0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VND7140AJ12TR

VND7140AJ12TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LSOP

  • 描述:

    IC PWR DRVR N-CHAN 1:1 PWRSSO12

  • 数据手册
  • 价格&库存
VND7140AJ12TR 数据手册
VND7140AJ12 Double channel high-side driver with CurrentSense analog feedback for automotive applications Datasheet - production data • PowerSSO-12 GAPG040515 1112CFT Features Max transient supply voltage VCC 40 V Operating voltage range VCC 4 V to 28 V Minimum cranking supply voltage (VCC decreasing) VUSD_Cranking 2.85 V Typ. on-state resistance (per Ch) RON 140 mΩ Current limitation (typ) ILIMH 12 A Standby current (max) ISTBY 0.5 µA • • • • September 2015 Applications • • Automotive qualified Extreme low voltage operation for deep cold cranking applications (compliant with LV124, revision 2013) General − Double channel smart high-side driver with CurrentSense analog feedback − Very low standby current − Compatible with 3 V and 5 V CMOS outputs CurrentSense diagnostic functions − Multiplexed analog feedback of: load current with high precision proportional current mirror − Overload and short to ground (power limitation) indication − Thermal shutdown indication − Off-state open-load detection − Output short to VCC detection − Sense enable/ disable Protections − Undervoltage shutdown − Overvoltage clamp − Load current limitation − Self limiting of fast thermal transients − Loss of ground and loss of VCC − Reverse battery with external components − Electrostatic discharge protection All types of automotive resistive, inductive and capacitive loads Specially intended for automotive signal lamps (up to R10W or LED Rear Combinations) Description The device is a double channel high-side driver manufactured using ST proprietary VIPower® technology and housed in PowerSSO-12 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS compatible interface, providing protection and diagnostics. The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown. A current sense delivers high precision proportional load current sense in addition to the detection of overload and short circuit to ground, short to VCC and off-state open-load. A sense enable pin allows off-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices. DocID027923 Rev 3 This is information on a product in full production. 1/43 www.st.com Contents VND7140AJ12 Contents 1 Block diagram and pin description ................................................ 5 2 Electrical specification.................................................................... 7 3 4 2.1 Absolute maximum ratings ................................................................ 7 2.2 Thermal data ..................................................................................... 8 2.3 Main electrical characteristics ........................................................... 8 2.4 Waveforms ...................................................................................... 18 2.5 Electrical characteristics curves ...................................................... 19 Protections..................................................................................... 23 3.1 Power limitation ............................................................................... 23 3.2 Thermal shutdown........................................................................... 23 3.3 Current limitation ............................................................................. 23 3.4 Negative voltage clamp ................................................................... 23 Application information ................................................................ 24 4.1 GND protection network against reverse battery............................. 24 4.1.1 Diode (DGND) in the ground line ..................................................... 25 4.2 Immunity against transient electrical disturbances .......................... 25 4.3 MCU I/Os protection........................................................................ 26 4.4 Behaviour during engine start transients ......................................... 26 4.5 CurrentSense - analog current sense ............................................. 28 4.5.1 Principle of CurrenSense signal generation ..................................... 29 4.5.2 Short to VCC and OFF-state open-load detection ........................... 31 5 Maximum demagnetization energy (VCC = 16 V) ........................ 33 6 Package and PCB thermal data .................................................... 34 6.1 7 PowerSSO-12 thermal data ............................................................ 34 Package information ..................................................................... 37 7.1 PowerSSO-12 package information ................................................ 37 7.2 PowerSSO-12 packing information ................................................. 38 7.3 PowerSSO-12 marking information ................................................. 40 8 Order codes ................................................................................... 41 9 Revision history ............................................................................ 42 2/43 DocID027923 Rev 3 VND7140AJ12 List of tables List of tables Table 1: Pin functions ................................................................................................................................. 5 Table 2: Suggested connections for unused and not connected pins ........................................................ 6 Table 3: Absolute maximum ratings ........................................................................................................... 7 Table 4: Thermal data ................................................................................................................................. 8 Table 5: Electrical characteristics during cranking ..................................................................................... 8 Table 6: Power section ............................................................................................................................... 9 Table 7: Switching....................................................................................................................................... 9 Table 8: Logic inputs ................................................................................................................................. 10 Table 9: Protections .................................................................................................................................. 11 Table 10: CurrentSense ............................................................................................................................ 11 Table 11: Truth table ................................................................................................................................. 17 Table 12: CurrentSense multiplexer addressing ...................................................................................... 18 Table 13: ISO 7637-2 - electrical transient conduction along supply line................................................. 26 Table 14: Test parameters, E-11 Start pulses .......................................................................................... 27 Table 15: Cranking operating mode ......................................................................................................... 28 Table 16: CurrentSense pin levels in off-state .......................................................................................... 31 Table 17: PCB properties ......................................................................................................................... 34 Table 18: Thermal parameters ................................................................................................................. 36 Table 19: PowerSSO-12 mechanical data................................................................................................ 38 Table 20: Reel dimensions ....................................................................................................................... 38 Table 21: PowerSSO-12 carrier tape dimensions .................................................................................... 39 Table 22: Device summary ....................................................................................................................... 41 Table 23: Document revision history ........................................................................................................ 42 DocID027923 Rev 3 3/43 List of figures VND7140AJ12 List of figures Figure 1: Block diagram .............................................................................................................................. 5 Figure 2: Configuration diagram (top view)................................................................................................. 6 Figure 3: Current and voltage conventions ................................................................................................. 7 Figure 4: IOUT/ISENSE versus IOUT....................................................................................................... 15 Figure 5: Current sense accuracy versus IOUT ....................................................................................... 15 Figure 6: Switching times and Pulse skew ............................................................................................... 16 Figure 7: CurrentSense timings ................................................................................................................ 16 Figure 8: TDSTKON.................................................................................................................................. 17 Figure 9: Standby mode activation ........................................................................................................... 18 Figure 10: Standby state diagram ............................................................................................................. 19 Figure 11: OFF-state output current ......................................................................................................... 19 Figure 12: Standby current ....................................................................................................................... 19 Figure 13: IGND(ON) vs. Tcase ............................................................................................................... 20 Figure 14: Logic Input high level voltage .................................................................................................. 20 Figure 15: Logic Input low level voltage.................................................................................................... 20 Figure 16: High level logic input current ................................................................................................... 20 Figure 17: Low level logic input current .................................................................................................... 20 Figure 18: Logic Input hysteresis voltage ................................................................................................. 20 Figure 19: Undervoltage shutdown ........................................................................................................... 21 Figure 20: On-state resistance vs. Tcase ................................................................................................. 21 Figure 21: On-state resistance vs. Vcc ..................................................................................................... 21 Figure 22: Turn-on voltage slope .............................................................................................................. 21 Figure 23: Turn-off voltage slope .............................................................................................................. 21 Figure 24: Won vs Tcase .......................................................................................................................... 21 Figure 25: Woff vs Tcase .......................................................................................................................... 22 Figure 26: ILIMH vs. Tcase ....................................................................................................................... 22 Figure 27: OFF-state open-load voltage detection threshold ................................................................... 22 Figure 28: Vsense clamp vs Tcase........................................................................................................... 22 Figure 29: Vsenseh vs Tcase ................................................................................................................... 22 Figure 30: Application diagram ................................................................................................................. 24 Figure 31: Simplified internal structure - GND network protection with Schottly diode ............................ 24 Figure 32: Simplified internal structure - GND network protection with MOSFET .................................... 25 Figure 33: Cranking profile ....................................................................................................................... 27 Figure 34: CurrentSense and diagnostic – block diagram........................................................................ 28 Figure 35: CurrentSense block diagram ................................................................................................... 29 Figure 36: Analogue HSD – open-load detection in off-state ................................................................... 30 Figure 37: Open-load / short to VCC condition ......................................................................................... 31 Figure 38: Maximum turn off current versus inductance .......................................................................... 33 Figure 39: PowerSSO-12 on two-layers PCB (2s0p to JEDEC JESD 51-5) ............................................ 34 Figure 40: PowerSSO-12 on four-layers PCB (2s2p to JEDEC JESD 51-7) ........................................... 34 Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on) ..................... 35 Figure 42: PowerSSO-12 thermal impedance junction ambient single pulse (one channel on) .............. 35 Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-12.......................................... 36 Figure 44: PowerSSO-12 package dimensions ........................................................................................ 37 Figure 45: PowerSSO-12 reel 13" ............................................................................................................ 38 Figure 46: PowerSSO-12 carrier tape ...................................................................................................... 39 Figure 47: PowerSSO-12 schematic drawing of leader and trailer tape .................................................. 40 Figure 48: PowerSSO-12 marking information ......................................................................................... 40 4/43 DocID027923 Rev 3 VND7140AJ12 1 Block diagram and pin description Block diagram and pin description Figure 1: Block diagram Table 1: Pin functions Name VCC OUTPUT0,1 GND Function Battery connection. Power output. Ground connection. Must be reverse battery protected by an external diode/resistor network. INPUT0,1 Voltage controlled input pins with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state. CurrentSense Multiplexed analog sense output pin; it delivers a current proportional to the load current. SEn Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the CurrentSense diagnostic pin. SEL Active high compatible with 3 V and 5 V CMOS outputs pin; it addresses the CurrentSense multiplexer. DocID027923 Rev 3 5/43 Block diagram and pin description VND7140AJ12 Figure 2: Configuration diagram (top view) Table 2: Suggested connections for unused and not connected pins Connection/pin CurrentSense Floating Not allowed To ground Through 1 kΩ resistor N.C. X (1) X Output Input SEn, SEL X X X Not allowed Through 15 kΩ resistor Through 15 kΩ resistor Notes: (1)X: 6/43 do not care. DocID027923 Rev 3 VND7140AJ12 2 Electrical specification Electrical specification Figure 3: Current and voltage conventions VFn = VOUTn - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability. Table 3: Absolute maximum ratings Symbol Parameter Value Unit VCC DC supply voltage 38 V -VCC Reverse DC supply voltage 0.3 V VCCPK Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; RL = 4 Ω) 40 V VCCJS Maximum jump start voltage for single pulse short circuit protection 28 V -IGND DC reverse ground pin current 200 mA IOUT OUTPUT0,1 DC output current Internally limited -IOUT Reverse DC output current IIN INPUT0,1 DC input current ISEn SEn DC input current ISEL SEL DC input current ISENSE 4 -1 to 10 CurrentSense pin DC output current (VGND = VCC and VSENSE < 0 V) 10 CurrentSense pin DC output current in reverse (VCC < 0V) -20 DocID027923 Rev 3 A mA mA 7/43 Electrical specification VND7140AJ12 Symbol Parameter Unit 10 mJ EMAX Maximum switching energy (single pulse) (TDEMAG = 0.4 ms; Tjstart = 150 °C) VESD Electrostatic discharge (JEDEC 22A-114F) • INPUT0,1 • CurrentSense • SEn, SEL • OUTPUT0,1 • VCC 4000 2000 4000 4000 4000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V Tj Tstg 2.2 Value Junction operating temperature -40 to 150 Storage temperature -55 to 150 °C Thermal data Table 4: Thermal data Symbol Parameter Typ. value Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) Rthj-amb Rthj-amb (1)(2) Unit 7.7 Thermal resistance junction-ambient (JEDEC JESD 51-5) (1)(3) 61 Thermal resistance junction-ambient (JEDEC JESD 51-7) (1)(2) 26.5 °C/W Notes: (1)One 2.3 channel ON. (2)Device mounted on four-layers 2s2p PCB. (3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace. Main electrical characteristics 7 V < VCC < 28 V; -40 °C < Tj < 150 °C, unless otherwise specified. All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified. Table 5: Electrical characteristics during cranking Symbol Parameter VUSD_Cranking Minimum cranking supply voltage (VCC decreasing) RON TTSD(2) Test conditions 2.85 On-state resistance (1) IOUT = 0.2 A; VCC = 2.85 V; VCC decreasing Shutdown temperature (VCC decreasing) VCC = 2.85 V Notes: (1)For each channel. (2)Parameter 8/43 Min. Typ. Max. Unit guaranteed by design and characterization; not subject to production test. DocID027923 Rev 3 V 1400 mΩ 140 °C VND7140AJ12 Electrical specification Table 6: Power section Symbol Parameter Test conditions Min. Typ. Max. Unit VCC Operating supply voltage 4 VUSD Undervoltage shutdown 2.85 VUSDReset Undervoltage shutdown reset 5 VUSDhyst Undervoltage shutdown hysteresis RON Vclamp ISTBY On-state resistance Clamp voltage IS(ON) IOUT = 1 A; Tj = 150 °C 280 mΩ IOUT = 1 A; VCC = 4 V; Tj = 25 °C 210 IS = 20 mA; Tj = -40 °C 38 IS = 20 mA; 25°C < Tj < 150°C 41 46 VF 52 V VCC = 13 V; VIN = VOUT = VSEn = 0 V; VSEL = 0 V; Tj = 25 °C 0.5 µA Supply current in standby at VCC = 13 V; VIN = VOUT = VSEn = 0 V; VSEL = 0 V; Tj = 85 °C (3) VCC = 13 V (2) 0.5 µA 3 µA Standby mode blanking time VCC = 13 V; VIN = VOUT = VSEL = 0 V; VSEn = 5 V to 0 V Supply current VCC = 13 V; VSEn = VSEL = 0 V; VIN0 = 5 V; VIN1 = 5 V; IOUT0 = 0 A; IOUT1 = 0 A Control stage current IGND(ON) consumption in ON state. All channels active. IL(off) V 140 VCC = 13 V; VIN = VOUT = VSEn = 0 V; VSEL = 0 V; Tj = 125 °C tD_STBY 28 0.3 IOUT = 1 A; Tj = 25 °C (1) 13 Off-state output current at VCC = 13 V(1) Output - VCC diode voltage(1) 60 300 550 5 VCC = 13 V; VSEn = 5 V; VSEL = 0 V; VIN0 = 5 V; VIN1 = 5 V; IOUT0 = 1 A; IOUT1 = 1 A VIN = VOUT = 0 V; VCC = 13 V; Tj = 25 °C 0 VIN = VOUT = 0 V; VCC = 13 V; Tj = 125 °C 0 µA 8 mA 12 mA 0.01 0.5 µA 3 IOUT = -1 A; Tj = 150 °C 0.7 V Notes: (1)For each channel. (2)PowerMOS (3)Parameter leakage included. specified by design; not subject to production test. Table 7: Switching VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified Symbol Parameter td(on)(1) Turn-on delay time at Tj = 25°C td(off)(1) Turn-off delay time at Tj = 25°C (dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25°C (dVOUT/dt)off(1) Turn-off voltage slope at Tj = 25°C DocID027923 Rev 3 Test conditions Min. Typ. RL = 13 Ω RL = 13 Ω Max. 10 70 120 10 40 100 0.1 0.27 0.7 0.1 0.35 0.7 Unit µs V/µs 9/43 Electrical specification VND7140AJ12 VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified Symbol Parameter Test conditions Min. Typ. Max. Unit WON Switching energy losses at turn-on (twon) RL = 13 Ω — 0.15 0.18 (2) mJ WOFF Switching energy losses at turn-off (twoff) RL = 13 Ω — 0.1 Differential pulse skew (tPHL - tPLH) RL = 13 Ω tSKEW (1) -100 -50 0.18(2) mJ 0 µs Max. Unit 0.9 V Notes: (1)See Figure 6: "Switching times and Pulse skew" (2)Parameter guaranteed by design and characterization; not subject to production test. Table 8: Logic inputs 7 V < VCC < 28 V; -40°C < Tj < 150°C Symbol Parameter Test conditions Min. Typ. INPUT0,1 characteristics VIL Input low level voltage IIL Low level input current VIH Input high level voltage IIH High level input current VI(hyst) Input hysteresis voltage VICL VIN = 0.9 V µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA Input clamp voltage 1 V 5.3 IIN = -1 mA µA 7.2 -0.7 V SEL characteristics (7 V < VCC < 18 V) VSELL Input low level voltage ISELL Low level input current VSELH Input high level voltage ISELH High level input current VSEL(hyst) Input hysteresis voltage VSELCL 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA Input clamp voltage V V 5.3 IIN = -1 mA µA 7.2 -0.7 V SEn characteristics (7 V < VCC < 18 V) VSEnL Input low level voltage ISEnL Low level input current VSEnH Input high level voltage ISEnH High level input current VSEn(hyst) Input hysteresis voltage VSEnCL 10/43 Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA IIN = -1 mA DocID027923 Rev 3 V µA V 5.3 7.2 -0.7 V VND7140AJ12 Electrical specification Table 9: Protections 7 V < VCC < 18 V; -40°C < Tj < 150°C Symbol Parameter Test conditions ILIMH DC short circuit current ILIML Short circuit current during thermal cycling TTSD Shutdown temperature TR Reset temperature(1) TRS Thermal reset of fault diagnostic indication THYST 4 V < VCC < 18 V Max. 8 12 16 (1) VSEn = 5 V Unit 16 VCC = 13 V; TR < Tj < TTSD A 4 150 175 TRS + 1 TRS + 7 200 °C 135 Thermal hysteresis (TTSD TR)(1) 7 Tj = -40 °C; VCC = 13 V Turn-off output voltage clamp Output voltage drop limitation VON Typ. VCC = 13 V ΔTJ_SD Dynamic temperature VDEMAG Min. 60 IOUT = 1 A; L = 6 mH; Tj = -40 °C VCC - 38 IOUT = 1 A; L = 6 mH; Tj = 25 °C to +150 °C VCC - 41 K V VCC - 46 VCC - 52 IOUT = 0.07 A 20 mV Notes: (1)Parameter guaranteed by design and characterization; not subject to production test. Table 10: CurrentSense 7 V < VCC < 18 V; -40°C < Tj < 150°C Symbol VSENSE_CL Parameter CurrentSense clamp voltage Test conditions Min. Typ. Max. Unit VSEn = 0 V; ISENSE = 1 mA -17 -12 VSEn = 0 V; ISENSE = -1 mA 7 V V CurrentSense characteristics KOL dKcal/Kcal(1)(2) KLED IOUT/ISENSE IOUT = 0.01 A; VSENSE = 0.5 V; VSEn = 5 V 295 Current sense ratio drift at calibration point IOUT = 0.01 A to 0.025 A; Ical = 17.5 mA; VSENSE = 0.5 V; VSEn = 5 V -30 IOUT/ISENSE IOUT = 0.025 A; VSENSE = 0.5 V; VSEn = 5 V 330 IOUT = 0.025 A; VSENSE = 0.5 V; VSEn = 5 V -25 IOUT/ISENSE IOUT = 0.07 A; VSENSE = 0.5 V; VSEn = 5 V 375 Current sense ratio drift IOUT = 0.07 A; VSENSE = 0.5 V; VSEn = 5 V -20 IOUT/ISENSE IOUT = 0.15 A; VSENSE = 4 V; VSEn = 5 V 360 dKLED/KLED(1)(2) Current sense ratio drift K0 dK0/K0(1)(2) K1 DocID027923 Rev 3 30 580 820 25 550 % 720 20 500 % % 670 11/43 Electrical specification VND7140AJ12 7 V < VCC < 18 V; -40°C < Tj < 150°C Symbol dK1/K1(1)(2) K2 dK2/K2(1)(2) K3 dK3/K3(1)(2) ISENSE0 VOUT_MSD(1) VSENSE_SAT ISENSE_SAT(1) 12/43 Parameter Test conditions Min. Typ. Max. Unit 15 Current sense ratio drift IOUT = 0.15 A; VSENSE = 4 V; VSEn = 5 V -15 IOUT/ISENSE IOUT = 0.7 A; VSENSE = 4 V; VSEn = 5 V 380 Current sense ratio drift IOUT = 0.7 A; VSENSE = 4 V; VSEn = 5 V -10 IOUT/ISENSE IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V 430 Current sense ratio drift IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V -5 5 % CurrentSense disabled: VSEn = 0 V 0 0.5 µA CurrentSense disabled: -1 V < VSENSE < 5 V(1) -0.5 0.5 µA CurrentSense enabled: VSEn = 5 V; All channel ON; IOUTX = 0 A; ChX diagnostic selected; • E.g. Ch0: VIN0 = 5 V; VIN1 = 5 V; CurrentSense leakage current VSEL = 0 V; IOUT0 = 0 A; IOUT1 = 1 A 0 2 µA CurrentSense enabled: VSEn = 5 V; ChX channel OFF; ChX diagnostic selected; • E.g. Ch0: VIN0 = 0 V; VIN1 = 5 V; VSEL = 0 V; IOUT1 = 1 A 0 2 µA 475 570 10 470 % % 520 Output Voltage for CurrentSense shutdown VSEn = 5 V; RSENSE = 2.7 kΩ • E.g. Ch0: VIN0 = 5 V; VSEL = 0 V; IOUT0 = 1 A CurrentSense saturation voltage VCC = 7 V; RSENSE = 2.7 kΩ; VSEn = 5 V; VIN0 = 5 V; VSEL = 0 V; IOUT0 = 1 A; Tj = 150°C 5 V CS saturation current VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0 = 0 V; VSEL1 = 0 V; Tj = 150°C 4 mA DocID027923 Rev 3 5 V VND7140AJ12 Electrical specification 7 V < VCC < 18 V; -40°C < Tj < 150°C Symbol IOUT_SAT(1) Parameter Output saturation current Test conditions Min. VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL = 0 V; Tj = 150°C 2.2 2 Typ. Max. Unit A Off-state diagnostic VOL Off-state open-load voltage detection threshold VSEn = 5 V; ChX OFF; ChX diagnostic selected • E.g: Ch0 VIN0 = 0 V; VSEL = 0 V IL(off2) Off-state output sink current VIN = 0 V; VOUT = VOL; Tj = -40 °C to 125 °C tDSTKON VSEn = 5 V; ChX ON to OFF transition ChX diagnostic selected Off-state diagnostic delay time • E.g: Ch0 from falling edge of INPUT VIN0 = 5 V to 0 V; (see Figure 8: "TDSTKON") VSEL = 0 V; IOUT0 = 0 A; VOUT = 4 V tD_OL_V Settling time for valid OFFstate open load diagnostic indication from rising edge of SEn tD_VOL VSEn = 5 V; ChX OFF ChX diagnostic selected Off-state diagnostic delay time • E.g: Ch0 from rising edge of VOUT VIN0 = 0 V; VSEL = 0 V; VOUT = 0 V to 4 V 3 4 V -15 µA 700 µs 60 µs 30 µs 6.6 V 30 mA 60 µs 20 µs -100 100 350 VIN0 = 0 V; VIN1 = 0 V; VSEL = 0 V; VOUT0 = 4 V; VSEn = 0 V to 5 V 5 Fault diagnostic feedback (see Table 11: "Truth table") VCC = 13 V; RSENSE = 1 kΩ • E.g: Ch0 in open load VIN0 = 0 V; VSEn = 5 V; VSEL = 0 V; IOUT0 = 0 A; VOUT = 4 V VSENSEH CurrentSense output voltage in fault condition ISENSEH CurrentSense output current in VCC = 13 V; VSENSE = 5 V fault condition 5 7 20 CurrentSense timings (current sense mode - see Figure 7: "CurrentSense timings")(3) tDSENSE1H Current sense settling time from rising edge of SEn VIN = 5 V; VSEn = 0 V to 5 V; RSENSE = 1 kΩ; RL = 13 Ω tDSENSE1L Current sense disable delay time from falling edge of SEn VIN = 5 V; VSEn = 5 V to 0 V; RSENSE = 1 kΩ; RL = 13 Ω DocID027923 Rev 3 5 13/43 Electrical specification VND7140AJ12 7 V < VCC < 18 V; -40°C < Tj < 150°C Symbol Parameter Test conditions Current sense settling time from rising edge of INPUT VIN = 0 V to 5 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 13 Ω ΔtDSENSE2H Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) VIN = 5 V; VSEn = 5 V; RSENSE = 1 kΩ; ISENSE = 90 % of ISENSEMAX; RL = 13 Ω tDSENSE2L Current sense turn-off delay time from falling edge of INPUT VIN = 5 V to 0 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 13 Ω tDSENSE2H Min. Typ. Max. Unit 100 250 µs 100 µs 250 µs tD_XtoY VIN0 = 5 V; VIN1 = 5 V; VSEn = 5 V; CurrentSense transition delay V SEL = 0 V to 5 V; from ChX to ChY IOUT0 = 0 A; IOUT1 = 1 A; RSENSE = 1 kΩ 20 µs tD_CStoVSENSEH VIN0 = 5 V; VIN1 = 0 V; CurrentSense transition delay VSEn = 5 V; from stable current sense on VSEL = 0 V to 5 V; ChX to VSENSEH on ChY IOUT0 = 1 A; VOUT1 = 4 V; RSENSE = 1 kΩ 60 µs 50 CurrentSense timings (Multiplexer transition times) (3) Notes: (1)Parameter (2)All (3)Transition 14/43 guaranteed by design and characterization; not subject to production test. values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified. delays are measured up to +/- 10% of final conditions. DocID027923 Rev 3 VND7140AJ12 Electrical specification Figure 4: IOUT/ISENSE versus IOUT 1000 800 Max K-factor Min Typ 600 400 200 0 0 1 2 IOUT[A] 3 GAPGCFT01217 Figure 5: Current sense accuracy versus IOUT 65 60 55 50 45 40 35 % 30 25 20 15 10 5 0 Current sense uncalibrated precision Current sense calibrated precision 0 1 2 3 IOUT[A] GAPGCFT01218 DocID027923 Rev 3 15/43 Electrical specification VND7140AJ12 Figure 6: Switching times and Pulse skew twoff twon VOUT Vcc 80% Vcc ON OFF dVOUT/dt dVOUT/dt 20% Vcc t INPUT td(off) td(on) tpHL tpLH t GAPGCFT00797 Figure 7: CurrentSense timings 16/43 DocID027923 Rev 3 VND7140AJ12 Electrical specification Figure 8: TDSTKON VINPU T VOU T VOU T > VOL CurrentSense TDSTKON GAPG0912131101CFT Table 11: Truth table Mode Standby Conditions All logic inputs low INX SEn SEL OUTX CurrentSense L L L Nominal load connected; Tj < 150°C Hi-Z L See (1) H See (1) Outputs configured for auto-restart H H See (1) Outputs configured for latch off L L See (1) H See (1) Output cycles with temperature hysteresis L See (1) Output latches off L L Hi-Z Hi-Z Re-start when VCC > VUSD + VUSDhyst (rising) H See (1) H See (1) TTSD or ΔTj > ΔTj_SD H Under-voltage VCC < VUSD (falling) X Off-state diagnostics Short to VCC L Open-load L Overload Negative output Inductive loads turnvoltage off Low quiescent current consumption L L Normal Comments See (1) See (1) H L X X See (1) See (1) External pull up Notes: (1)Refer to Table 12: "CurrentSense multiplexer addressing" DocID027923 Rev 3 17/43 Electrical specification VND7140AJ12 Table 12: CurrentSense multiplexer addressing SEn SEL 2.4 CurrentSense output MUX channel Normal mode Overload Off-state diag. L X Hi-Z H L Channel 0 diagnostic ISENSE = 1/K * IOUT0 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H H Channel 1 diagnostic ISENSE = 1/K * IOUT1 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z Waveforms Figure 9: Standby mode activation 18/43 Negative output DocID027923 Rev 3 VND7140AJ12 Electrical specification Figure 10: Standby state diagram Normal Operation INx = High OR SEn = High OR SEL = High INx = Low AND SEn = Low AND SEL = Low t > tD_STBY Stand-by Mode GAPG2911131147CFT 2.5 Electrical characteristics curves Figure 11: OFF-state output current Figure 12: Standby current ISTBY [ µA] Iloff [nA] 1 160 0.9 140 Vcc = 13V 0.8 120 0.7 Off State Vcc = 13V Vin = Vout = 0 100 80 0.6 0.5 0.4 60 0.3 40 0.2 20 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPGCFT01221 DocID027923 Rev 3 GAPG1806151345CF T 19/43 Electrical specification VND7140AJ12 Figure 13: IGND(ON) vs. Tcase Figure 14: Logic Input high level voltage ViH, VSELH, VSEnH [V] IGND(ON) [mA] 2 8.0 1.8 7.0 1.6 6.0 1.4 Vcc = 13V Iout0 = Iout1 = 1A 5.0 1.2 1 4.0 0.8 3.0 0.6 2.0 0.4 1.0 0.2 0 0 .0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPG0912131718CF T GAPG1806151349CF T Figure 15: Logic Input low level voltage VilL , VSELL, VSEnL [V] Figure 16: High level logic input current IiH, ISELH, ISEnH [ µA] 2 4 1.8 3.5 1.6 3 1.4 2.5 1.2 1 2 0.8 1.5 0.6 1 0.4 0.5 0.2 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPG0912131722CF T GAPG0912131720CF T Figure 17: Low level logic input current Figure 18: Logic Input hysteresis voltage Vi(hyst), VSEL(hyst), VSEn(hyst) [V] IiL, ISELL, ISEnL [µA] 1 4 0.9 3.5 0.8 3 0.7 2.5 0.6 2 0.5 0.4 1.5 0.3 1 0.2 0.5 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 GAPG0912131724CF T 20/43 -50 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] DocID027923 Rev 3 GAPG0912131726CF T VND7140AJ12 Electrical specification Figure 19: Undervoltage shutdown Figure 20: On-state resistance vs. Tcase VUSD [V] Ron [mOhm] 8 280 260 7 240 220 6 200 180 5 Iout = 1A Vcc = 13V 160 4 140 120 3 100 80 2 60 40 1 20 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 T [°C] 50 75 100 125 150 175 T [°C] GAPGCFT01231 GAPGCFT01230 Figure 21: On-state resistance vs. Vcc Figure 22: Turn-on voltage slope (dVout/dt)On [V/µs] Ron [mOhm] 280 1 260 0.9 240 220 0.8 T = 150 °C 200 Vcc = 13V Rl = 13Ω 0.7 T = 125 °C 180 0.6 160 0.5 140 120 T = 25 °C 0.4 100 80 0.3 T = -40 °C 60 0.2 40 0.1 20 0 0 0 5 10 15 20 25 30 35 40 -50 -25 0 25 Vcc [V] 50 75 100 125 150 175 T [°C] GAPGCFT01232 GAPGCFT01233 Figure 23: Turn-off voltage slope Figure 24: Won vs Tcase (dVout/dt)Off [V/ µs] Won [mJ] 1 1 0.9 0.9 0.8 0.8 Vcc = 13V Rl = 13Ω 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPGCFT01234 DocID027923 Rev 3 GAPGCFT01235 21/43 Electrical specification VND7140AJ12 Figure 25: Woff vs Tcase Figure 26: ILIMH vs. Tcase Ilimh [A] Woff [mJ] 1 20 0.9 0.8 15 0.7 0.6 10 0.5 Vcc = 13V 0.4 0.3 5 0.2 0.1 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 T [°C] T [°C] GAPG1806151353CF T GAPGCFT01236 Figure 27: OFF-state open-load voltage detection threshold Figure 28: Vsense clamp vs Tcase VSENSE_CL [V] VOL [V] 10 4 9 3.5 8 7 3 Iin = 1mA 6 2.5 5 4 2 3 1.5 2 1 1 0.5 0 Iin = -1mA -1 0 -50 -50 -25 0 25 50 75 100 125 150 -25 0 25 175 50 75 Figure 29: Vsenseh vs Tcase VSENSEH [V] 10 9 8 7 6 5 4 3 2 1 0 -25 0 25 50 75 100 125 150 175 T [°C] GAPG1011150943CFT 22/43 125 150 175 GAPGCFT01239 GAPGCFT01238 -50 100 T [°C] T [°C] DocID027923 Rev 3 VND7140AJ12 3 Protections 3.1 Power limitation Protections The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔTj through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔTj exceeds the safety level of ΔTj_SD. The output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled. The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue. 3.2 Thermal shutdown In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. The device switches on again as soon as its junction temperature drops to TR. 3.3 Current limitation The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region. 3.4 Negative voltage clamp In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the device. DocID027923 Rev 3 23/43 Application information 4 VND7140AJ12 Application information Figure 30: Application diagram 4.1 GND protection network against reverse battery Figure 31: Simplified internal structure - GND network protection with Schottly diode 24/43 DocID027923 Rev 3 VND7140AJ12 Application information Figure 32: Simplified internal structure - GND network protection with MOSFET 4.1.1 Diode (DGND) in the ground line A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (»600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network. To comply with LV124, E-11 "severe" start pulse, a Schottky diode (see Figure 31: "Simplified internal structure - GND network protection with Schottly diode") or N-channel MOSFET (see Figure 32: "Simplified internal structure - GND network protection with MOSFET") is recommended in order to ensure a lower ground network shift (≤ 350 mV). 4.2 Immunity against transient electrical disturbances The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010. The related function performance status classification is shown in Table 13: "ISO 7637-2 electrical transient conduction along supply line". Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through VCC and GND terminals. DocID027923 Rev 3 25/43 Application information VND7140AJ12 Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: “The function does not perform as designed during the test but returns automatically to normal operation after the test”. Table 13: ISO 7637-2 - electrical transient conduction along supply line Test Pulse 2011(E) Test pulse severity level with Status II functional performance status Level US(1) Minimum number of pulses or test time Burst cycle / pulse repetition time min Pulse duration and pulse generator internal impedance max 2ms, 10Ω 1 III -112V 500 pulses 0,5 s 2a III +55V 500 pulses 0,2 s 5s 50µs, 2Ω 3a IV -220V 1h 90 ms 100 ms 0.1µs, 50Ω 3b IV +150V 1h 90 ms 100 ms 0.1µs, 50Ω IV -7V 1 pulse 4 (2) 100ms, 0.01Ω Load dump according to ISO 16750-2:2010 Test B (3) 40V 5 pulse 1 min 400ms, 2Ω Notes: (1)U S 4.3 is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6. (2)Test pulse from ISO 7637-2:2004(E). (3)With 40 V external suppressor referred to ground (-40°C < Tj < 150°C). MCU I/Os protection If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os. Equation VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax Calculation example: For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V 7.5 kΩ ≤ Rprot ≤ 140 kΩ. Recommended values: Rprot = 15 kΩ 4.4 Behaviour during engine start transients The battery voltage drops every time an engine start occurs as well as in start&stop automotive systems. The device is designed to operate during engine start pulses without external components. In particular, the device achieves functional status A, for both E-11 start pulses, “normal” and “severe” as defined in Table 14: "Test parameters, E-11 Start pulses". 26/43 DocID027923 Rev 3 VND7140AJ12 Application information Functional status A is defined as follows: the DUT (device under test) must fulfill all functions during and after exposure to the test parameters. Table 14: Test parameters, E-11 Start pulses Parameter Test pulse “normal” Test pulse “severe” VB 11,0 V 11,0 V VT 4,5 V (0%, -4%) 3,2 V +0,2V VS 4,5 V (0%, -4%) 5,0 V (0%, -4%) VA 6,5 V (0%, -4%) 6,0 V (0%, -4%) VR 2V 2V tf ≤1 ms ≤1 ms t4 0 ms 19 ms t5 0 ms ≤1 ms t6 19 ms 329 ms t7 50 ms 50 ms t8 10 s 10 s tr 100 ms 100 ms f 2 Hz 2 Hz Break between two cycles 2s 2s Test cycles 10 10 For more details see standard norm “LV124 - Electric and Electronic Components in Motor Vehicles up to 3.5 t”. Figure 33: Cranking profile The extremely low VUSD_Cranking, minimum cranking supply voltage (VCC decreasing), specification of 2.85 V, much lower than the standard requirement, allows the device DocID027923 Rev 3 27/43 Application information VND7140AJ12 operating in all the applications where a ground network protection is required (see Section 4.1: "GND protection network against reverse battery"). Table 15: Cranking operating mode Operating range Normal mode 4 V to 28 V Cranking mode 2.85 V to 4 V 4.5 Voltage range Operating mode 18 V - 28 V All functions are performed as specified. Some deviations of the electrical characteristics. 7 V - 18 V All functions are performed as specified. All parameters in range. 4V-7V All functions are performed as specified. Some deviations of the electrical characteristics. 2.85 V - 4 V Device is operating (VCC decreasing). Device is protected. No diagnostic. Electrical parameters deviations. CurrentSense - analog current sense Diagnostic information on device and load status are provided by an analog output pin (CurrentSense) delivering a current mirror of channel output current Figure 34: CurrentSense and diagnostic – block diagram 28/43 DocID027923 Rev 3 VND7140AJ12 4.5.1 Application information Principle of CurrenSense signal generation Figure 35: CurrentSense block diagram Current monitor This output is capable of providing: • • Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K Diagnostics flag in fault conditions delivering fixed voltage VSENSEH The current delivered by the current sense circuit, ISENSE, can be easily converted to a voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load monitoring and abnormal condition detection. Normal operation (channel ON, no fault, SEn active) While device is operating in normal conditions (no fault intervention), VSENSE calculation can be done using simple equations Current provided by CurrentSense output: ISENSE = IOUT/K Voltage on RSENSE : VSENSE = RSENSE . ISENSE = RSENSE . IOUT/K Where : • VSENSE is voltage measurable on RSENSE resistor DocID027923 Rev 3 29/43 Application information • • • VND7140AJ12 ISENSE is current provided from CurrentSense pin in current output mode IOUT is current flowing through output K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between IOUT and ISENSE. Failure flag indication In case of power limitation/overtemperature, the fault is indicated by the CurrentSense pin which is switched to a “current limited” voltage source, VSENSEH. In any case, the current sourced by the CurrentSense in this condition is limited to ISENSEH. The typical behavior in case of overload or hard short circuit is shown in Waveforms section. Figure 36: Analogue HSD – open-load detection in off-state 30/43 DocID027923 Rev 3 VND7140AJ12 Application information Figure 37: Open-load / short to VCC condition Table 16: CurrentSense pin levels in off-state Condition Output CurrentSense SEn Hi-Z L VSENSEH H Hi-Z L VOUT > VOL Open-load VOUT < VOL 4.5.2 Short to VCC VOUT > VOL Nominal VOUT < VOL 0 H Hi-Z L VSENSEH H Hi-Z L 0 H Short to VCC and OFF-state open-load detection Short to VCC A short circuit between VCC and output is indicated by the relevant current sense pin set to VSENSEH during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit. OFF-state open-load with external circuitry Detection of an open-load in off mode requires an external pull-up resistor RPU connecting the output to a positive supply voltage VPU. It is preferable VPU to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected. DocID027923 Rev 3 31/43 Application information VND7140AJ12 RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following equation: Equation RPU < 32/43 VPU - 4 IL(off2)min @ 4V DocID027923 Rev 3 VND7140AJ12 Maximum demagnetization energy (VCC = 16 V) Figure 38: Maximum turn off current versus inductance Maximum turn off current versus inductance 10 1 I (A) 5 Maximum demagnetization energy (VCC = 16 V) Single Pulse Repetitive pulse Tjstart=100°C Repetitive pulse Tjstart=125°C 0.1 0.1 1 10 L (mH) 100 1000 GAPG2911131628CFT Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. DocID027923 Rev 3 33/43 Package and PCB thermal data VND7140AJ12 6 Package and PCB thermal data 6.1 PowerSSO-12 thermal data Figure 39: PowerSSO-12 on two-layers PCB (2s0p to JEDEC JESD 51-5) Figure 40: PowerSSO-12 on four-layers PCB (2s2p to JEDEC JESD 51-7) Table 17: PCB properties Dimension Board finish thickness 1.6 mm +/- 10% Board dimension 77 mm x 86 mm Board material FR4 Copper thickness (top and bottom layers) 0.070 mm Copper thickness (inner layers) 0.035 mm Thermal via separation 1.2 mm Thermal via diameter 0.3 mm +/- 0.08 mm Copper thickness on via 0.025 mm Footprint dimension (top layer) 2.2 mm x 3.9 mm Heatsink copper area dimension (bottom layer) 34/43 Value DocID027923 Rev 3 Footprint, 2 cm2 or 8 cm2 VND7140AJ12 Package and PCB thermal data Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on) RTHjamb 100 RTHjamb 90 80 70 60 50 40 30 6 4 2 0 10 8 GAPGCFT01148 Figure 42: PowerSSO-12 thermal impedance junction ambient single pulse (one channel on) ZTH (°C/W) 100 10 1 Cu=foot print Cu=2 cm2 Cu=8 cm2 4 Layer 0 .1 0.0001 0.001 0.01 0.1 1 10 100 1000 Time (s) GAPGCFT01149 Equation: pulse calculation formula ZTHδ = RTH · δ + ZTHtp (1 - δ) where δ = tP/T DocID027923 Rev 3 35/43 Package and PCB thermal data VND7140AJ12 Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-12 The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. Table 18: Thermal parameters Area/island 36/43 (cm2) Footprint 2 8 4L R1 = R7 (°C/W) 2.8 R2 = R8 (°C/W) 2.5 R3 (°C/W) 10 10 10 7 R4 (°C/W) 16 6 6 4 R5 (°C/W) 30 20 10 3 R6 (°C/W) 26 20 18 7 C1 = C7 (W.s/°C) 0.00012 C2 = C8 (W.s/°C) 0.005 C3 (W.s/°C) 0.07 C4 (W.s/°C) 0.2 0.3 0.3 0.4 C5 (W.s/°C) 0.4 1 1 4 C6 (W.s/°C) 3 5 7 18 DocID027923 Rev 3 VND7140AJ12 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 PowerSSO-12 package information Figure 44: PowerSSO-12 package dimensions DocID027923 Rev 3 37/43 Package information VND7140AJ12 Table 19: PowerSSO-12 mechanical data Millimeters Symbol Min. Typ. A 1.250 1.700 A1 0.000 0.100 A2 1.100 1.600 B 0.230 0.410 C 0.190 0.250 D 4.800 5.000 E 3.800 4.000 e 0.800 H 5.800 6.200 h 0.250 0.500 L 0.400 1.270 k 0° 8° X 2.200 2.800 Y 2.900 3.500 ddd 7.2 0.100 PowerSSO-12 packing information Figure 45: PowerSSO-12 reel 13" Table 20: Reel dimensions 38/43 Max. Description Value(1) Base quantity 2500 Bulk quantity 2500 A (max) 330 B (min) 1.5 DocID027923 Rev 3 VND7140AJ12 Package information Description Value(1) C (+0.5, -0.2) 13 D (min) 20.2 N 100 W1 (+2 /-0) 12.4 W2 (max) 18.4 Notes: (1)All dimensions are in mm. Figure 46: PowerSSO-12 carrier tape 0.30 ±0.05 P2 P0 2.0 ±0.1 4.0 ±0.1 X 1.55 ±0.05 1.75 ±0.1 B0 W F 1.6±0.1 R 0.5 Typical K1 Y Y X K0 P1 A0 REF 4.18 REF 0.6 SECTION X - X REF 0.5 SECTION Y - Y GAPG2204151242CFT Table 21: PowerSSO-12 carrier tape dimensions Description Value(1) A0 6.50 ± 0.1 B0 5.25 ± 0.1 K0 2.10 ± 0.1 K1 1.80 ± 0.1 F 5.50 ± 0.1 P1 8.00 ± 0.1 W 12.00 ± 0.3 Notes: (1)All dimensions are in mm. DocID027923 Rev 3 39/43 Package information VND7140AJ12 Figure 47: PowerSSO-12 schematic drawing of leader and trailer tape 7.3 PowerSSO-12 marking information Figure 48: PowerSSO-12 marking information Marking area 1 2 3 4 5 6 7 8 Special function digit &: Engineering sample : Commercial sample PowerSSO-12 TOP VIEW (not in scale) GAPG1203151332CFT Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials. Commercial Samples: Fully qualified parts from ST standard production with no usage restrictions 40/43 DocID027923 Rev 3 VND7140AJ12 8 Order codes Order codes Table 22: Device summary Order codes Package Tape and reel PowerSSO-12 DocID027923 Rev 3 VND7140AJ12TR 41/43 Revision history 9 VND7140AJ12 Revision history Table 23: Document revision history Date Revision 09-Jun-2015 1 Changes Initial release. Table 5: "Electrical characteristics during cranking": • 18-Jun-2015 2 TTSD: updated value Table 10: "CurrentSense": • KOL, KLED, K0, K1: updated values Updated Section 2.5: "Electrical characteristics curves" 14-Sep-2015 3 Updated Table 1: "Pin functions" Table 5: "Electrical characteristics during cranking": • 42/43 RON: updated test conditions DocID027923 Rev 3 VND7140AJ12 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID027923 Rev 3 43/43
VND7140AJ12TR 价格&库存

很抱歉,暂时无法提供与“VND7140AJ12TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VND7140AJ12TR
  •  国内价格 香港价格
  • 1+25.725811+3.10217
  • 10+23.1488710+2.79143
  • 25+21.8351625+2.63301
  • 100+18.60561100+2.24357
  • 250+17.46970250+2.10660
  • 500+15.28596500+1.84327
  • 1000+12.665551000+1.52729

库存:6042