0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSU112IQ2T

TSU112IQ2T

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFDFN8

  • 描述:

    IC CMOS 2 CIRCUIT 8DFN

  • 数据手册
  • 价格&库存
TSU112IQ2T 数据手册
TSU111, TSU112, TSU114 Datasheet Nanopower (900 nA), high accuracy (150 µV) 5 V CMOS operational amplifier Features • • • • • • • • • • • Sub-micro ampere current consumption: Icc = 900 nA typ. at 25 °C Low offset voltage: 150 µV max. at 25 °C, 235 µV max. over full temperature range (-40 to 85 °C) Low noise over 0.1 to 10 Hz bandwidth: 3.6 µVpp Low supply voltage: 1.5 V to 5.5 V Rail-to-rail input and output Gain bandwidth product: 11.5 kHz typ. Low input bias current: 10 pA max. at 25 °C High tolerance to ESD: 4 kV HBM More than 25 years of typical equivalent lifetime supplied by a 220 mA.h CR2032 coin type Lithium battery High accuracy without calibration Tolerance to power supply transient drops Applications Product status link • Gas sensors: CO, O2, and H2S • • • • • Alarms: PIR sensors Signal conditioning for energy harvesting and wearable products Ultra long-life battery-powered applications Battery current sensing Active RFID tags TSU111, TSU112, TSU114 Related products See TSU101, TSU102, and TSU104 for further power savings See TSZ121, TSZ122, TSZ124 for increased accuracy Description The TSU111, TSU112 and the TSU114 operational amplifiers (op-amp) offer an ultra low-power consumption per channel of 900 nA typical and 1.2 µA maximum when supplied by 3.3 V. Combined with a supply voltage range of 1.5 V to 5.5 V, these features allow the TSU11x to be efficiently supplied by a coin type Lithium battery or a regulated voltage in low-power applications. The high accuracy of 150 µV max. and 11.5 kHz gain bandwidth make the TSU11x ideal for sensor signal conditioning, battery supplied, and portable applications. DS11846 - Rev 6 - February 2019 For further information contact your local STMicroelectronics sales office. www.st.com TSU111, TSU112, TSU114 Package pin connections 1 Package pin connections Figure 2. Pin connections for each package (top view) OUT 1 6 VCC+ VCC- 2 5 NC IN- 3 4 IN+ DFN6 1.2x1.3 IN+ 1 VCC- 2 IN- 3 DFN8 2x2 5 VCC+ 4 OUT MiniSO8 TSU112 SC70-5 TSU111 + VCC - + TSU114 TSU114 1. The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating. DS11846 - Rev 6 page 2/35 TSU111, TSU112, TSU114 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter Value VCC Supply voltage Vid Differential input voltage (2) ±VCC Vin Input voltage (3) (VCC -) - 0.2 to (VCC +) + 0.2 Iin Input current (4) 10 Tstg Storage temperature -65 to 150 Tj Maximum junction temperature 150 Rthja ESD (1) Unit 6 Thermal resistance junction-to-ambient (5) (6) DFN6 1.2x1.3 232 SC70-5 205 DFN8 2x2 57 MiniSO8 190 QFN16 3x3 45 TSSOP14 100 HBM: human body model (7) 4000 CDM: charged device model (8) 1500 Latch-up immunity (9) 200 V mA °C °C/W V mA 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. 3. (VCC+) - Vin must not exceed 6 V, Vin - (VCC-) must not exceed 6 V. 4. The input current must be limited by a resistor in-series with the inputs. 5. Rth are typical values. 6. Short-circuits can cause excessive heating and destructive dissipation. 7. Related to ESDA/JEDEC JS-001 Apr. 2010. 8. Related to JEDEC JESD22-C101-E Dec. 2009. 9. Related to JEDEC JESD78C Sep. 2010. Table 2. Operating conditions Symbol DS11846 - Rev 6 Parameter Value VCC Supply voltage 1.5 to 5.5 Vicm Common-mode input voltage range (VCC-) - 0.1 to (VCC+) + 0.1 Toper Operating free-air temperature range -40 to 85 Unit V °C page 3/35 TSU111, TSU112, TSU114 Electrical characteristics 3 Electrical characteristics Table 3. Electrical characteristics at (V CC +) = 1.8 V with (V CC -) = 0 V, Vicm = V CC /2, Tamb = 25 °C, and RL = 1 MΩ connected to V CC /2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Input offset voltage ΔVio/ΔT Input offset voltage drift Iio Input offset current (1) Iib Input bias current (1) Common mode rejection ratio, CMR 20 log (ΔVicm/ΔVio), T = 25 °C 150 -40 °C < T< 85 °C 235 -40 °C < T< 85 °C 1.4 T = 25 °C 1 -40 °C < T< 85 °C 1 -40 °C < T< 85 °C 10 T = 25 °C 76 -40 °C < T< 85 °C 71 107 dB RL = 100 kΩ, T = 25 °C Large signal voltage gain, Vout = 0.2 V to (VCC+) - 0.2 V RL = 100 kΩ, -40 °C < T< 85 °C 95 High-level output voltage, (drop from VCC+) 120 90 RL = 10 kΩ, T = 25 °C VOH 10 RL = 10 kΩ, RL = 10 kΩ, T = 25°C Low-level output voltage 8 RL = 10 kΩ, Vout = VCC , Iout VΙD = -200 mV Output source current, Vout = 0 V, VΙD = 200 mV ICC T = 25 °C 2.8 -40 °C < T< 85 °C 1.5 T = 25 °C 2 -40 °C < T< 85 °C 1.5 Supply current (per channel), no load, T = 25 °C Vout = VCC/2 -40 °C < T< 85 °C 25 mV 40 -40 °C < T< 85 °C Output sink current, 25 40 -40 °C < T< 85 °C VOL pA 50 Vicm = 0 to 1.8 V Avd μV/°C 10 50 T = 25 °C µV 5 mA 4 900 1200 1480 nA AC performance GBP Gain bandwidth product 10 Fu Unity gain frequency 8 Φm Phase margin Gm Gain margin DS11846 - Rev 6 RL = 1 MΩ, CL = 60 pF kHz 60 degrees 10 dB page 4/35 TSU111, TSU112, TSU114 Electrical characteristics Symbol Parameter Conditions SR Slew rate (10 % to 90 %) en Equivalent input noise voltage ʃen Low-frequency, peak-to-peak input noise trec Overload recovery time Min. RL = 1 MΩ, CL = 60 pF, Typ. Max. Unit 2.5 V/ms f = 100 Hz 220 nV/√Hz Bandwidth: f = 0.1 to 10 Hz 3.8 µVpp 100 mV from rail in comparator, RL = 100 kΩ, 325 µs Vout = 0.3 V to (VCC+) - 0.3 V VΙD = ±1 V, -40 °C < T< 85 °C 1. Guaranteed by design Table 4. Electrical characteristics at (V CC +) = 3.3 V with (V CC -) = 0 V, Vicm = V CC /2, Tamb = 25 °C, and RL = 1 MΩ connected to V CC /2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Input offset voltage ΔVio/ΔT Input offset voltage drift Iio Input offset current (1) Iib Input bias current CMR Avd VOH -40 °C < T< 85 °C 235 -40 °C < T< 85 °C 1.4 T = 25 °C 1 -40 °C < T< 85 °C T = 25 °C 1 -40 °C < T< 85 °C 81 20 log (ΔVicm/ΔVio), Vicm = 0 to 3.3 V -40 °C < T< 85 °C 76 Large signal voltage gain, Vout = 0.2 V to RL = 100 kΩ, T = 25 °C 105 (VCC+) - 0.2 V RL = 100 kΩ, -40 °C < T< 85 °C 105 Iout Output source current, Vout = 0 V, VΙD = 200 mV RL = 10 kΩ, T = 25 °C 7 25 mV 40 T = 25 °C 12 -40 °C < T< 85 °C 6 T = 25 °C 9 -40 °C < T< 85 °C 5 -40 °C < T< 85 °C 25 40 RL = 10 kΩ, -40 °C < T< 85 °C Vout = VCC/2 pA dB 130 10 RL = 10 kΩ, T = 25°C T = 25 °C 10 110 RL = 10 kΩ, -40 °C < T< 85 °C Supply current (per channel), no load, μV/°C 50 T = 25 °C Output sink current, Vout = VCC , VΙD = -200 mV µV 10 50 Common mode rejection ratio, Low-level output voltage ICC 150 (1) High-level output voltage, (drop from VCC+) VOL T = 25 °C 22 mA 18 900 1200 1480 nA AC performance GBP Gain bandwidth product 11 Fu Unity gain frequency 10 Φm Phase margin Gm Gain margin DS11846 - Rev 6 RL = 1 MΩ, CL = 60 pF kHz 60 degrees 7 dB page 5/35 TSU111, TSU112, TSU114 Electrical characteristics Symbol Parameter SR Slew rate (10 % to 90 %) en Equivalent input noise voltage ʃen Low-frequency, peak-to-peak input noise trec Overload recovery time Conditions Min. Typ. Max. Unit 2.5 V/ms f = 100 Hz 220 nV/√Hz Bandwidth: f = 0.1 to 10 Hz 3.7 µVpp 630 µs RL = 1 MΩ, CL = 60 pF, Vout = 0.3 V to (VCC+) - 0.3 V 100 mV from rail in comparator, RL = 100 kΩ, VΙD = ±1 V, -40 °C < T< 85 °C 1. Guaranteed by design Table 5. Electrical characteristics at (V CC +) = 5 V with (V CC -) = 0 V, Vicm = V CC /2, Tamb = 25 °C, and RL = 1 MΩ connected to V CC /2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Input offset voltage ΔVio/ΔT Input offset voltage drift Iio Input offset current (1) Iib -40 °C < T< 85 °C 235 -40 °C < T< 85 °C 1.4 1 -40 °C < T< 85 °C Input bias current (1) 1 -40 °C < T< 85 °C T = 25 °C 90 -40 °C < T< 85 °C 90 T = 25 °C 85 -40 °C < T< 85 °C 80 Supply voltage rejection ratio, VCC = 1.5 to 5.5 V, T = 25 °C 92 Vicm = 0 V -40 °C < T< 85 °C 84 RL = 100 kΩ, T = 25 °C 105 RL = 100 kΩ, -40 °C < T< 85 °C 101 Large signal voltage gain, Vout = 0.2 V to (VCC+) - 0.2 V VOH High-level output voltage, (drop from VCC+) VOL RL = 10 kΩ, T = 25 °C Output source current, Vout = 0 V, VΙD = 200 mV Supply current (per channel), no load, Vout = VCC/2 135 7 25 mV 40 30 -40 °C < T< 85 °C 15 T = 25 °C 25 -40 °C < T< 85 °C 18 -40 °C < T< 85 °C 25 40 T = 25 °C T = 25 °C dB 116 RL = 10 kΩ, -40 °C < T< 85 °C Iout pA 112 10 RL = 10 kΩ, T = 25°C Output sink current, Vout = VCC , VΙD = -200 mV 10 121 RL = 10 kΩ, -40 °C < T< 85 °C Low-level output voltage μV/°C 50 Common mode rejection ratio, 20 log (ΔVicm/ΔVio), Vicm = 0 to 5 V Avd µV 10 50 T = 25 °C CMR ICC 150 T = 25 °C Common mode rejection ratio, 20 log (ΔVicm/ΔVio), Vicm = 0 to 3.9 V SVR T = 25 °C 45 mA 41 950 1350 1620 nA AC performance DS11846 - Rev 6 page 6/35 TSU111, TSU112, TSU114 Electrical characteristics Symbol Parameter Conditions GBP Gain bandwidth product 11.5 Fu Unity gain frequency 10 Φm Phase margin Gm Gain margin SR Slew rate (10 % to 90 %) en RL = 1 MΩ, CL = 60 pF Min. Typ. Max. Unit kHz 60 degrees 7 dB RL = 1 MΩ, CL = 60 pF, Vout = 0.3 V to (VCC +) - 0.3 V 2.7 V/ms Equivalent input noise voltage f = 100 Hz 200 nV/√Hz ʃen Low-frequency, peak-to-peak input noise Bandwidth: f = 0.1 to 10 Hz 3.6 µVpp trec Overload recovery time 100 mV from rail in comparator, RL = 100 kΩ, VΙD = ±1 V, 940 µs -40 °C < T< 85 °C EMIRR Electromagnetic interference rejection ratio (2) Vin = -10 dBm, f = 400 MHz 54 Vin = -10 dBm, f = 900 MHz 79 Vin = -10 dBm, f = 1.8 GHz 65 Vin = -10 dBm, f = 2.4 GHz 65 dB 1. Guaranteed by design 2. Based on evaluations performed only in conductive mode on the TSU111ICT. DS11846 - Rev 6 page 7/35 TSU111, TSU112, TSU114 Electrical characteristic curves 4 Electrical characteristic curves Figure 4. Supply current vs. input common-mode voltage Figure 5. Input offset voltage vs. input common-mode voltage Figure 6. Input offset voltage distribution Input offset voltage (µV) Figure 3. Supply current vs. supply voltage Common-mode input voltage (V) Figure 7. Input offset voltage vs. temperature at 3.3 V supply voltage DS11846 - Rev 6 Figure 8. Input offset voltage temperature coefficient distribution from -40 °C to 25 °C page 8/35 TSU111, TSU112, TSU114 Electrical characteristic curves Figure 9. Input offset voltage temperature coefficient distribution from 25 °C to 85 °C Figure 10. Input bias current vs. temperature at mid VICM Figure 11. Input bias current vs. temperature at low VICM Figure 12. Input bias current vs. temperature at high VICM Figure 13. Output characteristics at 1.8 V supply voltage Figure 14. Output characteristics at 3.3 V supply voltage DS11846 - Rev 6 page 9/35 TSU111, TSU112, TSU114 Electrical characteristic curves Figure 15. Output characteristics at 5 V supply voltage Figure 16. Output saturation with a sinewave on the input Figure 17. Output saturation with a square wave on the input Figure 18. Phase reversal free Figure 19. Slew rate vs. supply voltage Figure 20. Output swing vs. input signal frequency DS11846 - Rev 6 page 10/35 TSU111, TSU112, TSU114 Electrical characteristic curves Figure 21. Triangulation of a sine wave Figure 22. Large signal response at 3.3 V supply voltage Figure 23. Small signal response at 3.3 V supply voltage Figure 24. Overshoot vs. capacitive load at 3.3 V supply voltage Figure 25. Open loop output impedance vs. frequency Figure 26. Bode diagram at 1.8 V supply voltage DS11846 - Rev 6 page 11/35 TSU111, TSU112, TSU114 Electrical characteristic curves Figure 27. Bode diagram at 3.3 V supply voltage Figure 28. Bode diagram at 5 V supply voltage Figure 29. Gain bandwidth product vs. input commonmode voltage Figure 30. In-series resistor (Riso) vs. capacitive load Figure 31. Noise vs. frequency for different power supply voltages Figure 32. Noise vs. frequency for different commonmode input voltages DS11846 - Rev 6 page 12/35 TSU111, TSU112, TSU114 Electrical characteristic curves Figure 33. Noise amplitude on a 0.1 Hz to 10 Hz frequency range DS11846 - Rev 6 page 13/35 TSU111, TSU112, TSU114 Application information 5 Application information 5.1 Nanopower applications The TSU11x can operate from 1.5 V to 5.5 V. The parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are very stable in the full VCC range. Additionally, the main specifications are guaranteed on the industrial temperature range from -40 to 85 °C. The estimated lifetime of the TSU11x exceeds 25 years if supplied by a CR2032 battery (see Figure 34. CR2032 battery). Figure 34. CR2032 battery 5.1.1 Schematic optimization aiming for nanopower To benefit from the full performance of the TSU11x, the impedances must be maximized so that current consumption is not lost where it is not required. For example, an aluminum electrolytic capacitance can have significantly high leakage. This leakage may be greater than the current consumption of the op-amp. For this reason, ceramic type capacitors are preferred. For the same reason, big resistor values should be used in the feedback loop. However, there are two main limitations to be considered when choosing a resistor. 1. Noise generated: a 100 kΩ resistor generates 40 nV/√Hz, a bigger resistor value generates even more noise. 2. Leakage on the PCB: leakage can be generated by moisture. This can be improved by using a specific coating process on the PCB. DS11846 - Rev 6 page 14/35 TSU111, TSU112, TSU114 Rail-to-rail input 5.1.2 PCB layout considerations For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. Minimizing the leakage from sensitive high impedance nodes on the inputs of the TSU11x can be performed with a guarding technique. The technique consists of surrounding high impedance tracks by a low impedance track (the ring). The ring is at the same electrical potential as the high impedance node. Therefore, even if some parasitic impedance exists between the tracks, no leakage current can flow through them as they are at the same potential (see Figure 35. Guarding on the PCB). Figure 35. Guarding on the PCB 5.2 Rail-to-rail input The TSU11x is built with two complementary PMOS and NMOS input differential pairs. Thus, the device has a rail-to-rail input, and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The TSU11x has been designed to prevent phase reversal behavior. 5.3 Input offset voltage drift overtemperature The maximum input voltage drift variation overtemperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ∆V io V ( T ) – V io ( 25 °C) = ma x io ∆T T – 25 °C Where T = -40 °C and 85 °C. The TSU11x datasheet maximum values are guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS11846 - Rev 6 page 15/35 TSU111, TSU112, TSU114 Long term input offset voltage drift 5.4 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β . ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e E 1 1 -----a- . – k TU TS Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (°K) TS is the temperature of the die under temperature stress (°K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. Equation 5 Months = A F × 1000 h × 12 months / ( 24 h × 365.25 days ) To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC / 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 ∆V io = DS11846 - Rev 6 V io dr ift ( month s ) page 16/35 TSU111, TSU112, TSU114 Using the TSU11x with sensors Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 5.5 Using the TSU11x with sensors The TSU11x has MOS inputs, thus input bias currents can be guaranteed down to 10 pA maximum at ambient temperature. This is an important parameter when the operational amplifier is used in combination with high impedance sensors. The TSU11x is perfectly suited for trans-impedance configuration. This configuration allows a current to be converted into a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical gas sensing or photo/UV sensing applications. The TSU11x, using trans-impedance configuration, is able to provide a voltage value based on the physical parameter sensed by the sensor. 5.5.1 Electrochemical gas sensors The output current of electrochemical gas sensors is generally in the range of tens of nA to hundreds of µA. As the input bias current of the TSU11x is very low (see Figure 10. Figure 8, Figure 11. Figure 9, and Figure 12. Figure 10) compared to these current values, the TSU11x is well adapted for use with the electrochemical sensors of two or three electrodes. Figure 37. Potentiostat schematic using the TSU111 shows a potentiostat (electronic hardware required to control a three electrode cell) schematic using the TSU11x. In such a configuration, the devices minimize leakage in the reference electrode compared to the current being measured on the working electrode. Another great advantage of TSU11x versus the competition is its low noise for low frequencies (3.6 µVpp over 0.1 to 10 Hz), and low input offset voltage of 150 µV max. These improved parameters for the same power consumption allow a better accuracy. Figure 36. Trans-impedance amplifier schematic R I TSU111 Sensor: electrochemical photodiode/UV Vref + RI + Vref Figure 37. Potentiostat schematic using the TSU111 TSU111 TSU111 + + Vref1 Vref2 DS11846 - Rev 6 page 17/35 TSU111, TSU112, TSU114 Fast desaturation 5.6 Fast desaturation When the TSU11x goes into saturation mode, it takes a short period of time to recover, typically 630 µs. When recovering after saturation, the TSU11x does not exhibit any voltage peaks that could generate issues (such as false alarms) in the application (see Figure 16. Figure 14). We can observe that this circuit still exhibits good gain even close to the rails i.e. Avd greater than 105 dB for Vcc = 3.3 V with Vout varying from 200 mV up to a supply voltage minus 200 mV. With a trans-impedance schematic, a voltage reference can be used to keep the signal away from the supply rails. 5.7 Using the TSU11x in comparator mode The TSU11x can be used as a comparator. In this case, the output stage of the device always operates in saturation mode. In addition, Figure 4. Figure 3 shows that the current consumption is not higher and even decreases smoothly close to the rails. The TSU11x is obviously an operational amplifier and is therefore optimized for use in linear mode. We recommend using the TS88 series of nanopower comparators if the primary function is to perform a signal comparison only. 5.8 ESD structure of the TSU11x The TSU11x is protected against electrostatic discharge (ESD) with dedicated diodes (see Figure 38. ESD structure). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (VCC+) or (VCC-). Figure 38. ESD structure TSU111 + Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1. Absolute maximum ratings (AMR). A serial resistor on the inputs can be used to limit this current. 5.9 EMI robustness of nanopower devices Nanopower devices exhibit higher impedance nodes and consequently they are more sensitive to EMI. To improve the natural robustness of the TSU11x device, we recommend to add three capacitors of around 22 pF each between the two inputs, and between each input and ground. These capacitors lower the impedance of the input at high frequencies and therefore reduce the impact of the radiation. DS11846 - Rev 6 page 18/35 TSU111, TSU112, TSU114 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DS11846 - Rev 6 page 19/35 TSU111, TSU112, TSU114 SC70-5 (or SOT323-5) package information (TSU111) 6.1 SC70-5 (or SOT323-5) package information (TSU111) Figure 39. SC70-5 (or SOT323-5) package outline SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 6. SC70-5 (or SOT323-5) package mechanical data Dimensions Ref. Millimeters Min. A Typ. 0.80 Max. 1.10 A1 DS11846 - Rev 6 Inches Min. Typ. 0.032 0.043 0.10 A2 0.80 b 0.90 Max. 0.004 1.00 0.032 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 8° 0° 0.014 0.039 0.018 8° page 20/35 TSU111, TSU112, TSU114 DFN6 1.2x1.3 package information ( TSU111) 6.2 DFN6 1.2x1.3 package information ( TSU111) Figure 40. DFN6 1.2x1.3 package outline BOTTOM VIEW e b PIN#1 ID L3 L SIDE VIEW A1 A SEATING PLANE C 8 0.05 C TOP VIEW D E PIN 1 Table 7. DFN6 1.2x1.3 mechanical data Dimensions Ref Millimeters Min. DS11846 - Rev 6 Inches Typ. Max. Min. Typ. Max. A 0.31 0.38 0.40 0.012 0.015 0.016 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.18 0.25 0.006 0.007 0.010 c 0.05 0.002 D 1.20 0.047 E 1.30 0.051 e 0.40 0.016 L 0.475 0.525 0.575 0.019 0.021 0.023 L3 0.375 0.425 0.475 0.015 0.017 0.019 page 21/35 TSU111, TSU112, TSU114 DFN6 1.2x1.3 package information ( TSU111) Figure 41. DFN6 1.2x1.3 recommended footprint 0.40 0.25 3 1 1.20 0.475 4 6 Table 8. DFN6 1.2x1.3 recommended footprint data Dimensions Ref. A Inches 4.00 0.158 C 0.50 0.020 D 0.30 0.012 E 1.00 0.039 F 0.70 0.028 G 0.66 0.026 B DS11846 - Rev 6 Millimeters page 22/35 TSU111, TSU112, TSU114 MiniSO8 package information (TSU112) 6.3 MiniSO8 package information (TSU112) Figure 42. MiniSO8 package outline Table 9. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k DS11846 - Rev 6 Max. 8° 0.1 0° 0.031 8° 0.004 page 23/35 TSU111, TSU112, TSU114 DFN8 2x2 package information (TSU112) 6.4 DFN8 2x2 package information (TSU112) Figure 43. DFN8 2x2 package outline Table 10. DFN8 2x2 package mechanical data Dimensions Ref. Millimeters Min. A 0.51 Typ. 0.55 A1 Max. 0.60 Min. 0.020 Typ. 0.022 0.05 A3 Max. 0.024 0.002 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e L ddd DS11846 - Rev 6 Inches 0.50 0.225 0.325 0.020 0.425 0.08 0.009 0.013 0.017 0.003 page 24/35 TSU111, TSU112, TSU114 DFN8 2x2 package information (TSU112) Figure 44. DFN8 2x2 recommended footprint DS11846 - Rev 6 page 25/35 TSU111, TSU112, TSU114 TSSOP14 package information (TSU114) 6.5 TSSOP14 package information (TSU114) Figure 45. TSSOP14 package outline DS11846 - Rev 6 page 26/35 TSU111, TSU112, TSU114 TSSOP14 package information (TSU114) Table 11. TSSOP14 mechanical data Symbol mm Min. Typ. A 1.20 A1 0.05 A2 0.80 b 0.19 0.30 c 0.09 0.20 D 4.90 5.00 5.10 E 6.20 6.40 6.60 E1 4.30 4.40 4.50 e L k aaa 0.15 1.00 1.05 0.65 0.45 L1 DS11846 - Rev 6 Max. 0.60 0.75 1.00 0 8 0.10 page 27/35 TSU111, TSU112, TSU114 QFN16 (3x3x0.9) package information (TSU114) 6.6 QFN16 (3x3x0.9) package information (TSU114) Figure 46. QFN16 (3x3x0.9) package outline DS11846 - Rev 6 page 28/35 TSU111, TSU112, TSU114 QFN16 (3x3x0.9) package information (TSU114) Table 12. QFN16 (3x3x0.9) mechanical data mm Symbol Min. A 0.80 A1 0 A3 0.90 Max. 1 0.05 0.20 b 0.18 D 2.90 D2 1.50 E 2.90 E2 1.50 e L(1) Typ. 0.30 3.00 3.10 1.80 3.00 3.10 1.80 0.50 0.30 0.50 1. The value of “L” a JEDEC norm is min. 0.35 – max. 0.45 Figure 47. QFN16 (3x3x0.9) recommended footprint DS11846 - Rev 6 page 29/35 TSU111, TSU112, TSU114 Ordering information 7 Ordering information Table 13. Order code Order code Temperature range Package (1) TSU111IQ1T DFΝ6 1.2x1.3 TSU111ICT SC70-5 TSU112IQ2T TSU112IST -40 °C to 85 °C DFN8 2x2 MiniSO8 Marking K8 K37 TSU114IPT TSSOP14 TSU114IPT TSU114IQ4T QFN16 3x3x0.9 K164 1. All devices are delivered in tape and reel packing. DS11846 - Rev 6 page 30/35 TSU111, TSU112, TSU114 Revision history Table 14. Document revision history Date Revision 17-Oct-2016 1 Changes Initial release Features: added "rail-to-rail input and output". Description: updated the maximum ultra low-power consumption of TSU111 op-amp. 14-Nov-2016 2 Applications: updated Table 5: added EMIRR typ. values Added Section 5.9: "EMI robustness of nanopower devices". DS11846 - Rev 6 04-Dec-2017 3 Added the part number TSU112 and the relative package information MiniSO8 and DFN8 2x2. 08-May-2018 4 Updated Section 3 Electrical characteristics. 21-Jan-2019 5 Added the part number TSU114, therefore the document has been updated accordingly. 06-Feb-2019 6 Updated Section 3 Electrical characteristics. Added Figure 5. Input offset voltage vs. input common-mode voltage. page 31/35 TSU111, TSU112, TSU114 Contents Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 5.1 Nanopower applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.1 Schematic optimization aiming at nanopower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.2 PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 Input offset voltage drift overtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.4 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.5 Using the TSU11x with sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.5.1 6 7 Electrochemical gas sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.6 Fast desaturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.7 Using the TSU11x in comparator mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.8 ESD structure of the TSU11x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.9 EMI robustness of nanopower devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 6.1 SC70-5 (or SOT323-5) package information (TSU111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 DFN6 1.2x1.3 package information ( TSU111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.3 MiniSO8 package information (TSU112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4 DFN8 2x2 package information (TSU112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.5 TSSOP14 package information (TSU114) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.6 QFN16 (3x3x0.9) package information (TSU114) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 DS11846 - Rev 6 page 32/35 TSU111, TSU112, TSU114 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Absolute maximum ratings (AMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Electrical characteristics at (V CC +) = 1.8 V with (V CC -) = 0 V, Vicm = V CC /2, Tamb = 25 °C, and RL = 1 MΩ connected to V CC /2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics at (V CC +) = 3.3 V with (V CC -) = 0 V, Vicm = V CC /2, Tamb = 25 °C, and RL = 1 MΩ connected to V CC /2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical characteristics at (V CC +) = 5 V with (V CC -) = 0 V, Vicm = V CC /2, Tamb = 25 °C, and RL = 1 MΩ connected to V CC /2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SC70-5 (or SOT323-5) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DFN6 1.2x1.3 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DFN6 1.2x1.3 recommended footprint data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DFN8 2x2 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TSSOP14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 QFN16 (3x3x0.9) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS11846 - Rev 6 page 33/35 TSU111, TSU112, TSU114 List of figures List of figures Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. DS11846 - Rev 6 Pin connections for each package (top view) . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. input common-mode voltage . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. input common-mode voltage . . . . . . . . . . . . . . . . . Input offset voltage distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. temperature at 3.3 V supply voltage . . . . . . . . . . . . Input offset voltage temperature coefficient distribution from -40 °C to 25 °C . Input offset voltage temperature coefficient distribution from 25 °C to 85 °C . Input bias current vs. temperature at mid VICM . . . . . . . . . . . . . . . . . . . . . Input bias current vs. temperature at low VICM . . . . . . . . . . . . . . . . . . . . . Input bias current vs. temperature at high VICM . . . . . . . . . . . . . . . . . . . . Output characteristics at 1.8 V supply voltage. . . . . . . . . . . . . . . . . . . . . . Output characteristics at 3.3 V supply voltage. . . . . . . . . . . . . . . . . . . . . . Output characteristics at 5 V supply voltage . . . . . . . . . . . . . . . . . . . . . . . Output saturation with a sinewave on the input . . . . . . . . . . . . . . . . . . . . . Output saturation with a square wave on the input. . . . . . . . . . . . . . . . . . . Phase reversal free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew rate vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output swing vs. input signal frequency . . . . . . . . . . . . . . . . . . . . . . . . . . Triangulation of a sine wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large signal response at 3.3 V supply voltage . . . . . . . . . . . . . . . . . . . . . Small signal response at 3.3 V supply voltage . . . . . . . . . . . . . . . . . . . . . Overshoot vs. capacitive load at 3.3 V supply voltage . . . . . . . . . . . . . . . . Open loop output impedance vs. frequency . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at 1.8 V supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at 3.3 V supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at 5 V supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain bandwidth product vs. input common-mode voltage . . . . . . . . . . . . . . In-series resistor (Riso) vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . Noise vs. frequency for different power supply voltages . . . . . . . . . . . . . . . Noise vs. frequency for different common-mode input voltages . . . . . . . . . . Noise amplitude on a 0.1 Hz to 10 Hz frequency range . . . . . . . . . . . . . . . CR2032 battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guarding on the PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trans-impedance amplifier schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . Potentiostat schematic using the TSU111. . . . . . . . . . . . . . . . . . . . . . . . . ESD structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SC70-5 (or SOT323-5) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . DFN6 1.2x1.3 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN6 1.2x1.3 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN8 2x2 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN8 2x2 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSSOP14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN16 (3x3x0.9) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN16 (3x3x0.9) recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 8 . 8 . 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 14 15 17 17 18 20 21 22 23 24 25 26 28 29 page 34/35 TSU111, TSU112, TSU114 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS11846 - Rev 6 page 35/35
TSU112IQ2T 价格&库存

很抱歉,暂时无法提供与“TSU112IQ2T”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSU112IQ2T
  •  国内价格 香港价格
  • 3000+10.179883000+1.22755

库存:300

TSU112IQ2T
  •  国内价格 香港价格
  • 1+18.458101+2.22720
  • 10+16.3021010+1.96700
  • 100+14.31370100+1.72710
  • 250+13.79870250+1.66500
  • 500+11.37910500+1.37300
  • 1000+10.864001000+1.31090
  • 3000+9.833903000+1.18660
  • 6000+9.750106000+1.17650

库存:3802