0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SI5915BDC

SI5915BDC

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    SI5915BDC - Dual P-Channel 8-V (D-S) MOSFET - Vishay Siliconix

  • 数据手册
  • 价格&库存
SI5915BDC 数据手册
New Product Si5915BDC Vishay Siliconix Dual P-Channel 8-V (D-S) MOSFET PRODUCT SUMMARY VDS (V) rDS(on) (Ω) 0.070 at VGS = - 4.5 V -8 0.086 at VGS = - 2.5 V 0.145 at VGS = - 1.8 V ID (A) 4a 4a 3.6 5 nC Qg (Typ) FEATURES • TrenchFET® Power MOSFET • Low Thermal Resistance • 40 % Smaller Footprint than TSOP-6 RoHS COMPLIANT APPLICATIONS • Load Switch or Battery Switch for Portable Devices 1206-8 ChipFET® (Dual) 1 S1 D1 D1 D2 D2 G1 S2 G2 S1 S2 Marking Code DG XXX Lot Traceability and Date Code G1 G2 Part # Code Bottom View Ordering Information: Si5915BDC-T1-E3 (Lead (Pb)-free) D1 P-Channel MOSFET D2 P-Channel MOSFET ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted Parameter Drain-Source Voltage Gate-Source Voltage TC = 25 °C TC = 70 °C TA = 25 °C TA = 70 °C TC = 25 °C TA = 25 °C TC = 25 °C TC = 70 °C TA = 25 °C TA = 70 °C d, e Symbol VDS VGS Continuous Drain Current (TJ = 150 °C) ID Limit -8 ±8 - 4a - 4a - 4a, b, c - 3.2b, c - 10 - 4a - 1.9b, c 3.1 2 1.7b, c 1.1b, c - 55 to 150 260 Unit V A Pulsed Drain Current Continuous Source-Drain Diode Current IDM IS Maximum Power Dissipation PD W Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) TJ, Tstg °C THERMAL RESISTANCE RATINGS Parameter Maximum Junction-to-Ambientb, f Maximum Junction-to-Foot (Drain) t ≤ 5 sec Steady State Symbol RthJA RthJF Typical 62 33 Maximum 74 40 Unit °C/W Notes: a. Package limited. b. Surface Mounted on 1" x 1" FR4 Board. c. t = 5 sec. d. See Solder Profile (http://www.vishay.com/ppg?73257). The 1206-8 ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection. e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components. f. Maximum under Steady State conditions is 120 °C/W. Document Number: 70484 S-71325–Rev. A, 02-Jul-07 www.vishay.com 1 New Product Si5915BDC Vishay Siliconix SPECIFICATIONS TJ = 25 °C, unless otherwise noted Parameter Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Currenta Drain-Source On-State Resistancea Forward Transconductance Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off DelayTime Fall Time Turn-On Delay Time Rise Time Turn-Off DelayTime Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulse Diode Forward Current Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Reverse Recovery Fall Time Reverse Recovery Rise Time IS ISM VSD trr Qrr ta tb IF = - 3.3 A, di/dt = 100 A/µs, TJ = 25 °C IS = - 3.3 A, VGS = 0 V - 0.8 60 39 20 40 TC = 25 °C -4 - 10 - 1.2 90 60 ns A V nC VDS ΔVDS/TJ ΔVGS(th)/TJ VGS(th) IGSS IDSS ID(on) rDS(on) gfs Ciss Coss Crss Qg Qgs Qgd Rg td(on) tr td(off) tf td(on) tr td(off) tf VDD = - 4 V, RL = 1.2 Ω ID ≅ - 3.3 A, VGEN = - 8 V, Rg = 1 Ω VDD = - 4 V, RL = 1.2 Ω ID ≅ - 3.3 A, VGEN = - 4.5 V, Rg = 1 Ω f = 1 MHz VDS = - 4 V, VGS = - 8 V, ID = - 4.1 A VDS = - 4 V, VGS = - 4.5 V, ID = - 4.1 A VDS = - 4 V, VGS = 0 V, f = 1 MHz VGS = 0 V, ID = - 250 µA ID = - 250 µA VDS = VGS, ID = - 250 µA VDS = 0 V, VGS = ± 8 V VDS = - 8 V, VGS = 0 V VDS = - 8 V, VGS = 0 V, TJ = 85 °C VDS ≤ 4 V, VGS = - 4.5 V VGS = - 4.5 V, ID = - 3.3 A VGS = - 2.5 V, ID = - 2.7 A VGS = - 1.8 V, ID = - 0.7 A VDS = - 4 V, ID = - 3.3 A - 10 0.058 0.086 0.120 9 420 160 100 9 5 0.7 0.7 7 12 30 20 7 5 12 20 10 20 45 30 15 10 20 30 15 ns Ω 14 7.5 nC pF 0.070 0.104 0.145 ms Ω - 0.45 -8 - 8.3 2.1 - 1.0 ± 100 -1 - 10 V mV/°C V nA µA A Symbol Test Conditions Min Typ Max Unit Notes: a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %. b. Guaranteed by design, not subject to production testing. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. www.vishay.com 2 Document Number: 70484 S-71325–Rev. A, 02-Jul-07 New Product Si5915BDC Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 10 VGS = 5 thru 2.5 V 8 I D - Drain Current (A) 5 4 I D - Drain Current (A) 2V 6 3 4 1.5 V 2 1V 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 TC = 125 °C 1 TC = 25 °C TC = - 55 °C 0.5 1.0 1.5 2.0 0 0.0 VDS - Drain-to-Source Voltage (V) VGS - Gate-to-Source Voltage (V) Output Characteristics 0.30 800 Transfer Characteristics Curves vs. Temp 0.25 r DS(on) - On-Resistance (Ω) VGS = 1.8 V 0.20 C - Capacitance (pF) 600 Ciss 400 0.15 VGS = 2.5 V 0.10 VGS = 4.5 V 0.05 Coss 200 Crss 0 0.00 0 2 4 6 8 10 0 2 4 6 8 I D - Drain Current (A) VDS - Drain-to-Source Voltage (V) On-Resistance vs. Drain Current 8 ID = 4.1 A VGS - Gate-to-Source Voltage (V) 1.6 r DS(on) - On-Resistance 6 VDS = 4 V 4 VDS = 6.4 V 1.8 ID = 3.3 A Capacitance VGS = 1.8 V 1.4 (Normalized) 1.2 VGS = 2.5 V, 4.5 V 1.0 2 0.8 0 0 2 4 6 8 10 0.6 - 50 - 25 0 25 50 75 100 125 150 Qg - Total Gate Charge (nC) TJ - Junction Temperature (°C) Qg - Gate Charge On-Resistance vs. Junction Temperature Document Number: 70484 S-71325–Rev. A, 02-Jul-07 www.vishay.com 3 New Product Si5915BDC Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 10 0.30 ID = 3.3 A 0.25 r DS(on) - On-Resistance (Ω) I S - Source Current (A) 0.20 TJ = 150 °C 0.15 TA = 125 °C 0.10 TJ = 25 °C 0.05 TA = 25 °C 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.00 0 1 2 3 4 5 VSD - Source-to-Drain Voltage (V) VGS - Gate-to-Source Voltage (V) Source-Drain Diode Forward Voltage 0.9 50 On-Resistance vs. Gate-to-Source Voltage 0.8 40 ID = 250 µA Power (W) 30 V GS(th) (V) 0.7 0.6 20 0.5 10 0.4 - 50 0 - 25 0 25 50 75 100 125 150 0.0001 0.001 0.01 0.1 1 10 100 1000 TJ - Temperature (°C) Time (sec) Threshold Voltage 10 *Limited by rDS(on) Single Pulse Power 1 ms I D - Drain Current (A) 10 ms 100 ms 1s 10 s dc 0.1 1 TA = 25 °C Single Pulse 0.01 0.01 *VGS 0.1 BVDSS Limited 1 10 VDS - Drain-to-Source Voltage (V) minimum VGS at which rDS(on) is specified Safe Operating Area www.vishay.com 4 Document Number: 70484 S-71325–Rev. A, 02-Jul-07 New Product Si5915BDC Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 6 4 5 Power Dissipation (W) I D - Drain Current (A) Package Limited 4 3 3 2 2 1 1 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 TC - Case Temperature (°C) TC - Case Temperature (°C) Current Derating* Power Derating *The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit. Document Number: 70484 S-71325–Rev. A, 02-Jul-07 www.vishay.com 5 Si5915BDC Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 0.1 0.1 0.05 0.02 0.01 10-4 Single Pulse 10-3 10-2 10-1 1 Square Wave Pulse Duration (sec) 10 Notes: PDM t1 t2 1. Duty Cycle, D = t1 t2 2. Per Unit Base = RthJA = 95 °C/W 3. TJM - TA = PDMZthJA(t) 4. Surface Mounted 100 1000 Normalized Thermal Transient Impedance, Junction-to-Ambient 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 0.1 0.1 10-4 10-3 0.05 0.02 Single Pulse 10-2 10-1 Square Wave Pulse Duration (sec) 1 10 Normalized Thermal Transient Impedance, Junction-to-Foot Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70484. www.vishay.com 6 Document Number: 70484 S-71325–Rev. A, 02-Jul-07 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
SI5915BDC 价格&库存

很抱歉,暂时无法提供与“SI5915BDC”相匹配的价格&库存,您可以联系我们找货

免费人工找货