0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SFH620AGB

SFH620AGB

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    SFH620AGB - Optocoupler, AC Input, 5300 VRMS - Vishay Siliconix

  • 数据手册
  • 价格&库存
SFH620AGB 数据手册
SFH620AA/ SFH620AGB Vishay Semiconductors Optocoupler, AC Input, 5300 VRMS Features • • • • • • • • • • • • • High Current Transfer Ratios at 5 mA: 50-600 % at 1.0 mA: 45 % typical (> 13) Low CTR Degradation Good CTR Linearity Depending on Forward Current Isolation Test Voltage, 5300 VRMS High Collector-emitter Voltage, VCEO = 70 V Low Saturation Voltage Fast Switching Times A/C 1 C/A 2 4C 3E i179062 e3 Pb Pb-free Temperature Stable Low Coupling Capacitance End-stackable, .100‘(2.54 mm) Spacing High Common-mode Interference Immunity (Unconnected Base) • SMD Option, See SFH620A/SFH6206 Data Sheet • Lead-free component • Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC Agency Approvals • UL1577, File No. E52744 System Code H or J, Double Protection • DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Available with Option 1 • CSA 93751 • BSI IEC60950 IEC60065 emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a plastic DIP-4 package. The coupling devices are designed for signal transmission between two electrically separated circuits. The couplers are end-stackable with 2.54 mm lead spacing. Creepage and clearance distances of > 8.0 mm are achieved with option 6. This version complies with IEC 60950 (DIN VDE 0805) for reinforced insulation up to an operation voltage of 400 VRMS or DC. Order Information Part SFH620AA SFH620AGB SFH620AA-X009 SFH620AGB-X007 SFH620AGB-X009 Remarks CTR 50 - 600 %, DIP-4 CTR 100 - 600 %, DIP-4 CTR 50 - 600 %, SMD-4 (option 9) CTR 100 - 600 %, SMD-4 (option 7) CTR 100 - 600 %, SMD-4 (option 9) Description The SFH620AA/ SFH620AGB features a high current transfer ratio, low coupling capacitance and high isolation voltage. These couplers have a GaAs infrared For additional information on the available options refer to Option Information. Document Number 83676 Rev. 1.4, 26-Oct-04 www.vishay.com 1 SFH620AA/ SFH620AGB Vishay Semiconductors Absolute Maximum Ratings VISHAY Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Parameter Reverse voltage DC Forward current Surge forward current Total power dissipation tp ≤ 10 µs Test condition Symbol VR IF IFSM Pdiss Value 6.0 ± 60 ± 2.5 100 Unit V mA A mW Output Parameter Collector-emitter voltage Emitter-collector voltage Collector current tp ≤ 1.0 ms Power dissipation Test condition Symbol VCE VEC IC IC Pdiss Value 70 7.0 50 100 150 Unit V V mA mA mW Coupler Parameter Isolation test voltage (between emitter and detector, refer to climate DIN 40046, part 2, Nov. 74) Creepage Clearance Insulation thickness between emitter and detector Comparative tracking index per DIN IEC 112/VDE0 303, part 1 Isolation resistance VIO = 500 V, Tamb = 25 °C VIO = 500 V, Tamb = 100 °C Storage temperature Ambient temperature Junction temperature Soldering temperature max. 10 s. Dip Soldering distance to seating plane ≥ 1.5 mm RIO RIO Tstg Tamb Tj Tsld Test condition Symbol VISO Value 5300 Unit VRMS ≥ 7.0 ≥ 7.0 0.4 175 ≥ 1012 ≥ 1011 - 55 to + 150 - 55 to + 100 100 260 mm mm mm Ω Ω °C °C °C °C www.vishay.com 2 Document Number 83676 Rev. 1.4, 26-Oct-04 VISHAY Electrical Characteristics SFH620AA/ SFH620AGB Vishay Semiconductors Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Parameter Forward voltage Capacitance Thermal resistance Test condition IF = ± 60 mA VR = 0 V, f = 1.0 MHz Symbol VF CO Rthja Min Typ. 1.25 50 750 Max 1.65 Unit V pF K/W Output Parameter Collector-emitter capacitance Thermal resistance Test condition VCE = 5.0 V, f = 1.0 MHz Symbol CCE Rthja Min Typ. 6.8 500 Max Unit pF K/W Coupler Parameter Collector-emitter saturation voltage Coupling capacitance Collector-emitter leakage current VCE = 10 V SFH620AA SFH620AGB Test condition IF = 10 mA, IC = 2.5 mA Part Symbol VCEsat CC ICEO ICEO Min Typ. 0.25 0.2 10 10 100 100 Max 0.4 Unit V pF nA nA Current Transfer Ratio Parameter IC/IF Test condition IF = ±5 mA, VCE = 5.0 V Part SFH620AA SFH620AGB Symbol Min Typ. 50-600 100-600 Max Unit % % IF = 5 mA RL = 1.9 Ω VCC = 5 V IC 47 Ω isfh620aa_0 Figure 1. Switching Times (Typical Values) Linear Operation (saturated) Document Number 83676 Rev. 1.4, 26-Oct-04 www.vishay.com 3 SFH620AA/ SFH620AGB Vishay Semiconductors Switching Characteristics Parameter Turn-on time Turn-off time Test condition IF = 5 mA, RL = 1.9 KΩ, VCC = 5 V IF = 5 mA, RL = 1.9 KΩ, VCC = 5 V Symbol ton toff Min Typ. 2.0 25 Max VISHAY Unit µs µs Typical Characteristics (Tamb = 25 °C unless otherwise specified) IF = 10 mA, VCE = 5.0 V isfh620a_01 isfh620a_03 Figure 2. Current Transfer Ratio (CTR) vs. Temperature Figure 4. Diode Forward Voltage (typ.) vs. Forward Current f = 1.0 MHz isfh620a_02 isfh620a_04 Figure 3. Output Characteristics (typ.) Collector Current vs. Collector-Emitter Voltage Figure 5. Transistor Capacitance (typ.) vs. Collector-Emitter Voltage www.vishay.com 4 Document Number 83676 Rev. 1.4, 26-Oct-04 VISHAY SFH620AA/ SFH620AGB Vishay Semiconductors Pulse cycle D = parameter, isfh620a_05 Figure 6. Permissible Pulse Handling Capability Forward Current vs. Pulse Width isfh620a_06 Figure 7. Permissible Power Dissipation vs. Ambient Temperature isfh620a_07 Figure 8. Permissible Diode Forward Current vs. Ambient Temperature Document Number 83676 Rev. 1.4, 26-Oct-04 www.vishay.com 5 SFH620AA/ SFH620AGB Vishay Semiconductors Package Dimensions in Inches (mm) VISHAY 2 1 pin one ID .255 (6.48) .268 (6.81) ISO Method A 3 4 .179 (4.55) .190 (4.83) .030 (.76) .045 (1.14) .031 (.79) typ. .050 (1.27) typ. .130 (3.30) .150 (3.81) 4° typ. .018 (.46) .022 (.56) 10° .020 (.508 ) .035 (.89) .050 (1.27) .100 (2.54) 3°–9° .300 (7.62) typ. .230 (5.84) .250 (6.35) .110 (2.79) .130 (3.30) i178027 .008 (.20) .012 (.30) Option 7 .300 (7.62) TYP . Option 9 .375 (9.53) .395 (10.03) .300 (7.62) ref. .028 (0.7) MIN. .180 (4.6) .160 (4.1) .0040 (.102) .0098 (.249) .315 (8.0) MIN. .331 (8.4) MIN. .406 (10.3) MAX. .012 (.30) typ. .020 (.51) .040 (1.02) .315 (8.00) min. 15° max. 18494 www.vishay.com 6 Document Number 83676 Rev. 1.4, 26-Oct-04 VISHAY SFH620AA/ SFH620AGB Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 83676 Rev. 1.4, 26-Oct-04 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
SFH620AGB 价格&库存

很抱歉,暂时无法提供与“SFH620AGB”相匹配的价格&库存,您可以联系我们找货

免费人工找货