0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VL6180V1NR/1

VL6180V1NR/1

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SEN_4.8X2.8MM_SM

  • 描述:

    接近感测模块

  • 数据手册
  • 价格&库存
VL6180V1NR/1 数据手册
VL6180 Proximity sensing module Datasheet - production data Applications  Laser Assisted Auto Focus  Smartphones/portable touchscreen devices  Tablet/laptop/gaming devices  Domestic appliances/industrial devices Description 9/915 Features  Two-in-one smart optical module – VCSEL light source – Proximity sensor  Fast, accurate distance ranging – Measures absolute range from 0 to 62 cm max (depending on conditions) – Independent of object reflectance – Ambient light rejection – Cross-talk compensation for cover glass  Gesture recognition – Distance and signal level can be used by host system to implement gesture recognition – Demo systems (implemented on Android smartphone platform) available.  Easy integration – Single reflowable component – No additional optics – Single power supply – I2C interface for device control and data – Provided with a documented C portable API (Application Programming Interface)  Two programmable GPIO – Window and thresholding functions for ranging February 2020 This is information on a product in full production. The VL6180 is the latest product based on ST’s patented FlightSense™ technology. This is a ground-breaking technology allowing absolute distance to be measured independent of target reflectance. Instead of estimating the distance by measuring the amount of light reflected back from the object (which is significantly influenced by color and surface), the VL6180 precisely measures the time the light takes to travel to the nearest object and reflect back to the sensor (Time-of-Flight).  Combining an IR emitter and a range sensor in a two-in-one ready-to-use reflowable package, the VL6180 is easy to integrate and saves the endproduct maker long and costly optical and mechanical design optimizations.  The module is designed for low power operation. Ranging measurements can be automatically performed at user defined intervals. Multiple threshold and interrupt schemes are supported to minimize host operations. Host control and result reading is performed using an I2C interface. Optional additional functions, such as measurement ready and threshold interrupts, are provided by two programmable GPIO pins. A complete API is also associated with the device which consists of a set of C functions controlling the VL6180 to enable fast development of enduser applications. This API is structured in a way that it can be compiled on any kind of platform through a well isolated platform layer (mainly for low level I2C access). DocID024986 Rev 13 1/73 www.st.com Contents VL6180 Contents 1 2 2/73 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 System block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Recommended solder pad dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 System state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Polling mode - single shot measurement . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.2 Interrupt mode - continuous measurement . . . . . . . . . . . . . . . . . . . . . . 17 2.5.3 Asynchronous mode - single shot measurement . . . . . . . . . . . . . . . . . . 18 2.6 Range timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 Range error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8 Range checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.1 Early convergence estimate (ECE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.2 Range ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8.3 Signal-to-noise ratio (SNR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Manual/autoVHV calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.10 History buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.11 Wrap Around Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.12 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.13 Maximum ranging distance (Dmax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.14 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.14.1 Ranging current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.14.2 Current consumption calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.14.3 Current distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DocID024986 Rev 13 VL6180 Contents 2.15 3 Other system considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.15.1 Part-to-part range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.15.2 Cross-talk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.15.3 Offset calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.15.4 Cross-talk calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.15.5 Cross-talk limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.15.6 Cross-talk vs air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Ranging specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Proximity ranging (0 to 100mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 3.2 4 6 Extended range (>100mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Extended range conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Max range vs. ambient light level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 I2C control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1 5 Max range vs. ambient light level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 I2C interface - timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Device registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1 Register encoding formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2.1 IDENTIFICATION__MODEL_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2.2 IDENTIFICATION__MODEL_REV_MAJOR . . . . . . . . . . . . . . . . . . . . . 42 6.2.3 IDENTIFICATION__MODEL_REV_MINOR . . . . . . . . . . . . . . . . . . . . . 42 6.2.4 IDENTIFICATION__MODULE_REV_MAJOR . . . . . . . . . . . . . . . . . . . . 43 6.2.5 IDENTIFICATION__MODULE_REV_MINOR . . . . . . . . . . . . . . . . . . . . 43 6.2.6 IDENTIFICATION__DATE_HI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2.7 IDENTIFICATION__DATE_LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.8 IDENTIFICATION__TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.9 SYSTEM__MODE_GPIO0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2.10 SYSTEM__MODE_GPIO1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID024986 Rev 13 3/73 5 Contents 4/73 VL6180 6.2.11 SYSTEM__HISTORY_CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2.12 SYSTEM__INTERRUPT_CONFIG_GPIO . . . . . . . . . . . . . . . . . . . . . . 48 6.2.13 SYSTEM__INTERRUPT_CLEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.14 SYSTEM__FRESH_OUT_OF_RESET . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.15 SYSTEM__GROUPED_PARAMETER_HOLD . . . . . . . . . . . . . . . . . . . 49 6.2.16 SYSRANGE__START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.17 SYSRANGE__THRESH_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2.18 SYSRANGE__THRESH_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2.19 SYSRANGE__INTERMEASUREMENT_PERIOD . . . . . . . . . . . . . . . . 51 6.2.20 SYSRANGE__MAX_CONVERGENCE_TIME . . . . . . . . . . . . . . . . . . . 51 6.2.21 SYSRANGE__CROSSTALK_COMPENSATION_RATE . . . . . . . . . . . . 52 6.2.22 SYSRANGE__CROSSTALK_VALID_HEIGHT . . . . . . . . . . . . . . . . . . . 52 6.2.23 SYSRANGE__EARLY_CONVERGENCE_ESTIMATE . . . . . . . . . . . . . 52 6.2.24 SYSRANGE__PART_TO_PART_RANGE_OFFSET . . . . . . . . . . . . . . 53 6.2.25 SYSRANGE__RANGE_IGNORE_VALID_HEIGHT . . . . . . . . . . . . . . . 53 6.2.26 SYSRANGE__RANGE_IGNORE_THRESHOLD . . . . . . . . . . . . . . . . . 53 6.2.27 SYSRANGE__MAX_AMBIENT_LEVEL_MULT . . . . . . . . . . . . . . . . . . 54 6.2.28 SYSRANGE__RANGE_CHECK_ENABLES . . . . . . . . . . . . . . . . . . . . . 54 6.2.29 SYSRANGE__VHV_RECALIBRATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2.30 SYSRANGE__VHV_REPEAT_RATE . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2.31 RESULT__RANGE_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2.32 RESULT__INTERRUPT_STATUS_GPIO . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.33 RESULT__HISTORY_BUFFER_x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.34 RESULT__RANGE_VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2.35 RESULT__RANGE_RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2.36 RESULT__RANGE_RETURN_RATE . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.37 RESULT__RANGE_REFERENCE_RATE . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.38 RESULT__RANGE_RETURN_SIGNAL_COUNT . . . . . . . . . . . . . . . . . 60 6.2.39 RESULT__RANGE_REFERENCE_SIGNAL_COUNT . . . . . . . . . . . . . 61 6.2.40 RESULT__RANGE_RETURN_AMB_COUNT . . . . . . . . . . . . . . . . . . . . 61 6.2.41 RESULT__RANGE_REFERENCE_AMB_COUNT . . . . . . . . . . . . . . . . 61 6.2.42 RESULT__RANGE_RETURN_CONV_TIME . . . . . . . . . . . . . . . . . . . . 62 6.2.43 RESULT__RANGE_REFERENCE_CONV_TIME . . . . . . . . . . . . . . . . . 62 6.2.44 READOUT__AVERAGING_SAMPLE_PERIOD . . . . . . . . . . . . . . . . . . 62 6.2.45 FIRMWARE__BOOTUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.46 I2C_SLAVE__DEVICE_ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DocID024986 Rev 13 VL6180 Contents 7 Outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8 Laser safety considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.1 9 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.1 Traceability and identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.3 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.1 Package labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.4 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.5 ROHS Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID024986 Rev 13 5/73 5 List of tables VL6180 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. 6/73 Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VL6180 pin numbers and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power-up timing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VL6180 operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Continuous mode limits (10 Hz operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical range convergence time (ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Range error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 History buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Typical current consumption in different operating states . . . . . . . . . . . . . . . . . . . . . . . . . 25 Breakdown of current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Average current consumption on AVDD and AVDD_VCSEL . . . . . . . . . . . . . . . . . . . . . . . 27 Ranging specification 0 to 100mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Worst case max range vs. ambient 0 to 100mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Worst case max range vs. ambient >100mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Range limits for a 400 mm target @ ambient rate 2.1Mcps . . . . . . . . . . . . . . . . . . . . . . . . 33 Worst case achievable light levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 I2C interface - timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Digital I/O electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Register groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 32-bit register example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Register formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Delivery format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Storage conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID024986 Rev 13 VL6180 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. VL6180 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VL6180 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VL6180 schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended solder pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Ranging pipe architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 System state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Simple range routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Total range execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ECE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Wrap around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Typical ranging current consumption (10 Hz sampling rate). . . . . . . . . . . . . . . . . . . . . . . . 26 VCSEL pulse duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Part-to-part range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Cross-talk compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Cross-talk vs air gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical ranging performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Serial interface data transfer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I2C device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Single location, single write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Single location, single read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Multiple location write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Multiple location read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2 C timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Outline drawing - module - VL6180V1NR/1 - (page 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Outline drawing - module - VL6180V1NR/1 - (page 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Class 1 laser product label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Tape and reel packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Package labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DocID024986 Rev 13 7/73 7 Overview 1 VL6180 Overview This datasheet is applicable to the final VL6180 ROM code revision. 1.1 Technical specification Table 1. Technical specification Feature Detail Package Optical LGA12 Size 4.8 x 2.8 x 1.0 mm Ranging 0 to 62(1) cm maximum Functional operating voltage 2.6 to 3.0 V Typical power consumption Hardware standby (GPIO0 = 0): < 1 uA(2) Software standby: < 1uA(2) Ranging: 1.7 mA (typical average)(3) Functional operating temperature -20 to 70°C IR emitter 850 nm I2C 400 kHz serial bus Address: 0x29 (7-bit) 1. Maximum distance dependent on target reflectance and external conditions (ambient light level, temperature, voltage). 2. GPIO0, GPIO1, SCL and SDA are pulled up to AVDD (2.8V) 3. Assumes 10 Hz sampling rate, 17% reflective target at 50 mm 1.2 System block diagram Figure 1. VL6180 block diagram 9/PRGXOH 9/VLOLFRQ *3,2 *3,2 6'$ 6&/ 0LFURFRQWUROOHU 190 5$0 ,5HPLWWHUGULYHU ,5,5 ,5HPLWWHU 8/73 $9'' 5DQJLQJ DocID024986 Rev 13 $9''B9&6(/ *1' $966B9&6(/ VL6180 1.3 Overview Device pinout Figure 2 shows the pinout of the VL6180. Figure 2. VL6180 pinout 9/ *3,2   *1' 1&   1& 1&   $9'' *3,2   $966B9&6(/ 6&/   $9''B9&6(/ 6'$   1& Table 2. VL6180 pin numbers and signal descriptions Pin number Signal name Signal type Signal description 1 GPIO1 Digital I/O Interrupt output. Open-drain. If used, it should be pulled high with 47 k resistor, otherwise left unconnected. 2 NC No connect 3 NC No connect 4 GPIO0/CE Digital I/O 5 SCL Digital input I2C serial clock 6 SDA Digital I/O I2C serial data 7 NC 8 AVDD_VCSEL Supply VCSEL power supply. 2.6 to 3.0 V 9 AVSS_VCSEL Ground VCSEL ground 10 AVDD Supply Digital/analog power supply. 2.6 to 3.0 V 11 NC 12 GND Power-up default is chip enable (CE). It should be pulled high with a 47 kresistor. No connect No connect Ground DocID024986 Rev 13 Digital/analog ground 9/73 69 Overview 1.4 VL6180 Typical application schematic Figure 3 shows the typical application schematic of the VL6180. Figure 3. VL6180 schematic 9RU9 9 9/ *3,2   *3,2  1&  1& *3,2   *3,2 $966B9&6(/  6&/   6&/ $9''B9&6(/  6'$   6'$ 1&  *1'  1&  $9''  Q) —) 1. Open drain. If pin is used, then 47krecommended, otherwise leave floating 2. Open drain. 47krecommended 3. Open drain. Pull up resistors typically fitted once per I2C bus at host Note: Capacitors on AVDD and AVDD_VCSEL should be placed as close as possible to the supply pads. 1.5 Recommended solder pad dimensions Figure 4. Recommended solder pattern 3DGSLWFKPP PP PP PP 10/73 DocID024986 Rev 13 6DPHDVGHYLFHSDGGLPHQVLRQV VL6180 1.6 Overview Recommended reflow profile The recommend reflow profile is shown in Figure 5 and Table 3. Figure 5. Recommended reflow profile Table 3. Recommended reflow profile Profile Note: Ramp to strike Temperature gradient in preheat (T= 70 - 180C): 0.9 +/- 0.1C/s Temperature gradient (T= 200 - 225C): 1.1 - 3.0C/s Peak temperature in reflow 237C - 245C Time above 220C 50 +/- 10 seconds Temperature gradient in cooling -1 to -4 C/s (-6C/s maximum) Time from 50 to 220C 160 to 220 seconds As the VL6180 package is not sealed, only a dry re-flow process should be used (such as convection re-flow). Vapor phase re-flow is not suitable for this type of optical component. The VL6180 is an optical component and as such, it should be treated carefully. This would typically include using a ‘no-wash’ assembly process. DocID024986 Rev 13 11/73 69 Functional description 2 VL6180 Functional description It is assumed in the rest of the document that the host application is controlling the VL6180 device through it’s C API. For a more detailed explanation of the API functions please refer to the documentation that is supplied with the API. The API is available on request from ST. 2.1 Ranging The VL6180 uses a simple pipe architecture to achieve range measurement. Figure 6. Ranging pipe architecture 2.2 System state diagram Figure 7 describes the main operating states of the VL6180. Hardware standby is the reset state (GPIO0=0)(a). The device is held in reset until GPIO0 is de-asserted. Note that the device will not respond to I2C communication in this mode. When GPIO0=1, the device enters software standby after the internal MCU boot sequence has completed. a. Use of GPIO0 is optional 12/73 DocID024986 Rev 13 VL6180 Functional description From a customer application point of view, the following sequence must be followed at the power-up stage  Set GPIO0 to 0  Set GPIO0 to 1  Wait for a minimum of 400us  Call VL6180x_WaitDeviceBooted()(b) API function (or wait 1ms to ensure device is ready). Then, at this stage, it is possible to configure the device and start single-shot or continuous ranging operation through API functions calls. Figure 7. System state diagram 3RZHU2II $9''2)) $9''21 *3,2  $9''21 *3,2  +DUGZDUH VWDQGE\ *3,2  $9''2)) *3,2  0&8ERRW 6RIWZDUH VWDQGE\ 0RGH FRQWLQXRXV 5DQJHBVWDUW GRQH 5DQJH PHDVXUHPHQW VWDUW VWRS DXWR DXWR &RQWLQXRXV PRGH 'HYLFHLVSODFHGLQDORZSRZHUVWDWHEHWZHHQPHDVXUHPHQWV b. Warning: The VL6180x_WaitDeviceBooted() function expects the device to be fresh out of reset. Calling this function when the device is not fresh out of rest will result in an infinite loop. DocID024986 Rev 13 13/73 69 Functional description 2.3 VL6180 Timing diagram Figure 8 and Table 4.show the VL6180 power-up timing constraints. Note:  AVDD_VCSEL must be applied before or at the same time as AVDD.  GPIO0 defaults to an active low shutdown input. When GPIO0 = 0, the device is in hardware standby. If GPIO0 is not used it should be connected to AVDD.  The internal microprocessor (MCU) boot sequence commences when AVDD is up and GPIO0 is high whichever is the later.  GPIO1 power-up default is output low. It is tri-stated during the MCU boot sequence. In hardware standby, GPIO1 is output low and will sink current through any pull-up resistor. This leakage can be minimized by increasing the value of the pull-up resistor.  After the MCU boot sequence the device enters software standby. Host initialization can commence immediately after entering software standby. Figure 8. Power-up timing 'W/KϭƚƌŝͲƐƚĂƚĞĚ͕ŽŶůLJŚŝŐŚŝĨƉƵůůͲƵƉĨŝƚƚĞĚ Table 4. Power-up timing constraints Symbol 14/73 Parameter Min Max Unit - 0 ms 100 - ns t1 AVDD_VCSEL power applied after AVDD t2 Minimum reset on GPIO0 t3 GPIO1 output low after hardware standby - 400 s t4 MCU boot - 1 ms t5 Software standby to host initialization - 0 ms DocID024986 Rev 13 VL6180 2.4 Functional description Software Figure 9 shows a simple start-up routine from initialization to completing a range measurement (ignoring offset and cross-talk calibration).The polling function is a very simple function, but would not be used in the final application as it is a blocking function. Figure 9. Simple range routine 3RZHUXS —VGHOD\ 9/[B :DLW'HYLFH%RRWHGRU PVGHOD\ 6RIWZDUHVWDQGE\ 9/[B,QLW'DWD 9/[B3UHSDUH 9/[B5DQJH3ROO 0HDVXUHPHQW DocID024986 Rev 13 15/73 69 Functional description 2.5 VL6180 Operating modes The VL6180 device can operate in 2 different range modes: Single-shot measurement or Continuous measurement. From these 2 device modes, the VL6180 API enables 3 different typical operating modes: Polling, interrupt or asynchronous. Note: Wrap Around Filter is not available in Continuous measurement mode. Table 5. VL6180 operating modes API operating mode Polling Interrupt Asynchro nous 2.5.1 Description API functions VL6180 mode Comments Host requests single shot measurement and waits for the result VL6180x_RangePollMeasurement Single shot Recommended for first API porting or debug Ranging results are retrieved from interrupts VL6180x_RangeSetInterMeasPeriod VL6180x_SetupGPIO1 VL6180x_RangeConfigInterrupt (VL6180x_RangeSetThreshold) Continuous VL6180x_RangeStartContinuousMode VL6180x_RangeGetMeasurement VL6180x_ClearAllInterrupt Recommended for User Detection applications where CPU is interrupted by VL6180 so can be asleep when no target is detected (power saving) VL6180x_RangeStartSingleShot VL6180x_RangeGetMeasurement IfReady Recommended for AFAssist applications, Android OS-based system where CPU is synchronized by EOF/SOF from camera or by a timer so that top application controls measurement periods Host requests a single shot measurement and regularly checks to see if result is ready or not Single shot Polling mode - single shot measurement Host calls a blocking API function that requests a single shot measurement and waits for the result. CPU is blocked during ranging. 16/73 DocID024986 Rev 13 VL6180 Functional description Figure 10. Polling mode Wh s>ϲϭϴϬ /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ZĂŶŐŝŶŐ ZĂŶŐĞWŽůůDĞĂƐƵƌĞŵĞŶƚ;Ϳ 2.5.2 Interrupt mode - continuous measurement Host programs the device in continuous mode and ranging results are retrieved from interrupts. Figure 11. Interrupt mode Wh s>ϲϭϴϬ /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ZĂŶŐĞ^Ğƚ/ŶƚĞƌDĞĂƐWĞƌŝŽĚ;Ϳ ^ĞƚƵƉ'W/Kϭ;Ϳ ZĂŶŐĞŽŶĨŝŐ/ŶƚĞƌƌƵƉƚ;Ϳ ZĂŶŐĞ^ƚĂƌƚŽŶƚŝŶƵŽƵƐDŽĚĞ;Ϳ ZĂŶŐŝŶŐ WhĐĂŶďĞŝĚůĞŽƌĚŽŝŶŐ ŽƚŚĞƌƚĂƐŬƐǁŚŝůĞǁĂŝƚŝŶŐ ŽŶs>ϲϭϴϬŝŶƚĞƌƌƵƉƚ 'W/Kϭ/Ed ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞŶƚ;Ϳ DocID024986 Rev 13 17/73 69 Functional description VL6180 VL6180x_RangeConfigInterrupt() The VL6180 can be configured to generate a range interrupt flag under any of the following conditions:  New sample ready  Level low (range value < low threshold)  Level high (range value > high threshold)  Out of window (range value < low threshold) OR (range value > high threshold) In new sample ready mode, an interrupt flag will be raised at the end of every measurement irrespective of whether the measurement is valid or if an error has occurred. This mode is particularly useful during development and debug.  In level interrupt mode the system will raise an interrupt flag if either a low or high programmable threshold has been crossed.  Out of window interrupt mode activates both high and low level thresholds allowing a window of operation to be specified. Range interrupt modes are selected via VL6180x_RangeConfigInterrupt() with VL6180x_RangeSetThresholds() used to set thresholds. Use VL6180x_RangeGetInterruptStatus() to return the ranging interrupt status. Note: In level or window interrupt modes range errors will only trigger an interrupt if the logical conditions described above are met. Continuous mode limits To take account of oscillator tolerances and internal processing overheads it is necessary to place the following constraints on continuous mode operations. The following equations define the minimum inter-measurement period to ensure correct operation: Continuous range: VL6180x_RangeSetMaxConvergenceTime() + 5   VL6180x_RangeSetInterMeasPeriod() * 0.9 Table 6. gives an example how to apply these limits in continuous mode operating at a sampling rate of 10 Hz. Table 6. Continuous mode limits (10 Hz operation) Parameter 2.5.3 Period (ms) VL6180x_RangeSetMaxConvergenceTime() 30 Total RANGE EXECUTION TIME 35 Asynchronous mode - single shot measurement Host requests a single shot measurement and can either check regularly to see if result is ready or wait for an interrupt then call RangeGetMeasurementIfReady(). 18/73 DocID024986 Rev 13 VL6180 Functional description Figure 12. Asynchronous mode Wh s>ϲϭϴϬ /ŶŝƚĂƚĂ;Ϳ͕WƌĞƉĂƌĞ;Ϳ ZĂŶŐĞ^ƚĂƌƚ^ŝŶŐůĞ^ŚŽƚ;Ϳ WhŵƵƐƚƌĞŐƵůĂƌůLJĐĂůů ƚŚĞ ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞŶƚ/Ĩ ZĞĂĚLJĨƵŶĐƚŝŽŶƚŽĐŚĞĐŬ ĨŽƌƌĂŶŐĞŵĞĂƐƵƌĞŵĞŶƚ z^ 2.6 ZĂŶŐĞ'ĞƚDĞĂƐƵƌĞŵĞ Ŷƚ/ĨZĞĂĚLJ;Ϳ ZĂŶŐŝŶŐ EK ZĂŶŐĞĂŶĚ ƐƚĂƚƵƐĚĂƚĂ Range timing Figure 13 gives a breakdown of total execution time for a single range measurement.  The pre-calibration phase is fixed (3.2 ms).  The range convergence time is variable and depends on target distance/reflectance (see Table 7).  The recommended readout averaging period is 4.3 ms. Readout averaging helps to reduce measurement noise. The recommended setting for READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} is 48(c) but is programmable in the range 0-255. Note however that lower settings will result in increased noise. Register READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} is not programmable via the API. Note: When a target is detected the API returns the actual range convergence time. The convergence time returned by the API does not include the readout average. Range convergence and readout averaging must be completed within the specified max convergence time. VL6180x_RangeSetMaxConvergenceTime() - sets maximum time to run measurement in all ranging modes. Range = 1 - 63 ms; measurement aborted when limit reached. Effective max convergence time depends on the actual convergence time plus readout averaging sample period setting. c. Default readout averaging period is calculated as follows: 1300 µs + (48 x 64.5 µs) = 4.3 ms DocID024986 Rev 13 19/73 69 Functional description VL6180 Figure 13. Total range execution time WƌĞͲĐĂů ZĞĂĚŽƵƚ ĂǀĞƌĂŐŝŶŐ ZĂŶŐĞĐŽŶǀĞƌŐĞŶĐĞ ŽŶǀĞƌŐĞŶĐĞƚŝŵĞ ; ǀĂƌŝĂďůĞͿ ϰ͘ ϯŵƐ Table 7. Typical range convergence time (ms) Target reflectance Range (mm) 2.7 3% 5% 17% 88% 10 0.43 0.33 0.18 0.18 20 0.94 0.73 0.28 0.18 30 1.89 1.40 0.51 0.18 40 3.07 2.25 0.81 0.18 50 4.35 3.24 1.18 0.24 60 5.70 4.22 1.60 0.32 70 7.07 5.35 2.07 0.49 80 8.41 6.45 2.58 0.50 90 9.58 7.56 3.14 0.61 100 10.73 8.65 3.69 0.73 Range error codes Before using a measurement returned with a range API function, the application must first check that the function call has succeeded (returned 0) and then check the Range.errorStatus for possible error codes. Table 8 gives a summary of the error codes. Calling VL6180x_RangeGetStatusErrString() will also return the error code/description. Table 8. Range error codes Bits [7:4] 0 Description No error Valid measurement System error System error detected (can only happen on power on). No measurement possible. 6 Early convergence estimate ECE check failed 7 Max convergence System did not converge before the specified max. convergence time limit 8 Range ignore Ignore threshold check failed 1-5 20/73 Error code DocID024986 Rev 13 VL6180 Functional description Table 8. Range error codes (continued) Bits [7:4] 9-10 Description Not used - Signal to Noise Ratio Ambient conditions too high. Measurement not valid Range underflow Range value < 0  If the target is very close (0-10mm) and the offset is not correctly calibrated it could lead to a small negative value Range overflow Range value out of range. This occurs when the target is detected by the device but is placed at a high distance resulting in internal variable overflow. Proximity ranging, target > 200mm (scaling = 1) Extended ranging, target > 550mm (scaling = 3) 16 Ranging_Filtered Distance filtered by Wrap Around Filter (WAF). Occurs when a high reflectance target is detected between 600mm to 1.2m 17 Not used - 18 Data_Not_Ready Error returned by VL6180x_RangeGetMeasurementIfReady() when ranging data is not ready 11 12/14 13/15 2.8 Error code Range checks Error codes 6, 8 & 11 in Table 8 are configurable by the user (SNR, error 11, has not yet been integrated into the API). 2.8.1 Early convergence estimate (ECE) Note: Early convergence estimate (ECE) is not used, by default, in extended ranging mode. Early convergence estimate (ECE) is a programmable feature designed to minimize power consumption when there is no target in the field-of-view (FOV). The system is said to have ‘converged’ (i.e. range acquired), when the convergence threshold(d) is reached before the max. convergence time limit (see Figure 14). This ratio specifies the minimum return signal rate required for convergence. If there is no target in the FOV, the system will continue to operate until the max. convergence time limit is reached before switching off thereby consuming power. With ECE enabled, the system estimates the return signal rate 0.5 ms after the start of every measurement. If it is below the ECE threshold, the measurement is aborted and an ECE error is flagged. d. For proximity ranging, the convergence threshold is set to 10240. The convergence threshold register is not accessible by the user. DocID024986 Rev 13 21/73 69 Functional description VL6180 Figure 14. ECE ECE is enabled by setting VL6180x_RangeSetEceState() and configured with VL6180x_RangeSetEceFactor(). This allows the user to change the ECE threshold from the default of 15% below minimum convergence rate. As shown by the example below. 85%  0.5  10240 ECE threshold = -------------------------------------------------------------------------------Max convergence time (in ms) If the max convergence time is set to 30 ms (using VL6180x_RangeSetMaxConvergenceTime()), then the ECE threshold is 196. That is, if the return count is less than 196 after 0.5 ms, the measurement will be aborted. Note: The optimum value for the ECE threshold should be determined in the final application. 2.8.2 Range ignore In a system with cover glass, the return signal from the glass (cross-talk) may be sufficient to cause the system to converge and return a valid range measurement even when there is no target present. The range ignore feature is designed to ensure that the system does not range on the glass. (Cross-talk is described in more detail in Section 2.15.2). The ignore threshold is enabled with VL6180x_RangeIgnoreSetEnable(). If enabled, the ignore threshold and valid height must be specified, this is set with VL6180x_RangeIgnoreConfigure(). A range ignore error will be flagged if the return signal rate is less than the ignore threshold. Note: The optimum value for the ignore threshold and valid height should be determined in the final application. 2.8.3 Signal-to-noise ratio (SNR) SNR function not yet implemented in API. In high ambient conditions range accuracy can be impaired so the SNR threshold is used as a safety limit to invalidate range measurements where the ambient/signal ratio is considered too high.The default ambient/signal ratio limit is 10 (i.e. an SNR of 0.1) which is then encoded in 4.4 format as follows: SYSRANGE__MAX_AMBIENT_LEVEL_MULT{0x2C}= 10 x 16 = 160 22/73 DocID024986 Rev 13 VL6180 Functional description To enable the SNR check, set bit 4 in SYSRANGE__RANGE_CHECK_ENABLES (0x02D). A lower setting results in a more aggressive filter which will result in a lower effective range but greater accuracy. A higher setting results in a less aggressive filter which will result in a greater effective range but lower accuracy. The SNR value can be calculated as follows: RESULT__RANGE_RETURN_SIGNAL_COUNT{0x6C} SNR = -------------------------------------------------------------------------------RESULT__RANGE_RETURN_AMB_COUNT{0x74} * 6 Note: The SNR value is the inverse of the ambient/signal ratio limit {0x2C}. Note: The optimum value for SNR threshold should be determined in the final application. 2.9 Manual/autoVHV calibration Manual/auto VHV not yet implemented in API. SPAD(e) sensitivity is temperature dependent so VHV(f) calibration is used to regulate SPAD sensitivity over temperature in order to minimize signal rate variation. VHV calibration is performed either manually by the host processor or automatically by internal firmware. Execution time is typically 200 s so has no impact on normal operation. A VHV calibration is run once at power-up and then automatically after every N range measurements defined by the SYSRANGE__VHV_REPEAT_RATE{0x31}register. AutoVHV calibration is disabled by setting this register to 0. Default is 255. If autoVHV is disabled it is recommended to run a manual VHV calibration periodically to recalibrate for any significant temperature variation. A manual VHV calibration is performed by setting SYSRANGE__VHV_RECALBRATE{0x2E} to 1. This register auto-clears. This operation should only be performed in software standby. 2.10 History buffer History buffer not yet implemented in API. The history buffer is a 8 x 16-bit memory which can be used to store the last 16 range measurements (8-bit). Use of the history buffer is controlled via register SYSTEM__HISTORY_CTRL{0x12}. There are 3 basic functions:  enable  range selection  clear buffer The buffer is read via eight 16-bit registers (RESULT__HISTORY_BUFFER_0{0x52} to RESULT__HISTORY_BUFFER_7{0x60}). The buffer holds the last 16 x 8-bit range results as shown in Table 9. e. Photon detectors - Single Photon Avalanche Diodes f. VHV is an adjustable SPAD bias voltage and stands for Very High Voltage (typically around 14 V). Also sometimes referred to as CP (Charge Pump). DocID024986 Rev 13 23/73 69 Functional description VL6180 Table 9. History buffer Range History buffer (High byte) Note: (Low byte) 0 Range [15] (newest) Range [14] 1 Range [13] Range [12] 2 Range [11] Range [10] 3 Range [9] Range [8] 4 Range [7] Range [6] 5 Range [5] Range [4] 6 Range [3] Range [2 7 Range [1] Range [0] (oldest) Only one data stream can be buffered at one time. There is no associated time stamp information. The clear buffer command is not immediate; it takes effect on the next range start command. The history buffer works independently of interrupt control i.e. the history buffer records all new samples; its operation is unchanged in threshold and window modes. 2.11 Wrap Around Filter Wrap-around is an effect linked to the ratio between the VCSEL pulse period and the photon return pulse. Figure 15. Wrap around High reflective targets (like mirrors) placed at a far distance (>600mm) from the VL6180 can still produce enough return signal for the VL6180 to declare a valid target and meet the wrap-around condition resulting in a wrong (under-estimated) returned distance. The WAF implemented in the API is able to automatically detect if a target is in the wraparound condition and filter it by returning an invalid distance (Range.errorStatus = 16). The WAF is enabled/disabled via VL6180x_FilterSetState() and read with VL6180x_FilterGetState(). 2.12 Scaling The default scaling factor is 3, which allows for maximum ranging capabilities. The scaling factor can be decreased to x2 or x1 for short range applications. 24/73 DocID024986 Rev 13 VL6180 Note: Functional description With a scaling factor of 2/3. the reported range minimum resolution also increases to 2/3mm. VL6180x_UpscaleSetScaling() is a single API function which allows the user to change the scaling factor of the device. VL6180x_UpscaleGetScaling() can be used to read the scaling factor. Scaling factor = 1 = proximity ranging (up to ~20 cm) Scaling factor = 1 = proximity ranging (up to ~40 cm) Scaling factor = 3 = extended ranging (up to ~60 cm) 2.13 Maximum ranging distance (Dmax) A target placed in front of the VL6180 device may not be detected because it is too far away for the given ambient light conditions. When ambient light level increases, max detection range (Dmax) decreases When no target is detected (no valid distance), the VL6180 API is able to estimate Dmax as the maximum distance up to which a 17% target would have been detected with the current ambient light level. When no target is detected by the VL6180, the application can interpret the Dmax value as no target is detected and there is no 17% (or above) target between 0 and Dmax mm. DMAX is enabled/disabled by VL6180x_DMaxSetState() and read with VL6180x_DMaxGetState(). Note: Dmax is estimated for a 17% reflectance target. If the real target has a lower reflectance, then the Dmax calculated by the API could be overestimated. 2.14 Current consumption Table 10. gives an overview of current consumption in different operating states. Table 10. Typical current consumption in different operating states Mode Current Conditions Hardware standby < 1 A Shutdown (GPIO0 = 0). No I2C comms Software standby < 1 A After MCU boot. Device ready Ranging 1.7 mA Average consumption during ranging(1) 1. 10 Hz sampling rate, 17% reflective target at 50 mm. 2.14.1 Ranging current consumption Figure 16 shows typical ranging current consumption of the VL6180. Current consumption depends on target distance, target reflectance and sampling rate. The example shown here is based on default settings and a sampling rate of 10 Hz. The average current consumption for a 17% reflective target at 50 mm operating at 10 Hz is 1.7 mA. At different sampling rates the current consumption scales accordingly i.e. the average current consumption at 1 Hz under the same conditions would be 0.17 mA. DocID024986 Rev 13 25/73 69 Functional description VL6180 Figure 16. Typical ranging current consumption (10 Hz sampling rate) The minimum average current consumption in Figure 16. is 1.5 mA, 0.5 mA of which comes from pre-calibration before each measurement and 1.0 mA from post-processing (readout averaging). Pre-calibration is a fixed overhead but readout averaging can be reduced or effectively disabled by setting the READOUT__AVERAGING_SAMPLE_PERIOD{0x10A} to zero (default setting is 48). Note: Decreasing the READOUT__AVERAGING_SAMPLE_PERIOD will increase sampling noise. It is recommended that any change in setting be properly evaluated in the end application. Minimum current consumption scales with sampling rate i.e. at a sampling rate of 1 Hz the current consumption associated with pre- and post-processing will be 0.15 mA. 2.14.2 Current consumption calculator Table 11. gives a breakdown of typical current consumption for pre-calibration, ranging and readout averaging. Table 11. Breakdown of current consumption Label Phase I (mA) t (ms) Q (C) = I x t Q1 Pre-calibration 13.0 3.2 41.6 Q2 Ranging 22.0 per ms 22.0 per ms Q3 Readout averaging 25.0 per ms 25.0 per ms Current consumption can then be calculated as follows: I (A) = sampling_rate * [Q1 + (Q2 * RESULT__RANGE_RETURN_CONV_TIME in ms) +  Q3 * (1.3 + (READOUT__AVERAGING_SAMPLE_PERIOD * 0.0645 ms))] Table 7. gives typical convergence times for different target reflectance. So, for example, RESULT__RANGE_RETURN_CONV_TIME for a 3% target at 50 mm is 4.35 ms. At 10 Hz sampling rate this gives: I (A) = 10 * [41.6 + (22 * 4.35) + 25 * (1.3 + (48 * 0.0645))] = 2472 A 26/73 DocID024986 Rev 13 VL6180 2.14.3 Functional description Current distribution Table 12. shows how current consumption is distributed between the two supplies in ranging mode. AVDD_VCSEL supplies the VCSEL current and AVDD supplies all other functions. Angle of divergent laser emission is 25° +/- 5°. The condition of divergent angle of 25° laser emission is 1/e2 of the peak intensity. Note: The VCSEL driver is pulsed at 100 MHz with a 33% duty cycle (see Figure 17.) so average current consumption on AVDD_VCSEL is one third of the peak. Table 12. Average current consumption on AVDD and AVDD_VCSEL Power supply(1) Current AVDD 14 mA AVDD_VCSEL 8 mA(2) Note Average during active ranging Average during active ranging (33% duty cycle). 1. Normally, both supplies will be driven from a common source giving a peak instantaneous current demand of 38 mA. 2. Peak emitter current during ranging is 24 mA.Peak power is 14mW. Figure 17. VCSEL pulse duty cycle ͬϭϰŵtƉĞĂŬƉŽǁĞƌ DocID024986 Rev 13 27/73 69 Functional description 2.15 VL6180 Other system considerations This section describes part-to-part range offset and system cross-talk. In addition, a procedure for cross-talk calibration is given. 2.15.1 Part-to-part range offset The VL6180 is factory calibrated to produce an absolute linear range output as shown in Figure 18. The part-to-part range offset is calibrated during manufacture and stored in NVM. Use VL6180x_GetOffsetCalibrationData() to read offset from NVM (after VL6180x_InitData()). The API always returns the range with the part-to-part offset already applied. Figure 18. Part-to-part range offset 2.15.2 Cross-talk Cross-talk is defined as the signal return from the cover glass. The magnitude of the crosstalk depends on the type of glass, air gap and filter material. Cross-talk results in a range error (see Figure 19) which is proportional to the ratio of the cross-talk to the signal return from the target. The true range is recovered by applying automatic cross-talk compensation. Figure 19. Cross-talk compensation Cross-talk compensation is enabled by using VL6180x_SetXTalkCompensationRate(). A cross-talk calibration procedure is described in Section 2.15.4. 28/73 DocID024986 Rev 13 VL6180 2.15.3 Functional description Offset calibration procedure Complete steps 1-4 to see if part-to-part offset calibration is required. 1. Read scaling factor VL6180x_UpscaleGetScaling(), turn off WAF VL6180x_FilterSetState() = 0, turn off range ignore features VL6180x_RangeIgnoreSetEnable() = 0 and clear all interrupts VL6180x_ClearAllInterrupt(). 2. Position a white target (88% reflectance(g)) at a distance of 50mm (scaling factor 1) or 100 mm (scaling factor 2/3) from the top of the cover glass. 3. Perform a minimum of 10 range measurements and compute the average range using VL6180x_RangePollMeasurement(). 4. If the average range is within target distance  3 mm, offset calibration is not required. Otherwise, complete the calibration procedure. 5. Set VL6180x_SetOffsetCalibrationData() = 0. 6. Perform a minimum of 10 range measurements and compute the average range from VL6180x_RangePollMeasurement(). 7. Calculate the part-to-part offset as follows: part-to-part offset = target distance(mm) – average range(mm) 8. 2.15.4 The new offset value should be stored on system and written to the VL6180 by using VL6180x_SetOffsetCalibrationData() each time the device is reset. Cross-talk calibration procedure This section describes a procedure for calibrating system cross-talk. 1. Note: Perform offset calibration if required (see Section 2.15.3) and write the value to the device by using VL6180x_SetOffsetCalibrationData(). If the offset is incorrectly calibrated, cross-talk calibration will be inaccurate. 2. Read scaling factor VL6180x_UpscaleGetScaling(), turn off WAF VL6180x_FilterSetState() = 0 turn off range ignore features VL6180x_RangeIgnoreSetEnable() = 0 and clear all interrupts VL6180x_ClearAllInterrupt(). 3. Position a grey target (17% reflectance(h)) at a distance of 100mm (scaling factor 1) or 300mm (scaling factor 2) or 400mm (scaling factor 3) from the top of the cover glass. 4. Write 0 to VL6180x_SetXTalkCompensationRate(). 5. Perform a minimum of 10 range measurements and compute the average return rate and range value from VL6180x_RangePollMeasurement(). 6. Calculate the cross-talk factor as follows: average range(mm) cross-talk (in Mcps) = average return rate   1 – -----------------------------------------------------  target distance(mm) 7. The cross-talk value should be stored on system and written to the VL6180 by using VL6180x_SetXTalkCompensationRate() each time the device is reset. g. Target reflectance should be high but absolute value is not critical. h. Target reflectance should be low but absolute value is not critical. DocID024986 Rev 13 29/73 69 Functional description VL6180 Note: Cross-talk compensation is only applied to targets above 20 mm. This is to ensure that cross-talk correction is not applied to near targets where the signal rate is decreasing. The API sets the cross-talk valid height dependent on scaling factor.  The default is 20mm for scaling 1, 10mm (20/2) for scaling 2 and 7mm (~20/3) for scaling 3. 2.15.5 Cross-talk limit For proximity ranging (scaling 1), a practical limit for cross-talk is < 3.0 Mcps. This is based on two factors: 1. The return rate for a 3% reflective target at 100 mm without glass is typically around 1.5 Mcps. If glass is added with a cross-talk of 3.0 Mcps, the resultant return rate will be 4.5 Mcps. This results in a cross-talk correction factor of x3 so for a 100 mm target the raw range will be in the region of 30 mm. To ensure the cross-talk valid height restriction is not breached, the minimum raw range allowing for noise margin is around 30 mm. 2. A cross-talk correction factor of x3 also means that any range noise will be multiplied by 3 so noise also becomes a limiting factor. For extended ranging (scaling 3), a practical limit for cross-talk is < 0.2 Mcps. 2.15.6 Cross-talk vs air gap Figure 20 shows the typical cross-talk vs air gap using low cross-talk glass. Above 1.5 mm, the cross-talk rises rapidly. Figure 20. Cross-talk vs air gap 30/73 DocID024986 Rev 13 VL6180 Ranging specification 3 Ranging specification 3.1 Proximity ranging (0 to 100mm) The following table specifies ranging performance up to 100mm. These results are derived from characterization of both typical and corner samples (representative of worst case process conditions). Unless specified otherwise, all results were performed at room temperature (23°C), nominal voltage (2.8V) and in the dark. Results are based on the average of 100 measurements for a 17% reflective target @ 50mm. Table 13. Ranging specification 0 to 100mm Parameter Noise(1) Range offset error(2) Temperature dependent drift Voltage dependent drift (3) (4) Convergence time (5) Min. Typ. Max. Unit - - 2.0 mm - - 13 mm - 9 15 mm - 3 5 mm - - 15 ms 1. Maximum standard deviation of 100 measurements 2. Maximum offset drift after 3 reflow cycles. This error can be removed by re-calibration in the final system 3. Tested over optimum operating temperature range (see Table 20.: Normal operating conditions) 4. Tested over optimum operating voltage range (see Table 20.: Normal operating conditions) 5. Based on a 3% reflective target @ 100 mm 3.1.1 Max range vs. ambient light level The data shown in this section is worst case data for reference only. Table 14 shows the worst case maximum range achievable under different ambient light conditions. Table 14. Worst case max range vs. ambient 0 to 100mm(1)(2) Target reflectance In the dark(3) Worst case indoor light High ambient light (1 kLux diffuse halogen) (5 kLux diffuse halogen) 3% > 100 > 80 > 40 mm 5% > 100 > 90 > 45 mm 17% > 100 > 100 > 60 mm 88% > 100 > 100 > 70 mm Unit 1. Tested in an integrating sphere (repeatable lab test, not representative of real world ambient light) at 1 kLux and 5 kLux (halogen light source) using 80 x 80 mm targets. Due to high IR content, 5 kLux halogen light approximates to 10 kLux to 15 kLux natural sunlight. 2. SNR limit of 0.1 applied. Note: maximum range could be increased by reducing the SNR limit to 0.06 3. Also applicable to lighting conditions with low IR content e.g typical office fluorescent lighting DocID024986 Rev 13 31/73 69 Ranging specification VL6180 Figure 21. Typical ranging performance 3.2 Extended range (>100mm) 3.2.1 Extended range conditions Ranging beyond 100 mm requires a low cross-talk system, use of a gasket, small air gap (below 1 mm) and cover glass with IR filter (transmission >80% @ 850nm and 100mm Target reflectance (%) Distance (mm) Ambient Rate(1) (Mcps) Minimum Detection Rate(2) (%) 5 200 3.7 97.5 88 200 37 97.5 17 400 2.1 94.7 1. Ambient light level set at 23°C 2. Over the optimum operating temperature range (-10°C to + 60°C) Table 16.shows upper and lower measurement limits based on characterization of both typical and limit samples for a 17% target at 400 mm according to the conditions laid out in Table 15. Testing was performed at 2.8 V and over the optimum operating temperature range (-10°C to + 60°C). Table 16. Range limits for a 400 mm target @ ambient rate 2.1Mcps Lower limit (mm) Upper limit (mm) 330 470 The data shown in Table 17 is worst case maximum range data for reference only and shows the light levels that can be achieved using a low cross-talk system as defined in Section 3.2.1. Table 17. Worst case achievable light levels Target reflectance (%) Distance (mm) Equivalent Light level on top of glass (lux) 5 200 5,200 17 400 950 88 200 3,700 DocID024986 Rev 13 Notes Sunlight Halogen light source Sunlight 33/73 69 I2C control interface 4 VL6180 I2C control interface The VL6180 is controlled over an I2C interface. The default I2C address is 0x29 (7-bit). This section describes the I2C protocol. Figure 22. Serial interface data transfer protocol Acknowledge Start condition SDA MSB SCL S LSB 1 2 3 4 5 8 7 6 As/Am Address or data byte P Stop condition Information is packed in 8-bit packets (bytes) always followed by an acknowledge bit, As for sensor acknowledge and Am for master acknowledge. The internal data is produced by sampling SDA at a rising edge of SCL. The external data must be stable during the high period of SCL. The exceptions to this are start (S) or stop (P) conditions when SDA falls or rises respectively, while SCL is high. A message contains a series of bytes preceded by a start condition and followed by either a stop or repeated start (another start condition but without a preceding stop condition) followed by another message. The first byte contains the device address (0x52) and also specifies the data direction. If the least significant bit is low (0x52) the message is a master write to the slave. If the lsb is set (0x53) then the message is a master read from the slave. Figure 23. I2C device address LSBit MSBit 0 1 0 1 0 0 1 R/W All serial interface communications with the sensor must begin with a start condition. The sensor acknowledges the receipt of a valid address by driving the SDA wire low. The state of the read/write bit (lsb of the address byte) is stored and the next byte of data, sampled from SDA, can be interpreted. During a write sequence the second and third bytes received provide a 16-bit index which points to one of the internal 8-bit registers. Figure 24. Single location, single write Start S Acknowledge from sensor Sensor acknowledges valid address ADDRESS[7:0] As INDEX[15:8] As 0x52 (write) 34/73 INDEX[7:0] As DATA[7:0] As P Stop DocID024986 Rev 13 I2C control interface VL6180 As data is received by the slave it is written bit by bit to a serial/parallel register. After each data byte has been received by the slave, an acknowledge is generated, the data is then stored in the internal register addressed by the current index. During a read message, the contents of the register addressed by the current index is read out in the byte following the device address byte. The contents of this register are parallel loaded into the serial/parallel register and clocked out of the device by the falling edge of SCL. Figure 25. Single location, single read 0x52 (write) ADDRESS[7:0] S INDEX[15:8] As INDEX[7:0] As As P 0x53 (read) ADDRESS[7:0] S DATA[7:0] As Am P At the end of each byte, in both read and write message sequences, an acknowledge is issued by the receiving device (that is, the sensor for a write and the master for a read). A message can only be terminated by the bus master, either by issuing a stop condition or by a negative acknowledge (that is, not pulling the SDA line low) after reading a complete byte during a read operation. The interface also supports auto-increment indexing. After the first data byte has been transferred, the index is automatically incremented by 1. The master can therefore send data bytes continuously to the slave until the slave fails to provide an acknowledge or the master terminates the write communication with a stop condition. If the auto-increment feature is used the master does not have to send address indexes to accompany the data bytes. Figure 26. Multiple location write 0x52 (write) S ADDRESS[7:0] As DATA[7:0] INDEX[15:8] DATA[7:0] As INDEX[7:0] As DATA[7:0] As As As P Figure 27. Multiple location read 0x52 (write) ADDRESS[7:0] S INDEX[15:8] As INDEX[7:0] As As P 0x53 (read) S ADDRESS[7:0] DATA[7:0] As Am DATA[7:0] DATA[7:0] DocID024986 Rev 13 Am Am DATA[7:0] DATA[7:0] Am Am P 35/73 69 I2C control interface 4.1 VL6180 I2C interface - timing characteristics Timing characteristics are shown in Table 18. Please refer to Figure 28 for an explanation of the parameters used. Table 18. I2C interface - timing characteristics Symbol Parameter Minimum Typical Maximum Unit FI2C Operating frequency 0 - 400(1) kHz tLOW Clock pulse width low 0.5 - - s tHIGH Clock pulse width high 0.26 - - s tSP Pulse width of spikes which are suppressed by the input filter - - 50 ns tBUF Bus free time between transmissions 0.5 - - s tHD.STA Start hold time 0.26 - - s tSU.STA Start set-up time 0.26 - - s tHD.DAT Data in hold time 0 - - s tSU.DAT Data in set-up time 50 - - ns tR SCL/SDA rise time - - 120 ns tF SCL/SDA fall time - - 120 ns tSU.STO Stop set-up time 0.26 - - s Ci/o Input/output capacitance (SDA) - - 4 pF Cin Input capacitance (SCL) - - 4 pF CL Load capacitance - 125 - pF 1. The maximum bus speed may also be limited by the combination of load capacitance and pull-up resistor. Please refer to the I2C specification for further information. Figure 28. I2C timing characteristics stop start start ... SDA tBUF SCL 36/73 tR VIH VIL tHD.STA tF VIH ... VIL tHD.STA Note: tLOW stop tHD.DAT tHIGH tSU.DAT tSU.STA All timing characteristics are measured with respect to VIL_MAX or VIH_MIN. DocID024986 Rev 13 tSU.STO VL6180 Electrical characteristics 5 Electrical characteristics 5.1 Absolute maximum ratings Table 19. Absolute maximum ratings Parameter Min. Typ. Max. Unit AVDD -0.5 - 3.6 V AVDD_VCSEL -0.5 - 3.6 V SCL, SDA, GPIO0 and GPIO1 -0.5 - 3.6 V VESD (Electrostatic discharge model) Human body model(1) Charge device model(2) -2 -500 2 500 KV V Temperature (storage - manufacturing test) -40 +85 °C - 1. HBM tests are performed in compliance with ESDA/JEDEC JS-001-2010 (ex: JESD22-A114) MM test is performed in compliance with JESD22-A115. 2. CDM ESD tests are performed in compliance with JESD22-C101. Note: Stresses above those listed in Table 19. may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.2 Normal operating conditions Table 20. Normal operating conditions Parameter Min. Typ. Max. Unit Voltage (optimum operating) 2.7 2.8 2.9 V Voltage (functional operating) 2.6 2.8 3.0 V +60 °C +70 °C Voltage (AVDD and AVDD_VCSEL) Temperature Temperature (optimum operating) -10 Temperature (functional operating) -20 DocID024986 Rev 13 - 37/73 69 Electrical characteristics 5.3 VL6180 Electrical characteristics Table 21. Digital I/O electrical characteristics Symbol Parameter Minimum Typical Maximum Unit CMOS digital I/O (SDA, SCL, GPIO0 and GPIO1) 38/73 VIL Low level input voltage -0.5 - 0.6 V VIH High level input voltage 1.12 - AVDD+0.5 V VOL Low level output voltage (8mA load) - - 0.4 V VOH High level output voltage (8mA load) AVDD-0.4 - - V IIL Low level input current - - -10 µA IIH High level input current - - 10 µA DocID024986 Rev 13 VL6180 6 Device registers Device registers This section describes in detail all user accessible device registers. Registers are grouped by function as shown in Table 22. to make them easier to read but also to simplify multi-byte read/write I2C accesses (burst mode). More details in Section 4. Reset values are given for each register which denotes the register value in software standby. Table 22. Register groups Register group Address range IDENTIFICATION 0x000 - 0x00F SYSTEM SETUP 0x010 - 0x017 RANGE SETUP 0x018 - 0x037 RESULTS 0x04D - 0x080 Note that registers can be 8-,16- or 32-bit. Multi-byte registers are always addressed in ascending order with MSB first as shown in Table 23. Table 23. 32-bit register example Register address Address 6.1 Byte MSB Address + 1 .. Address + 2 .. Address + 3 LSB Register encoding formats Some registers are encoded to allow rational numbers to be expressed efficiently. Table 24 gives an explanation of 9.7 and 4.4 encoding formats. Table 25 gives a summary of the device registers. Table 24. Register formats Format 9.7 Description 9 integer bits + 7 fractional bits (stored over 2 bytes) For example, the value 4.2 is multiplied by 128, rounded and stored as 537 decimal. To decode, divide 537 by 128 = 4.19. DocID024986 Rev 13 39/73 69 Device registers VL6180 Table 25. Register summary Address Register name 0x000 IDENTIFICATION__MODEL_ID Section 6.2.1 on page 42 0x001 IDENTIFICATION__MODEL_REV_MAJOR Section 6.2.2 on page 42 0x002 IDENTIFICATION__MODEL_REV_MINOR Section 6.2.3 on page 42 0x003 IDENTIFICATION__MODULE_REV_MAJOR Section 6.2.4 on page 43 0x004 IDENTIFICATION__MODULE_REV_MINOR Section 6.2.5 on page 43 0x006 IDENTIFICATION__DATE_HI Section 6.2.6 on page 43 0x007 IDENTIFICATION__DATE_LO Section 6.2.7 on page 44 0x008:0x009 IDENTIFICATION__TIME Section 6.2.8 on page 44 0x010 SYSTEM__MODE_GPIO0 Section 6.2.9 on page 45 0x011 SYSTEM__MODE_GPIO1 Section 6.2.10 on page 46 0x012 SYSTEM__HISTORY_CTRL Section 6.2.11 on page 47 0x014 SYSTEM__INTERRUPT_CONFIG_GPIO Section 6.2.12 on page 48 0x015 SYSTEM__INTERRUPT_CLEAR Section 6.2.13 on page 48 0x016 SYSTEM__FRESH_OUT_OF_RESET Section 6.2.14 on page 48 0x017 SYSTEM__GROUPED_PARAMETER_HOLD Section 6.2.15 on page 49 0x018 SYSRANGE__START Section 6.2.16 on page 49 0x019 SYSRANGE__THRESH_HIGH Section 6.2.17 on page 50 0x01A SYSRANGE__THRESH_LOW Section 6.2.18 on page 51 0x01B SYSRANGE__INTERMEASUREMENT_PERIOD Section 6.2.19 on page 51 0x01C SYSRANGE__MAX_CONVERGENCE_TIME Section 6.2.20 on page 51 0x01E SYSRANGE__CROSSTALK_COMPENSATION_RATE Section 6.2.21 on page 52 0x021 SYSRANGE__CROSSTALK_VALID_HEIGHT Section 6.2.22 on page 52 0x022 SYSRANGE__EARLY_CONVERGENCE_ESTIMATE Section 6.2.23 on page 52 0x024 SYSRANGE__PART_TO_PART_RANGE_OFFSET Section 6.2.24 on page 53 0x025 SYSRANGE__RANGE_IGNORE_VALID_HEIGHT Section 6.2.25 on page 53 0x026 SYSRANGE__RANGE_IGNORE_THRESHOLD Section 6.2.26 on page 53 0x02C SYSRANGE__MAX_AMBIENT_LEVEL_MULT Section 6.2.27 on page 54 0x02D SYSRANGE__RANGE_CHECK_ENABLES Section 6.2.27 on page 54 0x02E SYSRANGE__VHV_RECALIBRATE Section 6.2.29 on page 55 0x031 SYSRANGE__VHV_REPEAT_RATE Section 6.2.30 on page 55 0x04D RESULT__RANGE_STATUS Section 6.2.31 on page 56 0x04F RESULT__INTERRUPT_STATUS_GPIO Section 6.2.32 on page 57 0x052:0x060 RESULT__HISTORY_BUFFER_x (0x2) 0x062 40/73 Reference RESULT__RANGE_VAL DocID024986 Rev 13 Section 6.2.33 on page 57 Section 6.2.34 on page 58 VL6180 Device registers Table 25. Register summary (continued) Address Register name Reference 0x064 RESULT__RANGE_RAW Section 6.2.35 on page 58 0x066 RESULT__RANGE_RETURN_RATE Section 6.2.36 on page 59 0x068 RESULT__RANGE_REFERENCE_RATE Section 6.2.37 on page 60 0x06C RESULT__RANGE_RETURN_SIGNAL_COUNT Section 6.2.38 on page 60 0x070 RESULT__RANGE_REFERENCE_SIGNAL_COUNT Section 6.2.39 on page 61 0x074 RESULT__RANGE_RETURN_AMB_COUNT Section 6.2.40 on page 61 0x078 RESULT__RANGE_REFERENCE_AMB_COUNT Section 6.2.41 on page 61 0x07C RESULT__RANGE_RETURN_CONV_TIME Section 6.2.42 on page 62 0x080 RESULT__RANGE_REFERENCE_CONV_TIME Section 6.2.43 on page 62 0x10A READOUT__AVERAGING_SAMPLE_PERIOD Section 6.2.44 on page 62 0x119 FIRMWARE__BOOTUP Section 6.2.44 on page 62 0x212 I2C_SLAVE__DEVICE_ADDRESS Section 6.2.46 on page 63 DocID024986 Rev 13 41/73 69 Device registers VL6180 6.2 Register descriptions 6.2.1 IDENTIFICATION__MODEL_ID 7 6 5 4 3 2 1 0 identification__model_id R/W Address: 0x000 Type: R/W Reset: 0xB4 Description: [7:0] 6.2.2 identification__model_id: Device model identification number. 0xB4 = VL6180 IDENTIFICATION__MODEL_REV_MAJOR 7 6 Address: 0x001 Type: R/W Reset: 0x01 5 4 3 2 1 RESERVED identification__model_rev_major R R/W 0 Description: [2:0] 6.2.3 identification__model_rev_major: Revision identifier of the Device for major change. IDENTIFICATION__MODEL_REV_MINOR 7 6 5 4 3 2 1 RESERVED identification__model_rev_minor R R/W Address: 0x002 Type: R/W Reset: 0x03, register default overwritten at boot-up by NVM contents. Description: [2:0] identification__model_rev_minor: Revision identifier of the Device for minor change. IDENTIFICATION__MODEL_REV_MINOR = 3 for latest ROM revision 42/73 DocID024986 Rev 13 0 VL6180 6.2.4 Device registers IDENTIFICATION__MODULE_REV_MAJOR 7 6 5 4 3 2 1 RESERVED identification__module_rev_major R R/W Address: 0x003 Type: R/W Reset: 0xXX, register default overwritten at boot-up by NVM contents. 0 Description: [2:0] 6.2.5 identification__module_rev_major: Revision identifier of the Module Package for major change. Used to store NVM content version. Contact ST for current information. VL6180V0NR1: 001 VL6180V1NR1: 010 IDENTIFICATION__MODULE_REV_MINOR 7 6 5 Address: 0x004 Type: R/W Reset: 0xXX 4 3 2 1 RESERVED identification__module_rev_minor R R/W 0 Description: [2:0] 6.2.6 identification__module_rev_minor: Revision identifier of the Module Package for minor change. Used to store NVM content version. Contact ST for current information. VL6180V0NR1: 010 VL6180V1NR1: 000 IDENTIFICATION__DATE_HI 7 6 5 4 3 2 1 identification__year identification__month R/W R/W Address: 0x006 Type: R/W Reset: 0xYY, register default overwritten at boot-up by NVM contents. Description: Part of the register set that can be used to uniquely identify a module. [7:4] identification__year: Last digit of manufacturing year (bits[3:0]). [3:0] identification__month: Manufacturing month (bits[3:0]). DocID024986 Rev 13 0 43/73 69 Device registers 6.2.7 VL6180 IDENTIFICATION__DATE_LO 7 6 5 4 3 2 1 0 identification__day identification__phase R/W R/W Address: 0x007 Type: R/W Reset: 0xYY, register default overwritten at boot-up by NVM contents. Description: Part of the register set that can be used to uniquely identify a module. [7:3] identification__day: Manufacturing day (bits[4:0]). [2:0] identification__phase: Manufacturing phase identification (bits[2:0]). 6.2.8 IDENTIFICATION__TIME 15 14 13 12 11 10 9 8 7 6 5 4 3 2 identification__time R/W Address: 0x008:0x009 Type: R/W Reset: 0xYYYY, register default overwritten at boot-up by NVM contents. Description: Part of the register set that can be used to uniquely identify a module. [15:0] 44/73 identification__time: Time since midnight (in seconds) = register_value * 2. DocID024986 Rev 13 1 0 VL6180 6.2.9 Device registers SYSTEM__MODE_GPIO0 2 1 0 RESERVED 3 system__gpio0_select 4 system__gpio0_polarity 5 system__gpio0_is_xshutdown 6 RESERVED 7 R R/W R/W R/W R/W Address: 0x010 Type: R/W Reset: 0x60 Description: [6] system__gpio0_is_xshutdown: Priority mode - when enabled, other bits of the register are ignored. GPIO0 is main XSHUTDOWN input. 0: Disabled 1: Enabled - GPIO0 is main XSHUTDOWN input. [5] system__gpio0_polarity: Signal Polarity Selection. 0: Active-low 1: Active-high [4:1] [0] system__gpio0_select: Functional configuration options. 0000: OFF (Hi-Z) 1000: GPIO Interrupt output Reserved. Write 0. DocID024986 Rev 13 45/73 69 Device registers 6.2.10 VL6180 SYSTEM__MODE_GPIO1 3 2 R/W R/W R/W 0x011 Type: R/W Reset: 0x20 Description: [4:1] [0] 46/73 0 R Address: [5] 1 RESERVED 4 system__gpio1_select 5 system__gpio1_polarity 6 RESERVED 7 system__gpio1_polarity: Signal Polarity Selection. 0: Active-low 1: Active-high system__gpio1_select: Functional configuration options. 0000: OFF (Hi-Z) 1000: GPIO Interrupt output Reserved. Write 0. DocID024986 Rev 13 VL6180 SYSTEM__HISTORY_CTRL Address: 0x012 Type: R/W Reset: 0x0 4 3 2 1 0 system__history_buffer_enable 5 system__history_buffer_mode 6 system__history_buffer_clear 7 RESERVED 6.2.11 Device registers R R/W R/W R/W Description: [2] system__history_buffer_clear: User-command to clear history (FW will auto-clear this bit when clear has completed). 0: Disabled 1: Clear all history buffers [1] system__history_buffer_mode: Select mode buffer results for: 0: Ranging (stores the last 8 ranging values (8-bit) 1: n/a [0] system__history_buffer_enable: Enable History buffering. 0: Disabled 1: Enabled DocID024986 Rev 13 47/73 69 Device registers 6.2.12 VL6180 SYSTEM__INTERRUPT_CONFIG_GPIO 7 6 5 4 3 2 1 RESERVED RESERVED range_int_mode R R/W R/W Address: 0x014 Type: R/W Reset: 0x0 0 Description: [2:0] 6.2.13 range_int_mode: Interrupt mode source for Range readings: 0: Disabled 1: Level Low (value < thresh_low) 2: Level High (value > thresh_high) 3: Out Of Window (value < thresh_low OR value > thresh_high) 4: New sample ready SYSTEM__INTERRUPT_CLEAR 7 6 Address: 0x015 Type: R/W Reset: 0x0 5 4 3 2 1 RESERVED int_clear_sig R R/W 0 Description: 7 SYSTEM__FRESH_OUT_OF_RESET 6 Address: 0x016 Type: R/W 48/73 5 4 3 2 1 0 fresh_out_of_reset 6.2.14 int_clear_sig: Interrupt clear bits Writing a 1 to each bit will clear the intended interrupt note that the int is only cleared upon the write command itself.  Bit [0] - Clear Range Int  Bit [1] - Reserved Bit [2] - Clear Error Int. RESERVED [2:0] R R/W DocID024986 Rev 13 VL6180 Device registers Reset: 0x1 Description: [0] SYSTEM__GROUPED_PARAMETER_HOLD 6 Address: 0x017 Type: R/W Reset: 0x0 5 4 3 2 1 0 grouped_parameter_hold 7 RESERVED 6.2.15 fresh_out_of_reset: Fresh out of reset bit, default of 1, user can set this to 0 after initial boot and can therefore use this to check for a reset condition R R/W Description: 6 Address: 0x018 Type: R/W Reset: 0x0 5 4 3 2 1 0 sysrange__startstop 7 SYSRANGE__START sysrange__mode_select 6.2.16 grouped_parameter_hold: Flag set over I2C to indicate that data is being updated 0: Data is stable - FW is safe to copy 1: Data being updated - FW not safe to copy Usage: set to 0x01 first, write any of the registers listed below, then set to 0x00 so that the settings are used by the firmware at the start of the next measurement. SYSTEM__INTERRUPT_CONFIG_GPIO SYSRANGE__THRESH_HIGH SYSRANGE__THRESH_LOW RESERVED [0] R R/W R/W DocID024986 Rev 13 49/73 69 Device registers VL6180 Description: [1] sysrange__mode_select: Device Mode select 0: Ranging Mode Single-Shot 1: Ranging Mode Continuous [0] sysrange__startstop: StartStop trigger based on current mode and system configuration of device_ready. FW clears register automatically. Setting this bit to 1 in single-shot mode starts a single measurement.  Setting this bit to 1 in continuous mode will either start continuous operation (if stopped) or halt continuous operation (if started).  This bit is auto-cleared in both modes of operation. 6.2.17 SYSRANGE__THRESH_HIGH 7 6 5 4 3 2 1 0 sysrange__thresh_high R/W Address: 0x019 Type: R/W Reset: 0xFF Description: [7:0] 50/73 sysrange__thresh_high: High Threshold value for ranging comparison. Range 0-255mm. DocID024986 Rev 13 VL6180 Device registers 6.2.18 SYSRANGE__THRESH_LOW 7 6 5 4 3 2 1 0 sysrange__thresh_low R/W Address: 0x01A Type: R/W Reset: 0x0 Description: [7:0] 6.2.19 sysrange__thresh_low: Low Threshold value for ranging comparison. Range 0-255mm. SYSRANGE__INTERMEASUREMENT_PERIOD 7 6 5 4 3 2 1 0 sysrange__intermeasurement_period R/W Address: 0x01B Type: R/W Reset: 0xFF Description: [7:0] 6.2.20 sysrange__intermeasurement_period: Time delay between measurements in Ranging continuous mode. Range 0-254 (0 = 10ms). Step size = 10ms. SYSRANGE__MAX_CONVERGENCE_TIME 7 6 5 4 3 2 RESERVED sysrange__max_convergence_time R R/W Address: 0x01C Type: R/W Reset: 0x31 1 0 Description: [5:0] sysrange__max_convergence_time: Maximum time to run measurement in Ranging modes. Range 1 - 63 ms (1 code = 1 ms); Measurement aborted when limit reached to aid power reduction. For example, 0x01 = 1ms, 0x0a = 10ms. Note: Effective max_convergence_time depends on readout_averaging_sample_period setting. DocID024986 Rev 13 51/73 69 Device registers 6.2.21 15 VL6180 SYSRANGE__CROSSTALK_COMPENSATION_RATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysrange__crosstalk_compensation_rate R/W Address: 0x01E Type: R/W Reset: 0x0 Description: [15:0] 6.2.22 sysrange__crosstalk_compensation_rate: User-controlled cross-talk compensation in Mcps (9.7 format) SYSRANGE__CROSSTALK_VALID_HEIGHT 7 6 5 4 3 2 1 0 sysrange__crosstalk_valid_height R/W Address: 0x021 Type: R/W Reset: 0x14 Description: [7:0] 6.2.23 15 sysrange__crosstalk_valid_height: Minimum range value in mm to qualify for cross-talk compensation. SYSRANGE__EARLY_CONVERGENCE_ESTIMATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysrange__early_convergence_estimate R/W Address: 0x022 Type: R/W Reset: 0x0 Description: [15:0] FW carries out an estimate of convergence rate 0.5ms into each new range measurement. If convergence rate is below user input value, the operation aborts to save power. Note: This register must be configured otherwise ECE should be disabled via SYSRANGE__RANGE_CHECK_ENABLES. 52/73 DocID024986 Rev 13 VL6180 Device registers 6.2.24 SYSRANGE__PART_TO_PART_RANGE_OFFSET 7 6 5 4 3 2 1 0 1 0 sysrange__part_to_part_range_offset R/W Address: 0x024 Type: R/W Reset: 0xYY, register default overwritten at boot-up by NVM contents. Description: [7:0] 6.2.25 sysrange__part_to_part_range_offset: 2s complement. SYSRANGE__RANGE_IGNORE_VALID_HEIGHT 7 6 5 4 3 2 sysrange__range_ignore_valid_height R/W Address: 0x025 Type: R/W Reset: 0x0, register default overwritten at boot-up by NVM contents. Description: [7:0] 6.2.26 15 sysrange__range_ignore_valid_height: Range below which ignore threshold is applied. Aim is to ignore the cover glass i.e. low signal rate at near distance. Should not be applied to low reflectance target at far distance. Range in mm. Note: It is recommended to set this register to 255 if the range ignore feature is used. SYSRANGE__RANGE_IGNORE_THRESHOLD 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 sysrange__range_ignore_threshold R/W Address: 0x026 Type: R/W Reset: 0x00 Description: [15:0] sysrange__range_ignore_threshold: User input min threshold signal return rate. Used to filter out ranging due to cover glass when there is no target above the device. Mcps 9.7 format. Note: Register must be initialized if this feature is used. DocID024986 Rev 13 53/73 69 Device registers 6.2.27 VL6180 SYSRANGE__MAX_AMBIENT_LEVEL_MULT 7 6 5 4 3 2 1 0 sysrange__max_ambient_level_mult R/W Address: 0x02C Type: R/W Reset: 0xA0, register default overwritten at boot-up by NVM contents. Description: [7:0] 6.2.28 sysrange__max_ambient_level_mult: User input value to multiply return_signal_count for AMB:signal ratio check. If amb counts > return_signal_count * mult then abandon measurement due to high ambient (4.4 format). SYSRANGE__RANGE_CHECK_ENABLES 0 R R/W R/W R R/W R/W Address: 0x02D Type: R/W Reset: 0x11, register default overwritten at boot-up by NVM contents. Description: 54/73 1 sysrange__early_convergence_enable 2 sysrange__range_ignore_enable 3 0 4 0 5 sysrange__signal_to_noise_enable 6 RESERVED 7 [4] sysrange__signal_to_noise_enable: Measurement enable/disable [1] sysrange__range_ignore_enable: Measurement enable/disable [0] sysrange__early_convergence_enable: Measurement enable/disable DocID024986 Rev 13 VL6180 SYSRANGE__VHV_RECALIBRATE Address: 0x02E Type: R/W Reset: 0x0 5 4 3 2 1 0 sysrange__vhv_recalibrate 6 sysrange__vhv_status 7 RESERVED 6.2.29 Device registers R R/W R/W Description: [1] sysrange__vhv_status: FW controlled status bit showing when FW has completed auto-vhv process. 0: FW has finished autoVHV operation 1: During autoVHV operation [0] sysrange__vhv_recalibrate: User-Controlled enable bit to force FW to carry out recalibration of the VHV setting for sensor array. FW clears bit after operation carried out. 0: Disabled 1: Manual trigger for VHV recalibration. Can only be called when ranging is in STOP mode 6.2.30 SYSRANGE__VHV_REPEAT_RATE 7 6 5 4 3 2 1 0 sysrange__vhv_repeate_rate R/W Address: 0x031 Type: R/W Reset: 0x0 Description: [7:0] sysrange__vhv_repeate_rate: User entered repeat rate of auto VHV task (0 = off, 255 = after every 255 measurements) DocID024986 Rev 13 55/73 69 Device registers 3 2 1 0 result__range_max_threshold_hit result__range_measurement_ready result__range_device_ready 7 result__range_min_threshold_hit RESULT__RANGE_STATUS result__range_error_code 6.2.31 VL6180 6 5 R R R R R Address: 0x04D Type: R Reset: 0x1 4 Description: [7:4] 56/73 result__range_error_code: Specific error codes 0000: No error 0001: VCSEL Continuity Test 0010: VCSEL Watchdog Test 0011: VCSEL Watchdog 0100: PLL1 Lock 0101: PLL2 Lock 0110: Early Convergence Estimate 0111: Max Convergence 1000: No Target Ignore 1001: Not used 1010: Not used 1011: Max Signal To Noise Ratio 1100: Raw Ranging Algo Underflow 1101: Raw Ranging Algo Overflow 1110: Ranging Algo Underflow 1111: Ranging Algo Overflow [3] result__range_min_threshold_hit: Legacy register - DO NOT USE Use instead 6.2.32: RESULT__INTERRUPT_STATUS_GPIO. [2] result__range_max_threshold_hit: Legacy register - DO NOT USE Use instead 6.2.32: RESULT__INTERRUPT_STATUS_GPIO. [1] result__range_measurement_ready: Legacy register - DO NOT USE Use instead 6.2.32: RESULT__INTERRUPT_STATUS_GPIO. [0] result__range_device_ready: Device Ready. When set to 1, indicates the device mode and configuration can be changed and a new start command will be accepted. When 0, indicates the device is busy. Any new start commands will be ignored until device is ready. (RO). DocID024986 Rev 13 VL6180 6.2.32 Device registers RESULT__INTERRUPT_STATUS_GPIO 7 6 5 4 3 2 1 0 result_int_error_gpio RESERVED result_int_range_gpio R R R Address: 0x04F Type: R Reset: 0x0 Description: [7:6] result_int_error_gpio: Interrupt bits for Error: 0: No error reported 1: Laser Safety Error 2: PLL error (either PLL1 or PLL2) [2:0] result_int_range_gpio: Interrupt bits for Range: 0: No threshold events reported 1: Level Low threshold event 2: Level High threshold event 3: Out Of Window threshold event 4: New Sample Ready threshold event 6.2.33 RESULT__HISTORY_BUFFER_x 15 14 13 12 11 10 9 8 7 6 RESULT__HISTOR Y_BUFFER_0 result__history_buffer_0 RESULT__HISTOR Y_BUFFER_1 result__history_buffer_1 RESULT__HISTOR Y_BUFFER_2 result__history_buffer_2 RESULT__HISTOR Y_BUFFER_3 result__history_buffer_3 RESULT__HISTOR Y_BUFFER_4 result__history_buffer_4 RESULT__HISTOR Y_BUFFER_5 result__history_buffer_5 RESULT__HISTOR Y_BUFFER_6 result__history_buffer_6 RESULT__HISTOR Y_BUFFER_7 result__history_buffer_7 5 4 3 2 1 0 R Address: 0x052 + x * 0x2 (x=0 to 7) Type: R Reset: 0x0 Description: See also 6.2.11: SYSTEM__HISTORY_CTRL DocID024986 Rev 13 57/73 69 Device registers VL6180 RESULT__HISTOR result__history_buffer_0: Range result value.  Y_BUFFER_0: Range mode; Bits[15:8] range_val_latest; Bits[7:0] range_val_d1; [15:0] RESULT__HISTOR result__history_buffer_1: Range result value.  Y_BUFFER_1: Range mode; Bits[15:8] range_val_d2; Bits[7:0] range_val_d3; [15:0] RESULT__HISTOR result__history_buffer_2: Range result value.  Y_BUFFER_2: Range mode; Bits[15:8] range_val_d4; Bits[7:0] range_val_d5; [15:0] RESULT__HISTOR result__history_buffer_3: Range result value.  Y_BUFFER_3: Range mode; Bits[15:8] range_val_d6; Bits[7:0] range_val_d7; [15:0] RESULT__HISTOR result__history_buffer_4: Range result value.  Y_BUFFER_4: Range mode; Bits[15:8] range_val_d8; Bits[7:0] range_val_d9; [15:0] RESULT__HISTOR result__history_buffer_5: Range result value.  Y_BUFFER_5: Range mode; Bits[15:8] range_val_d10; Bits[7:0] range_val_d11; [15:0] RESULT__HISTOR result__history_buffer_6: Range result value.  Y_BUFFER_6: Range mode; Bits[15:8] range_val_d12; Bits[7:0] range_val_d13; [15:0] RESULT__HISTOR result__history_buffer_7: Range result value.  Y_BUFFER_7: Range mode; Bits[15:8] range_val_d14; Bits[7:0] range_val_d15; [15:0] 6.2.34 RESULT__RANGE_VAL 7 6 5 4 3 2 1 0 result__range_val R Address: 0x062 Type: R Reset: 0x0 Description: [7:0] 6.2.35 7 result__range_val: Final range result value presented to the user for use. Unit is in mm. RESULT__RANGE_RAW 6 5 4 3 result__range_raw R Address: 0x064 Type: R 58/73 DocID024986 Rev 13 2 1 0 VL6180 Device registers Reset: 0x0 Description: [7:0] 6.2.36 15 result__range_raw: Raw Range result value with offset applied (no cross-talk compensation applied). RESULT__RANGE_RETURN_RATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_return_rate R Address: 0x066 Type: R Reset: 0x0 Description: [15:0] result__range_return_rate: sensor count rate of signal returns correlated to IR emitter. Computed from RETURN_SIGNAL_COUNT / RETURN_CONV_TIME. Mcps 9.7 format DocID024986 Rev 13 59/73 69 Device registers 6.2.37 15 VL6180 RESULT__RANGE_REFERENCE_RATE 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_reference_rate R Address: 0x068 Type: R Reset: 0x0 Description: [15:0] 6.2.38 result__range_reference_rate: sensor count rate of reference signal returns. Computed from REFERENCE_SIGNAL_COUNT / RETURN_CONV_TIME. Mcps 9.7 format Note: Both arrays converge at the same time, so using the return array convergence time is correct. RESULT__RANGE_RETURN_SIGNAL_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_return_signal_count R Address: 0x06C Type: R Reset: 0x0 Description: [31:0] 60/73 result__range_return_signal_count: sensor count output value attributed to signal correlated to IR emitter on the Return array. DocID024986 Rev 13 VL6180 6.2.39 Device registers RESULT__RANGE_REFERENCE_SIGNAL_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2 1 0 result__range_reference_signal_count R Address: 0x070 Type: R Reset: 0x0 Description: [31:0] 6.2.40 result__range_reference_signal_count: sensor count output value attributed to signal correlated to IR emitter on the Reference array. RESULT__RANGE_RETURN_AMB_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 result__range_return_amb_count R Address: 0x074 Type: R Reset: 0x0 Description: [31:0] 6.2.41 result__range_return_amb_count: sensor count output value attributed to uncorrelated ambient signal on the Return array. Must be multiplied by 6 if used to calculate the ambient to signal threshold. RESULT__RANGE_REFERENCE_AMB_COUNT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_reference_amb_count R Address: 0x078 Type: R Reset: 0x0 Description: [31:0] result__range_reference_amb_count: sensor count output value attributed to uncorrelated ambient signal on the Reference array. DocID024986 Rev 13 61/73 69 Device registers 6.2.42 VL6180 RESULT__RANGE_RETURN_CONV_TIME 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_return_conv_time R Address: 0x07C Type: R Reset: 0x0 Description: [31:0] 6.2.43 result__range_return_conv_time: sensor count output value attributed to signal on the Return array. RESULT__RANGE_REFERENCE_CONV_TIME 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 result__range_reference_conv_time R Address: 0x080 Type: R Reset: 0x0 Description: [31:0] 6.2.44 result__range_reference_conv_time: sensor count output value attributed to signal on the Reference array. READOUT__AVERAGING_SAMPLE_PERIOD 7 6 5 4 3 2 1 0 readout__averaging_sample_period R/W Address: 0x10A Type: R/W Reset: 0x30 Description: [7:0] 62/73 readout__averaging_sample_period: The internal readout averaging sample period can be adjusted from 0 to 255. Increasing the sampling period decreases noise but also reduces the effective max convergence time and increases power consumption: Effective max convergence time = max convergence time - readout averaging period (see Section 2.6: Range timing). Each unit sample period corresponds to around 64.5 µs additional processing time. The recommended setting is 48 which equates to around 4.3 ms. DocID024986 Rev 13 VL6180 FIRMWARE__BOOTUP 6 Address: 0x119 Type: R/W Reset: 0x1 5 4 3 2 1 0 firmware__bootup 7 RESERVED 6.2.45 Device registers R R/W Description: [0] 6.2.46 7 firmware__bootup: FW must set bit once initial boot has been completed. I2C_SLAVE__DEVICE_ADDRESS 6 5 4 3 RESERVED super_i2c_slave__device_address R R/W Address: 0x212 Type: R/W Reset: 0x29 [6:0] 2 1 0 super_i2c_slave__device_address: User programmable I2C address (7-bit). Device address can be re-designated after power-up. DocID024986 Rev 13 63/73 69 64/73 DocID024986 Rev 13 F E D C B  3267,215(7851 $3(5785( COSMETIC CIRCLE 2 “  VENT ONLY 3 1 Linear 0 Place Decimals 0 ±0.05 1 Place Decimals 0.0 ±0.05 2 Place Decimals 0.00 ±0.05 Angular ±0.25 degrees +0.05 Diameter Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated 2 3 Interpret drawing per BS8888, 3RD Angle Projection 127(6   ',0(16,2160$5.('7+86$5(72%(86(' $6,163(&7,21',0(16,216  “ Finish - Material -   /,*+7(0,66,21 $3(5785( 4 5 '(6&5,37,21 ,1,7,$/5(/($6( 6 5(9,6,216 $ 7 5(9 8570588 Part No. 18 AUG 14 Date 7 '$7(  Do Not Scale 8 VL6180V1NR/1 2 25:1 Scale Sheet VL6180 BABYBEAR NAH MODULE OUTLINE DRAWING 1 OF Title 8 SEE SHEET 2 STMicroelectronics Imaging Division Drawn All dimensions DAVID MCARDLE in mm AREA RESERVED FOR PART MARKING “ 6 F E D C B A 7 “ A 1 Outline drawing VL6180 Outline drawing Figure 29. Outline drawing - module - VL6180V1NR/1 - (page 1/2) DocID024986 Rev 13  1 Linear 0 Place Decimals 0 ±0.05 1 Place Decimals 0.0 ±0.05 2 Place Decimals 0.00 ±0.05 Angular ±0.25 degrees Diameter +0.05 Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated 3$'1R )81&7,21  *3,2  1&  1&  *3,2  6&/  6'$ E  1&  $9''B9&6(/  $966B9&6(/  $9''  1&  *1' F  2 3  4 Finish - Material -  &21($3(; PROXIMITY SENSOR VIEW CONE  “ PIN INDICATOR  ,1326  “ Interpret drawing per BS8888, 3RD Angle Projection TOLERANCE 0.03 APPLIES UNLESS OTHERWISE STATED  D &211(&7,217$%/( C   B  ,1326 3  2  A 1 5 6 6 8570588 Part No. 18 AUG 14 Date Do Not Scale  &21($3(; VL6180V1NR/1 8 VL6180 BABYBEAR NAH MODULE OUTLINE DRAWING Title STMicroelectronics Imaging Division 7 8 A 2 OF 2 Sheet 25:1 Scale REV PROXIMITY SENSOR ILLUMINATION CONE Drawn All dimensions DAVID MCARDLE in mm ƒ ,1326 7 F E D C B A VL6180 Outline drawing Figure 30. Outline drawing - module - VL6180V1NR/1 - (page 2/2) 65/73 69 Laser safety considerations 8 VL6180 Laser safety considerations The VL6180 contains a laser emitter and corresponding drive circuitry. The laser output is designed to remain within Class 1 laser safety limits under all reasonably foreseeable conditions including single faults in compliance with IEC 60825-1:2007. The laser output will remain within Class 1 limits as long as the STMicroelectronics recommended device settings are used and the operating conditions specified in this datasheet are respected. The laser output power must not be increased by any means and no optics should be used with the intention of focusing the laser beam. Figure 31. Class 1 laser product label 8.1 Compliance Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No.50, dated June 24, 2007. 66/73 DocID024986 Rev 13 VL6180 9 Ordering information Ordering information VL6180 is currently available in the following format. More detailed information is available on request. Table 26. Delivery format Order code VL6180V1NR/1 9.1 Description Tape and reel (5000 units in a reel). Traceability and identification Latest ROM revision can be identified as follows: 0x002 IDENTIFICATION__MODEL_REV_MINOR = 3 The minimum information required for traceability is the content of the following registers: 0x006 - IDENTIFICATION__DATE_HI 0x007 - IDENTIFICATION__DATE_LO 0x008 - IDENTIFICATION__TIME (16-bit) 0x00A - IDENTIFICATION__CODE With this information, the module can be uniquely identified. Preferably, all the IDENTIFICATION register contents should be provided for traceability. 9.2 Part marking Devices are marked on the underside as shown below. 1st line is the product ID. 2nd line is the manufacturing info. (circled in green), where the 1st four letters are the lot ID and the last 3 digits are the year + week number. Here: 338 is 2013 wk38. The final letter, circled in red, is the ROM revision (‘E’). Figure 32. Part marking DocID024986 Rev 13 67/73 69 Ordering information 9.3 VL6180 Packaging The VL6180 is available in tape and reel packaging as shown in Figure 33. All dimensions are in mm. Figure 33. Tape and reel packaging  3R   'R  3 %  (   )  %R ƒ   :   7 $ $ %  .R  3   ' 6(&7,21%%  $R 6(&7,21$$ %R .R $R     9.3.1   (   86(5)((' ',5(&7,21 ) 3R 3 3 'R 7 :               Package labeling The labeling on the packing carton is shown in Figure 34. The latest ROM revision is indicated alongside the order code (shaded green) and also after the product marking (shaded pink). Figure 34. Package labeling 9/9[15 9/9[15/&  1RWH[LQW\SHLVHTXDOWRRU 68/73 DocID024986 Rev 13 VL6180 9.4 Ordering information Storage The VL6180 is a MSL 3 package. Table 27. Storage conditions Floor Life (out of bag) at Factory Level 3 Ambient
VL6180V1NR/1 价格&库存

很抱歉,暂时无法提供与“VL6180V1NR/1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VL6180V1NR/1

    库存:0

    VL6180V1NR/1
      •  国内价格
      • 1+9.28530

      库存:3997

      VL6180V1NR/1
        •  国内价格
        • 1+19.90070
        • 10+17.16330
        • 30+15.45390
        • 100+12.69350
        • 500+11.90810
        • 1000+11.56160

        库存:0