0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VBG08H-E

VBG08H-E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    OctaPAK (7leads+Tab)

  • 描述:

    ICIGNITIONCOILDRIVEROCTAPAK

  • 数据手册
  • 价格&库存
VBG08H-E 数据手册
VBG08H-E Ignition coil driver power I.C. Datasheet - production data • Battery fault tolerant pins • ESD protected • TTL compatible Description VBG08H is a single channel driver, plus an IGBT power stage internally assembled using Chip On Chip (COC) hybrid technology. The two chips are assembled together in the OctaPAK® package. Features HVCL INOM VS IS 360 V 8 A(1) 6 - 40 V 5 mA 1. Max operative current • Smart electronic ignition with embedded IGBT power stage • Coil current limiter The device comes with several built-in protections like a coil current limiter, thermal monitoring circuit, which triggers a Soft Shut Down (SSD) as soon as the maximum allowable temperature is reached (TSD). It avoids extra voltage on the secondary side of the coil transformer. The Slow Turn On circuit (STO), avoids unwanted sparks during first negative dV/dt of HVC voltage at turn on. The current flag circuit provides an output logical signal voltage when the coil current reaches a fixed threshold. • Current threshold flag diagnostic output • Enable pin • Slow turn-on • Soft shut down (SSD) operated by low voltage clamp circuit (LVC) • SSD activated by – Thermal intervention (Tj > 150°C) – Enable pin – Input overvoltage – Battery overvoltage Table 1. Device summary Order codes Package OctaPAK March 2015 This is information on a product in full production. Tube Tape and reel VBG08H-E VBG08HTR-E DocID024413 Rev 3 1/34 www.st.com Contents VBG08H-E Contents 1 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Slow turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Input over voltage (INP_OV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Battery overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 PCB layout suggestions and PGND disconnection . . . . . . . . . . . . . . . 27 6 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 7 8 2/34 OctaPAK thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Package informations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.2 OctaPAK package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID024413 Rev 3 VBG08H-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin name and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Suggested component values for the application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal data (estimated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical transient requirements (part 1/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Electrical transient requirements (part 2/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Electrical transient requirements (part 3/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 OctaPAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID024413 Rev 3 3/34 3 List of figures VBG08H-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. 4/34 Block diagram schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 OctaPAK top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Voltage and current conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Input control vs VHVC time definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical characteristics timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Current limit without TSD activation Tj < TSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current limit followed by TSD activation (Tj = TSD) (case 1) . . . . . . . . . . . . . . . . . . . . . . . 16 Current limit followed by TSD activation (Tj = TSD) (case 2) . . . . . . . . . . . . . . . . . . . . . . . 17 Thermal cycling behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Switch on attempt at Tj > TSSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Soft switch off caused by EN pin pulled high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Coil current discharge completion after releasing of EN pin . . . . . . . . . . . . . . . . . . . . . . . . 20 Device behaviour when EN pin becomes high before low to high transition of Input command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Device behaviour when EN pin is pulled up and down while Input command is still high . 22 Device behavior in case of Input over voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Device behavior in case of battery over voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current flag threshold vs temperature for IFLAG = 6.5 A . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 HV self clamped energy capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 General ISO Pulse schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ISO Pulse schematic for pulse type 5b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 OctaPAK on two-layers PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 OctaPAK on four-layers PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Rthj-amb vs PCB copper area in open box free air condition (one channel on) . . . . . . . . . . 29 OctaPAK thermal impedance junction ambient single pulse (one channel on) . . . . . . . . . 29 Thermal fitting model of a double-channel HSD in OctaPAK . . . . . . . . . . . . . . . . . . . . . . . 30 OctaPAK package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID024413 Rev 3 VBG08H-E 1 Detailed description Detailed description VBG08H is a single channel driver, plus an IGBT power stage internally assembled using Chip On Chip (COC) hybrid technology. The Power Stage integrates the current shunt resistor for sensing the coil current, and the thermal diode for monitoring the temperature which triggers the TSD intervention. The two chips are assembled together in the OctaPAK® package. The device is intended for driving huge inductive loads in harsh automotive environments (as electronic ignitions). The functional block diagram is shown in Figure 1. The IGBT is controlled by the input signals pin INP. In particular, when the device is enabled (EN pin is at “0”), the transition low to high of INP pin turns-on the IGBT, while, the transition high to low of the same input signal, turns-off the IGBT causing an extra voltage on the secondary side of the coil transformer, generating a spark in the spark system plug. The implemented features offer a specific design advantage that makes the VBG08H particularly suitable for E.C.U. applications. The device comes with several built-in protections like a coil current limiter, a thermal monitoring circuit, which triggers a Soft Shut Down (SSD) as soon as the maximum allowable temperature is reached (TSD), avoiding to generate an extra voltage on the secondary side of the coil transformer. Soft shut down is performed using a Low Voltage Clamp (LVC) circuit, which clamps the primary coil winding at a fixed voltage, with respect to the battery value: LVC is activated as the result of a logical OR combination among different fault conditions: thermal shutdown, input overvoltage, internal wire bonding disconnection, supply overvoltage, device disabling in ON-state (EN pin pulled high while INP pin is high). All these fault events trigger the soft shut down operation and cause a slow discharge of the coil current, avoiding generating any undesired sparks. If SSD is activated by TSD, the complete slow coil current discharge depends on the duration of input signal in the high state. If the input signal is high for a time longer than the coil discharge time, the SSD stays activated until the coil is completely discharged (zero coil current). Anyway, if the input command signal arrives while the SSD is active, the LVC is immediately disabled for allowing the spark generation with the residual energy. SSD timing diagrams are shown in Figure 7, Figure 8 and Figure 9. In case of thermal intervention, the IGBT remains switched off until the internal junction temperature, decreasing, reaches a lower temperature threshold, which corresponds to the fixed temperature hysteresis. In addition to the built-in protections above described, the chip is equipped with a single current flag diagnostic output. Current Flag circuit provides an output logical signal voltage, which goes low (after a filtering time) when the input control pin goes high, and returns high when the coil current reaches a fixed value threshold. An internal voltage regulator, connected to the battery pin VS supplies all the internal circuitry. The EN pin is intended as chip enable pin and it is used for enabling / disabling the device (see Figure 6). DocID024413 Rev 3 5/34 33 Detailed description VBG08H-E The event “EN pulled high” is stored inside internal register and causes the complete slow discharge of coil current. Device can restart when the EN pin is pulled low and after the first low to high transition of the input pin. Figure 12, Figure 13, Figure 14 and Figure 15, show device behavior, with different combinations of INP and EN signal pins. This pin is provided with an internal pullup current source, which disables the chip by default, in case the pin is left floating. 1.1 Slow turn-on Device is internally equipped with a completely integrated Slow Turn On circuit (STO), that helps avoiding unwanted sparks during first negative dV/dt of HVC voltage at turn on (see Figure 5). 1.2 Input over voltage (INP_OV) Device is internally equipped with a built in protection which is activated in case of command input pin over voltage. If the input pin is shorted with a supply voltage (VBATT or VS), which is above the internal fixed threshold “INP_OV_TH_H”, the device operates a soft shutdown which slowly discharges the coil current. This event is managed by the device as a “real time event”, so the completion of coil current discharge depends on the time duration of the INP_OV detection. As soon as the INP_OV condition is removed (voltage at input pin decreases below the second lower threshold voltage “INP_OV_TH_H - INP_OV_HYS”), the device can be switched on, if a normal high state voltage is applied on the command input pin. See Figure 16 for more details. 1.3 Battery overvoltage When the supply voltage VS overcomes the "VS_OFF_TH" (battery load dump) for a time longer than 220 µs (typ), the device operates a soft shutdown until the complete coil current discharge. The device remains switched off until the battery voltage falls under the second lower threshold voltage, which corresponds to the prefixed hysteresis parameter “VS_OFF_HYS”. Once this condition is verified, only a low to high transition of command input pin can turn on the device. See Figure 17 for more details. 6/34 DocID024413 Rev 3 VBG08H-E 2 Block diagram Block diagram Figure 1. Block diagram schematic 96 +9& 96B2)) /9& ,13 96 ,13B29 +9&ODPS 5() 325 /9&B(1  /9&B(1 ,*%7B21 'ULYHU 672 -0(*$ (Q 6Z 9 (1 5+9 95(* ,*%7 7ULPP B&B)ODJ )XVHV7ULPPLQJ &HOOV520 &XUU/LPLWHU 7ULPP B&B/ LP 7ULPP B7+B'   &) 76' 7+'BIDXOW 7ULPP B&B/LP 7ULPP B7+B' 7KHUPDO 6KXW'RZQ 76 61 &XUU)ODJ 76 63 56 61   7ULPP B&) 26&0K] 3*1' 0' 1' *1' *$3*&)7 Figure 2. OctaPAK top view )7$ 1(/% $' (/% &/ 74 */1 1(/% ("1($'5 DocID024413 Rev 3 7/34 33 Block diagram VBG08H-E Table 2. Pin name and function 8/34 Pin number Pin name Pin function 1 PGND1 2 INP Input control pin / pulled down if left floating 3 VS Battery supply voltage 4 EN Chip enable control pin / pulled up if left floating 5 GND Controller GND 6 C.F. Current flag output / open drain 7 PGND2 TAB HVC Power GND Power GND IGBT HV collector DocID024413 Rev 3 VBG08H-E 3 Electrical specifications Electrical specifications Figure 3. Voltage and current conventions ,6 ,+9& 96 , ,1 3 +9& 96 ,13 9,1 3 ,(1 (1 9 (1 6 +9& 9%*+ ,&) &) 9&) *1' 3*1' 3*1' ,*1' ,3*1'  ,3*1'  *$3*&)7 Figure 4. Application circuit 9%$77 287 ,1 99ROW5HJ & & 96 +9& . ,13 X3 9%*+ (1 . (1 &) &) *1' 3*1'3*1' 2 9 5   &  1$#1PXFS(/%TUSBDLTNVTUCFQFSGFDUMZTZNNFUSJDBMSFTQFDUUPUIFHMPCBM(/%OPEF PUIFSXJTFBEJGGFSFODFJOCFUXFFO *1(/%BOE*1(/%PDDVST MFBEJOHUPBOFSSPSPOUIF* $0*-@-*.BOE*$'@5)QBSBNFUFST  *UJTTVHHFTUFEUPDPOOFDU(/%QJOUP1(/%QJOTBTTIPXOJOUIFGJHVSF NJOJNJ[JOHBTNVDIBTQPTTJCMFUIFWPMUBHF EJGGFSFODFCFUXFFOUIFUXPQJOT DocID024413 Rev 3 9/34 33 Electrical specifications VBG08H-E Table 3. Suggested component values for the application circuit Type Description Value R1 CFlag filter resistor 1K R2 CFlag filter resistor ≥4K C1 VCC capacitor 100 nF C2 VCC capacitor 10 µF C3 CFlag filter capacitor (1) 1. Application dependent. 3.1 Absolute maximum ratings Stressing the device above the ratings listed in Table 4 may cause permanent damage to the device itself. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions reported in this section for extended periods may affect device reliability. Table 4. Absolute maximum ratings(1) Symbol Parameter Value Unit VHVC Collector voltage (internally limited) -16 to Vclamp V IHVC Collector current (internally limited) Internally limited A I.C. supply voltage range -0.3 to 40 V VINP Input voltage -0.3 to 28 V VCF Current flag output voltage -0.3 to 5.5 V ICF Flag output current 1.5 mA VEN Enable voltage -0.3 to 28 V Single pulse SCIS energy (Tj = 25°C; L = 6 mH) 265 mJ Single pulse SCIS energy (Tj = 150°C; L = 6 mH) 175(2) mJ VS ESCIS25 ESCIS150 VESD ESD voltage (HVC pin) (HBM: R = 1.5 KΩ; C = 100 pF) 4 KV VESD ESD voltage (all pins) (HBM: R = 1.5 KΩ; C = 100 pF) 2 KV Operating junction temperature -40 to 175 °C Storage temperature range -55 to 175 °C -6 A No constrains 5 2 ms ms Tj Tstg I(HVC)_UNDGND Max underground collector current (t_app ≤ 100 µs) tSC_MAX Short circuit withstand time RSC = 0 Ω; IHVC = 10.5 A (maximum current limitation) – VS up to 16 V – 16 V < VS ≤ 24 V – 24 < VS ≤ 28V 1. Refer to Figure 3 for voltage or currents conventions. 2. In case of the device switch-off occurs in current limitation with open secondary condition, the energy limit must not be exceeded. The double fault condition is not provided. 10/34 DocID024413 Rev 3 VBG08H-E 3.2 Electrical specifications Thermal data Table 5. Thermal data (estimated) Symbol 3.3 Parameter Rtj-case Thermal resistance junction-case Rtj-amb Thermal resistance junction-ambient Value Unit 0.55 °C/W see Figure 24 °C/W Electrical characteristics -40°C < Tj < 150°C; VS = 6 ÷ 28 V, unless otherwise specified. 6: Table 6. Power section Symbol Parameter Test condition VHV_CLAMP VHVC high voltage clamp IHVC = 6.5 A VLV_CLAMP VHVC low voltage clamp IHVC = 6.5 A Min. Typ. Max. Unit 320 360 400 V VS + 7 VS + 10 VS + 13 V VCE_SAT1 VHVC: collector to emitter VS = 13.5 V; IHVC = 4 A saturation voltage 1.5 V VCE_SAT2 VHVC: collector to emitter VS = 13.5 V; saturation voltage IHVC = 6.5 A 1.8 V 6 mA 28 V 35 V IS_STBY Standby supply current IN = 0; EN = 0; IN = X; EN = 1; VS = 13.5 V 5 Operative DC supply voltage 5.4 VS_OFF_TH VS overvoltage threshold 29 VS_OFF_HYS VS overvoltage hysteresis 0.5 3 V 0 8 A 10.5 A 10.5 A 1 mA VS ICOIL_NOM ICOIL_LIM ICES Operative coil current range -40°C < Tj < 125°C; VS = 6 V Coil current limit Collector current (including the RHV contribution) VINP_H High level input voltage VINP_L Low level input voltage VINP_HYS IIN_PDW INP_OV_TH_H 32 -40°C < Tj < 125°C; 9 V ≤ VS ≤ 28 V 8.5 VCE = 28 V; VINP = 0 V; Tj = 125°C 0.3 9.5 3 V 1.5 Input threshold hysteresis 0.2 Input pull down current VINP = 4 V Input overvoltage activation threshold DocID024413 Rev 3 V V 10 20 30 µA 8 9 10 V 11/34 33 Electrical specifications VBG08H-E Table 6. Power section (continued) Symbol INP_OV_HYS VCF_L ICF_leakage ICF_TH_6.5 Parameter Test condition Input overvoltage hysteresis Min. Typ. Max. Unit 0.8 1.4 2 V Low level C.F. output voltage ICF = 1 mA 0.8 V Leakage current on flag output VINP = 0; VCF = 4 V; VS = 13.5 V 10 µA Coil current level threshold 6.5 A(1) -40°C ≤ Tj < 25°C 5.85 7 25°C ≤ Tj < 100°C 6 6.85 100°C ≤ Tj < 125°C 6.2 6.8 125°C ≤ Tj ≤ 150°C 6.05 6.95 175 °C 33 °C A TSSD Thermal shutdown intervention 150 TSSD_HYS Thermal hysteresis 17 VEN_H High level enable voltage 3 VEN_L Low level enable voltage VOUT free to follow VINP VEN_HYS EN input hysteresis -IEN_PU Enable pin pull up current 25 V 1.5 0.2 VEN = 0 V V V 10 20 30 µA 1. See Figure 18: Current flag threshold vs temperature for IFLAG = 6.5 A). Table 7. Timing characteristics Symbol Parameter Test condition fCLK 12/34 Typ. 1.5 2 Max. Unit 2.5 MHz tFT_CF Current flag filtering time 16/fCLK µs tFT_EN Enable filtering time 32/fCLK µs tFT_INP Input filtering time 32/fCLK µs tdON Delay time from INP rising edge to VHVC = 0.9 VS (see Figure 5) EN = 0; Tj = 25°C (ΔVHVC/Δt)ON HVC slope during turn-on (see Figure 5) EN = 0; Tj = 25°C; VS = 13.5 V tdOFF Delay time from INP falling edge to VHVC = 100 V (see Figure 5) ICOIL = 6.5 A; EN = 0; Tj = 25°C HVC3V STO deactivation threshold Tj = 25°C; VS = 13.5 V 1. Min. Including tFT_INP. DocID024413 Rev 3 0.1 0.3 3 30(1) µs 1 V/µs 25 µs 5 V VBG08H-E Electrical specifications Figure 5. Input control vs VHVC time definitions 9,13 9DOLG,13 7LPH W )7B,13 9+9& 9 96   672 9 WG 21 WG 2)) 7LPH ,&2,/ ,)/B7+ 7LPH &) W )7B&) 7LPH '!0'#&4 DocID024413 Rev 3 13/34 33 Electrical specifications VBG08H-E Figure 6. Electrical characteristics timing 9(1 'LVDEOHG (QDEOHG 7LPH 9,13 7LPH ,&2,/ ,)/B7+ 4IME &)/$* 7LPH +9& 96 7LPH *$3*&)7 14/34 DocID024413 Rev 3 VBG08H-E Electrical specifications Figure 7. Current limit without TSD activation Tj < TSD 9(1 7LPH 9,13 7LPH ,&2,/ ,&2,/B/,0 ,)/B7+ 7LPH &) 7LPH +9& 96 7LPH *$3*&)7 DocID024413 Rev 3 15/34 33 Electrical specifications VBG08H-E Figure 8. Current limit followed by TSD activation (Tj = TSD) (case 1) Input Switch OFF occurs after SSD completion 9(1 7LPH 9,13 7LPH ,&2,/ ,&2,/B/,0 ,)/B7+ 7LPH &) 7LPH +9& 9/9& 96 7LPH *$3*&)7 16/34 DocID024413 Rev 3 VBG08H-E Electrical specifications Figure 9. Current limit followed by TSD activation (Tj = TSD) (case 2) Input switch OFF occurs during SSD 9(1 7LPH 9,13 7LPH ,&2,/ ,&2,/B/,0 ,)/B7+ 7LPH &) 7LPH +9& 9/9& 96 7LPH *$3*&)7 DocID024413 Rev 3 17/34 33 Electrical specifications VBG08H-E Figure 10. Thermal cycling behavior 9,13 /RQJ721 3XOVH 7KHUPDO6KXW'RZQ6ZLWFK2II 7LPH ,&2,/ , &2,/B/,0 ,&)B7+ 4IME 9&) 5HVWDUWDIWHUWKHUPDO+\VWHUHVLV 7LPH ("1($'5 Figure 11. Switch on attempt at Tj > TSSD 6 ,13 7LPH ,&2,/ 7- !766'  7LPH 9&) —V W\S 7LPH ("1($'5 18/34 DocID024413 Rev 3 VBG08H-E Electrical specifications Figure 12. Soft switch off caused by EN pin pulled high 9(1 9DOLG(1 9,13   W )7B(1 7LPH 7LPH ,&2,/ ,)/B7+ 7LPH &) +9& 9/9& 96 '!0'#&4 DocID024413 Rev 3 19/34 33 Electrical specifications VBG08H-E Figure 13. Coil current discharge completion after releasing of EN pin 9(1 7LPH 9,13 4IME ,&2,/ ,)/B7+ 7LPH &) 7LPH +9& 9/9& 96 7LPH ("1($'5 20/34 DocID024413 Rev 3 VBG08H-E Electrical specifications Figure 14. Device behaviour when EN pin becomes high before low to high transition of Input command 9(1 7LPH 9,13 7LPH ,&2,/ 7LPH &) 7LPH +9& 96 7LPH ("1($'5 DocID024413 Rev 3 21/34 33 Electrical specifications VBG08H-E Figure 15. Device behaviour when EN pin is pulled up and down while Input command is still high 9(1 7LPH 9,13 7LPH ,&2,/ ,)/B7+ 7LPH &) 7LPH +9& 9/9& 96 7LPH ("1($'5 22/34 DocID024413 Rev 3 VBG08H-E Electrical specifications Figure 16. Device behavior in case of Input over voltage 9(1 7LPH 9,13 9 ,13B29B7+B+ 9 ,13B29B7+B/ 7LPH ,&2,/ 7LPH +9& 9/9& 96 7LPH ("1($'5 Figure 17. Device behavior in case of battery over voltage 9(1 7LPH 9,13 7LPH 96 96B2))B7+ 96B2))B7+ 96B2))B+
VBG08H-E 价格&库存

很抱歉,暂时无法提供与“VBG08H-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货