH300ID TSH300IDT -40°C to +85°C Temperature Range Package SOT23-5L SO-8 SO-8 Packing Tape & Reel Tube Tape & Reel Marking K308 TSH300I TSH300I Rev. 2 1/18 www.st.com 18 September 2005 Absolute Maximum Ratings TSH300 1 Absolute Maximum Ratings Table 1. Symbol VCC Vid Vin Toper Tstg Tj R thja Supply Voltage (1) Differential Input Voltage(2) Input Voltage Range(3) Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SOT23-5L SO8 Thermal Resistance Junction to Case SOT23-5L SO8 Maximum Power Dissipation(4) (@Ta=25°C) for Tj=150°C SOT23-5L SO8 HBM: Human Body Model (5) (all packages) ESD MM: Machine Model (6) (all packages) CDM: Charged Device Model (SO8) Latch-up Immunity 1. All voltage values are measured with respect to the ground pin. 2. Differential voltage is between the non-inverting input terminal and the inverting input terminal. 3. The magnitude of input and output voltage must never exceed VCC +0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuits on amplifiers. 5. Human body model, 100pF discharged through a 1.5kΩ resistor into Pmin of device. 6. This is a minimum value. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. Key parameters and their absolute maximum ratings Parameter Value 6 +/-0.5 +/-2.5 -40 to +85 -65 to +150 150 250 150 80 28 500 830 1 150 1.5 200 Unit V V V °C °C °C °C/W R thjc °C/W Pmax mW kV V kV mA Table 2. Symbol VCC Vicm Operating conditions Parameter Supply Voltage (1) Common Mode Input Voltage Value 4.5 to 5.5 -1.5 to +1.6 Unit V V 1. Tested in full production at 5V (±2.5V) supply voltage. 2/18 TSH300 Electrical Characteristics 2 Table 3. Symbol Electrical Characteristics Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified) Parameter Test Condition DC performance Vio ∆Vio Iib+ IibCMR SVR Input Offset Voltage Offset Voltage between both inputs Vio drift vs. Temperature Non Inverting Input Bias Current DC current necessary to bias the input + Inverting Input Bias Current DC current necessary to bias the input Common Mode Rejection Ratio 20 log (∆Vic/∆Vio) Supply Voltage Rejection Ratio 20 log (∆Vcc/∆Vio) Power Supply Rejection Ratio 20 log (∆Vcc/∆Vout) Positive Supply Current DC consumption with no input signal Tamb Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb Tmin. < Tamb < Tmax. Tamb Tmin. < Tamb < Tmax. ∆Vic = ±1V Tmin. < Tamb < Tmax. ∆Vcc= 3.5V to 5V Tmin. < Tamb < Tmax. Gain = +5, ∆Vcc=±100mV at 1kHz No load Tmin. < Tamb < Tmax. 70 60 -46 -1.8 0.5 0.5 -3.8 30 33 -30 -34 88 83 77 74 76 15 15.3 19.5 46 1.8 mV µV/°C µA µA dB dB dB mA Min. Typ. Max. Unit PSRR ICC Dynamic performance and output characteristics AVD Open Loop Gain Output Voltage/Input Voltage Gain in open loop of a VFA. Bandwidth Frequency where the gain is 3dB below the DC gain Gain Flatness @ 0.1dB Band of frequency where the gain variation does not exceed 0.1dB SR RL = 100Ω out = ±1V ,V Tmin. < Tamb < Tmax. Small Signal V out=20mVp-p RL = 100Ω Gain = +5 Gain = +20 Small Signal V out=20mVp-p Gain = +5 65 67 66 dB dB Bw 30 200 43 160 MHz Slew Rate Vout = 2Vp-p, Gain = +20, Maximum output speed of sweep in large RL = 100Ω signal High Level Output Voltage Low Level Output Voltage RL = 100 Ω Tmin. < Tamb < Tmax. RL = 100 Ω Tmin. < Tamb < Tmax. 160 1.39 230 1.45 1.46 -1.45 -1.46 -1.39 V/µs V V VOH VOL Iout Output to GND Isink Short-circuit output current entering op-amp. Tmin. < Tamb < Tmax. Isource Output current coming out of the op-amp. Output to GND Tmin. < Tamb < Tmax. 44 77 78 -82 -78 -44 mA 3/18 Electrical Characteristics Table 3. Symbol TSH300 Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified) Parameter Test Condition N oise and distortion Min. Typ. Max. Unit eN iN Equivalent Input Noise Voltage see application note on page 13 Equivalent Input Noise Current (+) see application note on page 13 Spurious Free Dynamic Range The highest harmonic of the output spectrum when injecting a filtered sine wave F = 100kHz F = 100kHz 0.65 3.3 0.77(1) nV/√Hz 5.5(1) pA/√Hz SFDR Vout = 2Vp-p, Gain = +5, RL = 100Ω F = 10MHz , 55 dBc 1. This parameter is guaranteed by design and evaluated using corner lots. This value is not tested in full production. 4/18 Electrical Characteristics Figure 1. 20 TSH300 Figure 2. 25 Frequency response G=+5, SO8 Frequency response G=+7.8, SO8 15 20 Gain (dB) Gain (dB) Vcc=+5V SO8 Gain=+5 (Rfb=200Ω /Rg=50Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 10 15 5 10 0 5 -5 100k Vcc=+5V SO8 Gain=+7.8 (Rfb=680Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 0 100k Frequency (Hz) Frequency (Hz) Figure 3. 25 Frequency response G=+10.2, SO8 Figure 4. 30 Frequency response G=+19.9, SO8 20 25 10 Gain (dB) Gain (dB) 15 20 15 5 Vcc=+5V SO8 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 10 Vcc=+5V SO8 Gain=+19.9 (Rfb=510Ω /Rg=27Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 0 100k 5 100k Frequency (Hz) Frequency (Hz) Figure 5. 20 Frequency response G=-5, SO8 Figure 6. 20 Frequency response G=-7.8, SO8 15 15 Gain (dB) 5 Gain (dB) Vcc=+5V SO8 Gain= -5 (Rfb=270Ω //1pF, Rg=43Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 10 10 5 0 0 Vcc=+5V SO8 Gain= -7.8 (Rfb=390Ω //1pF, Rg=43Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G -5 100k -5 100k Frequency (Hz) Frequency (Hz) 5/18 Electrical Characteristics Figure 7. 30 TSH300 Figure 8. 30 Frequency response G=-10.2, SO8 Frequency response G=-19.9, SO8 25 25 Gain (dB) 20 Gain (dB) 20 15 15 10 Vcc=+5V SO8 Gain= -10.2 (Rfb=510Ω//1pF, Rg=43Ω) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 10 Vcc=+5V SO8 Gain= -20 (Rfb=1k Ω //1pF, Rg=47Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 5 100k 5 100k Frequency (Hz) Frequency (Hz) Figure 9. 20 Frequency response G=+5, SOT23-5L Figure 10. Frequency response G=+7.8, SOT23-5L 20 15 15 Gain (dB) 5 Gain (dB) Vcc=+5V SOT23-5 Gain=+5 (Rfb=200Ω/Rg=50Ω) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 10 10 5 0 0 Vcc=+5V SOT23-5 Gain=+7.8 (Rfb=680Ω /Rg=100Ω) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G -5 100k -5 100k Frequency (Hz) Frequency (Hz) Figure 11. Frequency response G=+10.1, SOT23-5L 25 Figure 12. Frequency response G=+19.9, SOT23-5L 30 20 25 Gain (dB) 15 Gain (dB) Vcc=+5V SOT23-5 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 20 10 15 5 10 Vcc=+5V SOT23-5 Gain=+19.9 (Rfb=510Ω/Rg=27Ω) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 0 100k 5 100k Frequency (Hz) Frequency (Hz) 6/18 Electrical Characteristics Figure 13. Gain flatness, G=+5, SO8 14,2 TSH300 Figure 14. Gain flatness, G=+7.8, SO8 18,0 14,0 17,8 Gain (dB) Gain (dB) 13,8 17,6 13,6 17,4 13,4 Vcc=+5V SO8 Gain=+5 (Rfb=200Ω /Rg=50Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 17,2 Vcc=+5V SO8 Gain=+7.8 (Rfb=680Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M 13,2 100k 17,0 10k Frequency (Hz) Frequency (Hz) Figure 15. Gain flatness, G=+10.2, SO8 20,4 Figure 16. Gain flatness, G=+19.9, SO8 26,2 20,2 26,0 Gain (dB) Gain (dB) 20,0 25,8 19,8 19,6 Vcc=+5V SO8 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M 25,6 25,4 Vcc=+5V SO8 Gain=+19.9 (Rfb=510Ω /Rg=27Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M 10k 10k Frequency (Hz) Frequency (Hz) Figure 17. Gain flatness, G=+5, SOT23-5L 14,2 Figure 18. Gain flatness, G=+7.8, SOT23-5L 18,0 17,8 14,0 Gain (dB) Gain (dB) Vcc=+5V SOT23-5 Gain=+5 (Rfb=200Ω /Rg=50Ω ) Vin=64mVp-p Load=100Ω 1M 10M 100M 1G 17,6 13,8 17,4 13,6 17,2 13,4 Vcc=+5V SOT23-5 Gain=+7.8 (Rfb=680Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M 100k 17,0 10k Frequency (Hz) Frequency (Hz) 7/18 Electrical Characteristics Figure 19. Gain flatness, G=+10.1, SOT23-5L 20,4 TSH300 Figure 20. Gain flatness, G=+19.9, SOT23-5L 26,2 20,2 26,0 Gain (dB) 20,0 Gain (dB) Vcc=+5V SOT23-5 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M 25,8 19,8 25,6 19,6 25,4 Vcc=+5V SOT23-5 Gain=+19.9 (Rfb=510Ω /Rg=27Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M 10k 10k Frequency (Hz) Frequency (Hz) Figure 21. Input voltage noise 5,0 4,5 4,0 3,5 Figure 22. Input voltage noise (corner lot) 1,0 0,9 0,8 0,7 en (nV/VHz) 2,5 2,0 1,5 1,0 0,5 0,0 100 en (nV/VHz) 3,0 Gain=26dB Rg=27Ω Rfb=510Ω non-inverting input in short-circuit Vcc=+5V Max. 0,6 0,5 0,4 0,3 0,2 0,1 Typ. Gain=26dB Rg=27Ω Rfb=510Ω non-inverting input in short-circuit Vcc=+5V 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M 0,0 100 Frequency (Hz) Frequency (Hz) Figure 23. Input current noise 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 100 1k 10k 100k 1M 10M Figure 24. Input current noise (corner lot) 8 7 6 5 Gain=26dB Rg=27Ω Rfb=510Ω 1000Ω to GND on non-inverting input Vcc=+5V Max. in (pA/VHz) in (pA/VHz) Typ. 4 3 2 1 0 100 Gain=26dB Rg=27Ω Rfb=510 Ω 1000Ω to GND on non-inverting input Vcc=+5V 1k 10k 100k 1M 10 M Frequency (Hz) Frequency (Hz) 8/18 Electrical Characteristics Figure 25. Distortion vs. Vout, SO8 -20 -25 -30 -35 -40 TSH300 Figure 26. Distortion vs. Vout, SOT23-5L -20 -25 -30 -35 -40 HD2 & HD3 (dBc) -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 1 2 3 4 HD2 & HD3 (dBc) -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 1 2 3 4 HD2 HD3 HD3 Vcc=+5V Gain=+5, Rfb=200 Ω S08 F=10MHz Load=100Ω HD2 Vcc=+5V Gain=+5, Rfb=200Ω SOT23-5 F=10MHz Load=100 Ω Output Amplitude (Vp-p) Output Amplitude (Vp-p) Figure 27. Slew-rate 2,0 Figure 28. Reverse isolation vs. frequency 0 Output Response (V) -20 1,5 Isolation (dB) Vcc=+5V SO8/SOT23-5 Gain=+5 (Rfb=200Ω ) Load=100 Ω 0 2 4 6 8 10 12 14 -40 1,0 -60 0,5 -80 0,0 Vcc=+5V Small Signal SO8/SOT23-5 Load=100Ω 1M 10M 100M 1G -100 100k Time (ns) Frequency (Hz) Figure 29. Quiescent current vs. Vcc 15 I cc(+) Figure 30. Vout max vs. Vcc 5 4 10 5 0 -5 Vcc=+5V SO8/SOT23-5 Gain=+5 (Rfb=200Ω ) Input to mid-supply (+2.5V) no load Vout max. (Vp-p) 3 Icc (mA) 2 1 0 -10 I cc(-) -1 -15 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 -2 0 1 2 3 Vcc=+5V SO8/SOT23 Gain=+5 (Rfb=200Ω ) F=10MHz Load=100 Ω 4 5 V cc (V) Frequency (Hz) 9/18 Electrical Characteristics Figure 31. Vio vs. temperature 1,0 0,9 0,8 20 0,7 10 TSH300 Figure 32. Ibias vs. temperature 40 30 I b(+) VIO (mV) IBIAS (µA) 0,6 0,5 0,4 0,3 0 -10 -20 0,2 0,1 -30 I b(-) Vcc=+5V 0,0 -40 -20 0 20 40 60 80 100 120 -40 -40 -20 0 20 40 60 80 Vcc=+5V 100 120 Temperature (°C) Temperature (°C) Figure 33. Supply current vs. temperature 20 15 Icc(+) Figure 34. AVD vs. temperature 80 78 76 74 10 5 -5 -10 I cc(-) AVD ( dB) Vcc=+5V no Load In+/In- to GND -40 -20 0 20 40 60 80 100 120 ICC (mA) 0 72 70 68 66 64 62 60 -40 -20 0 20 40 60 80 100 120 -15 -20 -25 -30 Vcc=+5V Temperature (°C) Temperature (°C) Figure 35. Output rails vs. temperature 2 1 VOH Figure 36. Iout vs. temperature 100 80 60 40 20 Isource 0 VOH & OL (V) -1 -2 -3 Iout (mA) 0 -20 -40 -60 -80 -100 Isink VOL -4 Vcc=+5V Load=100Ω -20 0 20 40 60 80 -120 -140 -160 Vcc=+5V Output: short-circuit -40 -20 0 20 40 60 80 100 120 -5 -40 Temperature (°C) Temperature (°C) 10/18 Electrical Characteristics Figure 37. CMR vs. temperature 100 98 96 94 TSH300 Figure 38. Bandwidth vs. temperature 70 65 60 55 CMR (dB) 92 90 88 86 84 82 80 -40 -20 0 20 40 60 80 100 120 Bw (MHz) 50 45 40 35 30 Vcc=+5V 25 20 Vcc=+5V Gain=+20 Load=100Ω -40 -20 0 20 40 60 80 100 120 Temperature (°C) Temperature (°C) Figure 39. Slew-rate vs. temperature 280 Figure 40. Isink 90 80 260 Slew Rate (V/µs) 70 60 Isink (mA) 240 SR+ SR- 50 +2.5V 220 40 + VOL without load 30 200 -1V _ - 2.5V RG Isink V Vcc=+5V Gain=+20 Load=100 Ω -40 -20 0 20 40 60 80 100 120 20 10 0 -2,0 Amplifier in open loop without load 180 -1,5 -1,0 -0,5 0,0 Temperature (°C) Vout (V) Figure 41. SVR vs. temperature 90 85 80 Figure 42. Isource 0 +2.5V -10 -20 -30 -40 -50 -60 -70 -80 -90 0,0 +1V V OH + _ - 2.5V RG without load Isource V SVR (dB) 75 70 65 60 55 Isource (mA) Amplifier in open loop without load Vcc=+5V 50 -40 -20 0 20 40 60 80 100 120 0,5 1,0 1,5 2,0 Temperature (°C) Vout (V) 11/18 Power Supply Considerations TSH300 3 Power Supply Considerations Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF can be added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. Figure 43. Circuit for power supply bypassing +VCC + 10nF 10microF + 10nF 10microF + -VCC 12/18 Evaluation Boards TSH300 4 Evaluation Boards An evaluation board kit optimized for high-speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual: ● ● ● ● ● SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5L package. SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package. SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package. SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and single supply. SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. 2 layers FR4 (ε r=4.6) epoxy 1.6mm copper thickness: 35µm Board material description: ● ● ● ● Figure 44. Evaluation kit for high-speed op-amps 13/18 Noise Measurements TSH300 5 Noise Measurements The noise model is shown in Figure 45, where: ● ● ● eN: input voltage noise of the amplifier iNn: negative input current noise of the amplifier iNp: positive input current noise of the amplifier Figure 45. Noise model + R3 iN+ _ output HP3577 Input noise: 8nV/√Hz N3 iN- eN N2 R1 R2 N1 The thermal noise of a resistance R is: 4kTR ∆ F where ∆F is the specified bandwidth. On a 1Hz bandwidth the thermal noise is reduced to 4kTR where k is the Boltzmann's constant, equal to 1,374.10-23J/°K. T is the temperature (°K). The output noise eNo is calculated using the Superposition Theorem. However eNo is not the simple sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in Equation 1: eNo = 2 2 2 2 2 2 V1 + V2 + V3 + V4 + V5 + V6 (Equation 1) eNo 2 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R3 × g + ( ------- ) R1 R2 2 2 × 4kTR1 + 4kTR2 + g × 4kTR3 (Equation 2) 14/18 Noise Measurements TSH300 The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is: eNo = 2 2 ( Measured ) – ( instrumentation ) (Equation 3) The input noise is called the Equivalent Input Noise as it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eNo/g). After simplification of the fourth and the fifth term of Equation 2 we obtain: eNo 2 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R3 × g + g × 4kTR2 + g2 × 4kTR3 (Equation 4) Measurement of the input voltage noise eN If we assume a short-circuit on the non-inverting input (R3=0), from Equation 4 we can derive: eNo = 2 2 2 2 eN × g + iNn × R2 + g × 4kTR2 (Equation 5) In order to easily extract the value of eN, the resistance R2 will be chosen to be as low as possible. In the other hand, the gain must be large enough: R3=0, gain: g=100 Measurement of the negative input current noise iNn To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This time the gain must be lower in order to decrease the thermal noise contribution: R3=0, gain: g=10 Measurement of the positive input current noise iNp To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise contribution as low as possible against the iNp contribution: R3=100Ω, gain: g=10 15/18 Package Mechanical Data TSH300 6 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 SOT23-5L package SOT23-5L MECHANICAL DATA mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils 16/18 Package Mechanical Data TSH300 6.2 SO8 package SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8˚ (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 0016023/C 17/18 Revision History TSH300 7 Revision History Date Revision Description of Changes Sept. 2005 Sept. 2005 1 2 Release of mature product datasheet Update to ESD information in Table 1 on page 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 18/18
TSH300ID 价格&库存

很抱歉,暂时无法提供与“TSH300ID”相匹配的价格&库存,您可以联系我们找货

免费人工找货