0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMS7002M

LMS7002M

  • 厂商:

    LIMEMICROSYSTEMS

  • 封装:

    SMD261

  • 描述:

    IC RF TxRx + MCU Cellular CDMA, GSM, HSPA, LTE, TD-SCDMA, WCDMA 100kHz ~ 3.8GHz 261-SMD Module

  • 数据手册
  • 价格&库存
LMS7002M 数据手册
LMS7002M FPRF MIMO Transceiver IC With Integrated Microcontroller • SUMMARY FEATURES • • • • • • • • • • • • • • • Field Programmable Radio Frequency (FPRF) chip Dual transceiver ideal for MIMO User programmable on the fly Continuous coverage of the 100 kHz - 3.8 GHz RF frequency range Digital interface to baseband with on chip integrated 12 bit D/A and A/D converters Programmable RF modulation bandwidth up to 160 MHz using analog interface Programmable RF modulation bandwidth up to 96 MHz using digital interface Supports both TDD and full duplex FDD LimeLight™ digital IQ interface – JEDEC JESD207 TDD and FDD compliant Transceiver Signal Processor block employs advanced techniques for enhanced performance Single chip supports 2x2 MIMO. Multiple chips can be used to implement higher order MIMO On-chip RF calibration circuitry Fully differential baseband signals, analog IQ Few external components Low voltage operation, 1.25, 1.4 and 1.8V. Integrated LDOs to run on a single 1.8V supply voltage • • • • • • • • • On chip integrated microcontroller for simplified calibration, tuning and control Integrated clock PLL for flexible clock generation and distribution User definable analog and digital filters for customised filtering RF and base band Received Signal Strength Indicator (RSSI) On chip integrated temperature sensor 261 pin aQFN 11.5x11.5 mm package Power down option Serial port interface Low power consumption, typical 880mW in full 2x2 MIMO mode (550mW in SISO mode) using external LDOs Multiple bypass modes for greater flexibility APPLICATIONS • • • • • • • • Broad band wireless communications GSM, CDMA2000, TD-SCDMA, WCDMA/HSPA, LTE IEEE® xxx.xxx radios WiFi operating in the Whitespace frequencies Software Defined Radio (SDR) Cognitive Radio Unmanned Aerial Vehicle (UAV) Other Whitespace applications Figure 1: Functional block diagram Document version: 3.1r00 LMS7002M – FPRF MIMO Transceiver IC The LMS7002M provides an RF loop back option which enables the TX RF signal to be fed back into the baseband for calibration and test purposes. The RF loop back signal is amplified by the loopback amplifier in order to increase the dynamic range of the loop. GENERAL DESCRIPTION LMS7002M is a fully integrated, multi-band, multi-standard RF transceiver that is highly programmable. It combines Low Noise Amplifiers (RXLNA), TX Power Amplifier Drivers (TXPAD) receiver/transmitter (RX/TX) mixers, RX/TX filters, synthesizers, RX gain control, TX power control, the analog-to-digital and digital-toanalog convertors (ADC/DACs) and has been designed to require very few external components. The top level architecture of LMS7002M transceiver is shown in Figure 1. The chip contains two transmit and two receive chains for achieving a Multiple In Multiple Out (MIMO) platform. Both transmitters share one PLL and both receivers share another. Transmit and receive chains are all implemented as zero Intermediate Frequency (zero IF or ZIF) architectures providing up to 160MHz RF modulation bandwidths (equivalent to 80MHz baseband IQ bandwidth). For the purpose of simplifying this document, the explanation for the functionality and performance of the chip is based on one transmit and one receive circuitry, given that the other two work in exact the same manner. On the transmit side, In-phase and Quadrature IQ DAC data samples, from the base band processor, are provided to the LMS7002M via the LimeLight™ digital IQ interface. LimeLight™ implements the JESD207 standard IQ interface protocol as well as de facto IQ multiplexed standard. JESD207 is Double Data Rate (DDR) by definition. In IQ multiplexed mode LimeLight™ also supports Single Data Rate (SDR). The IQ samples are then pre-processed by the digital Transceiver Signal Processor (TSP) for minimum analog / RF distortion and applied to the on chip transmit DACs. The DACs generate analog IQ signals which are provided for further processing to the analog/RF section. Transmit low pass filters (TXLPF) remove the images generated by zero hold effect of the DACs, as well as the DAC out-of-band noise. The analog IQ signals are then mixed with the transmit PLL (TXPLL) output to produce a modulated RF signal. This RF signal is then amplified by one of two separate / selectable power amplifier drivers and two opendrain differential outputs are provided as RF output for each MIMO path. There are two additional loop back options implemented, one is an analog base band (BB) loop back and another is a digital loop back (DLB) as shown in Figure 1. The analog loop back is intended for testing while the DLB can be used to verify the LMS7002M connectivity to base band, FPGA, DSP or any other digital circuitry. On the receive side, three separate inputs are provided each with a dedicated LNA optimised for narrow or wide band operation. Each port RF signal is first amplified by a programmable low noise amplifier (RXLNA). The RF signal is then mixed with the receive PLL (RXPLL) output to directly down convert to baseband. AGC steps can be implemented by a BB trans-impedance amplifier (RXTIA) prior to the programmable bandwidth low pass channel select / anti alias filters (RXLPF). The received IQ signal is further amplified by a programmable gain amplifier RXPGA. DC offset is applied at the input of RXTIA to prevent saturation and to preserve the receive ADC’s dynamic range. The resulting analog receive IQ signals are converted into the digital domain with on-chip receive ADCs. Following the ADCs, the signal conditioning is performed by the digital Transceiver Signal Processor (TSP) and the resulting signals are then provided to the BB via the LimeLight™ digital IQ interface. The analog receive signals can also be provided off chip at RXOUTI and RXOUTQ pins by closing the RXOUT switch. In this case it is possible to power down the on chip ADCs/TSP and use external parts which can be very useful for more resource demanding applications or where higher signal resolution is required. A similar option is also available on the TX side where the analog signal can be processed by external components. The on chip DACs/TSP can be powered down and analog inputs can be provided at TXINI and TXINQ pins. There is on chip integrated temperature sensor which base band modem can read via the SPI and trigger re-calibration of the chip if significant chip/ambient temperature change is observed. Parameter Min. Typ. Max. Unit Operating Temperature Range -40 25 85 °C Storage Temperature Range -65 30 0.1 25 125 3800 3800 48 96 160 24.8 °C Operating Frequency Range RF Modulation Bandwidth Frequency Resolution MHz MHz Hz Condition/Comment Extended by TSP NCOs Through digital interface (MIMO) Through digital interface (SISO) Through analog interface Using 52 MHz PLL reference clock Analog Supply Voltage, High (VDDAH) Analog Supply Voltage, Medium (VDDAM) Analog Supply Voltage, Low (VDDAL) 1.71 1.8 1.89 V 1.33 1.4 1.47 V 1.2 1.25 1.3 V Used for TXPAD Generated using integrated low-dropout regulators (LDOs) Generated using integrated LDOs Digital Core Supply Voltage 1.1 1.2 1.3 V Generated using integrated LDOs Digital Peripheral (IO) Supply Voltage 1.7 2.5 3.6 V TX Supply Current 350 mA RX Supply Current 420 mA At -7 dBm output power, 2x2 MIMO, including the DACs and TSP For 2x2 MIMO, including the ADCs and TSP dBm Continuous Wave Maximum RF Output Power PLL Reference Clock 0 10 52 MHz Reference and Other Spurs Level -100 dBm Measured at TX RF output or RX RF input IQ Imbalance Image Interpolation/Decimation digital filters stop band suppression -70 dBc After calibration 108 dB Table 1: General specifications LMS7002M 2 LMS7002M – FPRF MIMO Transceiver IC Parameter RF channel frequency range Min. 30 0.1 Typ. Max. 3800 3800 Unit Condition/Comment MHz 400 Ohms Extended by TSP NCOs Differential, programmable 40 Ohms Differential, for maximum OIP3 Transmit Differential I and Q Input Current 625 uA Differential Common mode Transmit Gain Control Range 70 dB TXTSP and TXPAD combined Transmit Gain Control Step 1 dB TX Local Oscillator (LO) Leakage -60 Transmit Analog Input Impedance Transmit Load Impedance at the Output Pins dBc Calibrated RXLNAL Frequency Range 0.1 2000 MHz Narrow band tunable, set by external matching circuit RXLNAH Frequency Range 30 3800 MHz Narrow band tunable, set by external matching circuit RXLNAW Frequency Range 30 3800 MHz Broad band tunable, set by external matching circuit at 0.95GHz at 2GHz at 3.8GHz Total receiver gain ~50 dB or more, Noise Figure fTXNCO. The same spectrum of Figure 51.b drives digital RSSI block. In fact RSSI measures the level of two tone signal (3) and (3a) where (3a) is due to RX IQ imbalance. However tones are correlated. In other words, minimizing (3), tone (3a) will go down for the same amount. RSSI output will be composite power level of those two tones and is valid measure. If we minimize RSSI output we are minimizing TX IQ imbalance disregarding the presence of two (correlated) tones. Algorithm is then simple. First alter on chip analog IQ phase correction parameters if available to minimize RSSI output. After that alter TX Gain correction and TX Phase correction parameters of TXTSP digital block to further minimise RSSI output. Resulting spectrum is shown in Figure 51.c. The test setup described above uses minimum filtering to clearly show unwanted tones we need to cancel. The spectrum of Figure 50 shows RX output while LMS7002M works in RF loopback mode. Tones and the reasons for their existence are as below. LMS7002M fTXLO - fRXLO 18 LMS7002M – FPRF MIMO Transceiver IC (2) Decimation filter TDD/FDD MODE ENHANCMENT OPTION (2a) In both TDD and FDD mode the LMS7002M is capable of running from a single PLL, allowing one on chip PLL to be powered down. In TDD mode, a single PLL output drives both TX and RX mixers. In FDD mode, a single PLL drives both mixers as well, while UL/DL frequency separation is implemented in the digital domain using the NCO and complex mixer parts of the TSP block. The maximum frequency shift range which can be achieved in the digital domain is as below: (3) (1) (3a) (4) (1a) (a) DC fTXLO  fPLL  0.6 * fDAC / 2 fRXLO  fPLL  0.6 * fADC / 2 (2) Decimation filter , where fTXLO and fRXLO are effective TX and RX LO frequencies, fPLL is the shared PLL output frequency while fDAC and fADC are data converter sampling rates. Note that the Nyquist frequency of the NCOs is scaled by a factor of 0.6 to make space for TXLPF and RXLPF to operate. (2a) (3) (1) (3a) Running the LMS7002M in single PLL mode has the following advantages: (4) (1a) (b) • DC • (2) Decimation filter • (2a) • (3) (1) Current consumption is significantly reduced since one PLL is powered down. Fast TXRX switching time in TDD mode is achievable since the PLL does not need to relock. There is no TXVCORXVCO polling issue since a single PLL is used. Using the digital domain for LO frequency shifts enables implementation of very fast frequency hopping systems. (3a) (4) IMPROVING FRACTIONAL-N CLOSE TO INTEGER RF SYNTHESISER SPURS PERFORMANCE DC Due to PFD/CHP ‘dead zone’ i.e. nonlinearity around zero, fractional-N synthesisers are prone to generate unwanted spurs when set close to integer frequency. These spurs are unfortunately in the loop pass band and cannot be filtered. One of the solutions is to set constant charge pump current offset to shift PFD/CHP away from zero i.e. operating them into more linear region. However, this CHP offset value depends on how far PLL output frequency is away from the nearest integer frequency and has to be tuned accordingly. (1a) (c) Figure 51: TX IQ imbalance calibration. Spectral tones: (a) before digital filtering (b) after digital filtering (c) after calibration Digital blocks can help this case. Set charge pump offset current to some middle value and keep it constant disregarding how far close to integer frequency is away from integer frequency. Offset PLL wanted frequency away enough from integer frequency in order not to have close to integer spurs issue. This introduces PLL output frequency error which can be corrected by corresponding NCO available in the digital TSP block. LMS7002M 19 LMS7002M – FPRF MIMO Transceiver IC PACKAGE OUTLINE AND PIN DESCRIPTION 0.666 mm 1.332 mm 11.500 mm 4 260 B2 B C 1 C1 258 C3 11 G1 1.332 mm 16 J1 23 N1 9 J5 14 K4 11.500 mm 240 F12 234 F14 AC 204 F24 198 D28 199 E27 200 F26 194 D30 196 F28 18 M6 178 M30 171 R29 71 AK6 70 AL5 69 AM4 77 AJ9 76 AK8 75 AL7 74 AM6 73 AN5 4 5 81 AL9 79 AN7 6 82 AK10 80 AM8 90 AJ13 88 AK12 86 AL11 85 AM10 84 AN9 78 AP6 AP 83 AJ11 94 AJ15 98 AJ19 93 AK14 100 AK20 92 AL13 97 AL19 91 AM12 89 AN11 102 AJ21 96 AM18 8 105 AK22 101 AL21 99 AM20 95 AN17 118 AJ27 113 AK26 106 AL23 103 AM22 119 AK28 110 AM26 108 AN25 111 AN27 109 AP26 AA Y 152 AB34 AD AE 143 AF34 AH 134 AJ33 129 AK32 AJ 133 AK34 AK 127 AM34 AM 128 AL33 AL AN 123 AP32 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 6.989 mm 10.323 mm 10.989 mm Figure 52: 261L aQFN package (top view) 20 AF AG 122 AN31 117 AP30 AB AC 135 AH32 125 AL31 116 AN29 154 AA33 139 AG33 121 AM30 V W 144 AE33 130 AJ31 120 AL29 162 V34 159 W33 140 AF32 126 AK30 115 AM28 T 149 AC33 136 AG31 124 AJ29 114 AL27 107 AM24 104 AN23 87 AP10 7 112 AJ25 U 146 AD32 137 AF30 72 AJ7 163 U33 150 AB32 131 AH30 64 AJ5 R 156 Y32 141 AE31 P 168 R33 161 V32 142 AD30 132 AG29 N 170 P34 166 T32 147 AC31 138 AE29 L 174 N33 153 AA31 K M 172 P32 148 AB30 59 AF6 65 AK4 3 177 L33 158 W31 145 AC29 J 179 K34 176 M32 155 Y30 61 AH4 68 AN3 2 181 K32 160 V30 151 AA29 H 182 J33 164 U31 157 W29 53 AD6 F G 169 R31 165 U29 60 AG5 66 AL3 AN E 185 H32 167 T30 261L aQFN 11.5 x11.5 mm D 188 F32 180 L31 54 AE5 62 AJ3 67 AM2 192 D32 187 G31 183 K30 46 AB6 55 AF4 63 AK2 C 191 E31 190 F30 40 Y6 50 AD4 57 AH2 58 AJ1 AL LMS7002M 193 C31 195 E29 48 AC5 56 AG3 AG 1 208 F22 202 D26 203 E25 42 AA5 51 AE3 52 AF2 AM 214 F20 206 D24 207 E23 197 C29 10 K6 35 V6 44 AB4 47 AD2 49 AE1 AK 220 F18 210 D22 212 E21 201 C27 184 J31 28 T6 38 Y4 45 AC3 AH 228 F16 218 E19 205 C25 186 H30 30 U5 41 AA3 43 AB2 AF 216 D20 225 E17 B 209 C23 26 R5 34 V4 37 Y2 39 AA1 AD 221 D18 213 C21 189 G29 36 W3 AB 227 D16 230 E15 219 C19 A 211 B22 175 N31 31 U3 33 V2 Y AJ 248 F10 232 D14 237 E13 224 C17 217 B20 173 P30 29 T4 32 U1 W AE 253 F8 238 D12 243 E11 229 C15 215 A21 222 B18 24 P4 T AA 244 D10 249 E9 235 C13 226 B16 15 L5 20 M4 27 R3 V 239 C11 223 A17 231 B14 22 N3 R U 245 C9 236 B12 6 H6 25 P2 P 0.666 mm 13 J3 21 M2 M N 5 G5 233 A13 241 B10 250 D8 259 F6 8 G3 19 L3 L 251 C7 254 D6 4 F4 17 K2 K 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 242 A9 257 E5 12 H2 H 8 246 B8 261 D4 7 F2 F 7 247 A7 255 C5 3 E3 E J 6 256 B4 2 D2 D G 5 252 A5 AP 10.989 mm 3 6.989 mm 2 10.323 mm 1 A LMS7002M – FPRF MIMO Transceiver IC Pin No Pin ID 1 2 3 4 5 6 7 8 9 10 11 12 13 C1 D2 E3 F4 G5 H6 F2 G3 J5 K6 G1 H2 J3 UNUSED UNUSED UNUSED UNUSED VDD12_TXBUF VDD18_TXBUF UNUSED VDD18_VCO_SXT VDD12O_VCO_SXT VDD12_VCO_SXT UNUSED GND_VCO_SXT VDD_CP_SXT analog supply analog supply analog supply analog supply analog supply analog gnd analog supply 1.25V supply – TX XOSC buffer 1.8V supply – TX XOSC buffer 1.8V supply – TX SX VCO 1.25V supply – TX SX VCO 1.25V supply – TX SX VCO GND – TX SX VCO 1.25V supply – TX SX Charge pump 14 15 16 17 18 19 20 21 22 23 K4 L5 J1 K2 M6 L3 M4 M2 N3 N1 GND_CP_SXT VDD_DIV_SXT UNUSED VDDO_DIV_SXT UNUSED GND_DIV_SXT DVDD_SXT UNUSED DGND_SXT VDD18_LDO_TX analog gnd analog supply analog supply analog gnd digital supply digital gnd analog supply GND – TX SX Charge pump 1.25V supply – TX SX frequency divider 1.25V supply – TX SX frequency divider GND – TX SX frequency divider 1.25V supply – digital supply for TX SX GND – digital supply for TX SX 1.8V supply – TX LDO 24 25 26 27 28 29 30 P4 P2 R5 R3 T6 T4 U5 VDD_TBB tbbqn_pad_1 tbbin_pad_1 tbbqp_pad_1 tbbin_pad_2 tbbip_pad_1 adcin_in_1 analog supply in in in in in in 1.25V supply – TX baseband TX change input pad to externally drive the TX BB Channel 1 TX change input pad to externally drive the TX BB Channel 1 TX change input pad to externally drive the TX BB Channel 1 TX change input pad to externally drive the TX BB Channel 2 TX change input pad to externally drive the TX BB Channel 1 ADC input pads – To use external filtering Channel 1 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 U3 U1 V2 V4 V6 W3 Y2 Y4 AA1 Y6 AA3 AA5 AB2 AB4 AC3 AB6 AD2 tbbqp_pad_2 tbbqn_pad_2 tbbip_pad_2 adcin_ip_1 adcin_in_2 adcin_qn_1 adcin_qp_1 adcin_qn_2 adcin_ip_2 rbbip_pad_1 adcin_qp_2 rbbqn_pad_1 rbbin_pad_1 rbbqp_pad_1 rbbin_pad_2 rbbqn_pad_2 rbbip_pad_2 in in in in in in in in in out TX change input pad to externally drive the TX BB Channel 2 TX change input pad to externally drive the TX BB Channel 2 TX change input pad to externally drive the TX BB Channel 2 ADC input pads – To use external filtering Channel 1 ADC input pads – To use external filtering Channel 2 ADC 21nput pads – To use external filtering Channel 1 ADC input pads – To use external filtering Channel 1 ADC input pads – To use external filtering Channel 2 ADC input pads – To use external filtering Channel 2 RX BB output – To use external filtering Channel 1 ADC input pads – To use external filtering Channel 2 RX BB output – To use external filtering Channel 1 RX BB output – To use external filtering Channel 1 RX BB output – To use external filtering Channel 1 RX BB output – To use external filtering Channel 2 RX BB output – To use external filtering Channel 2 RX BB output – To use external filtering Channel 2 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 AC5 AE1 AD4 AE3 AF2 AD6 AE5 AF4 AG3 AH2 AJ1 AF6 AG5 AH4 AJ3 AK2 AJ5 rbbqp_pad_2 UNUSED VDD14_RBB VDD18_TIA_RFE VDD14_TIA_RFE VDD12_TIA_RFE UNUSED VDD18_LDO_RX UNUSED UNUSED UNUSED VDD14_LNA_RFE VDD12_LNA_RFE UNUSED UNUSED UNUSED UNUSED out analog supply analog supply analog supply analog supply analog supply analog supply analog supply - RX BB output – To use external filtering Channel 2 1.4V supply- RX baseband 1.8V supply- RXFE TIA 1.4V supply- RXFE TIA 1.25V supply- RXFE TIA 1.8V supply- RX LDO 1.4V supply- RXFE LNA 1.25V supply- RXFE LNA - 65 66 AK4 AL3 UNUSED UNUSED - - 67 68 69 AM2 AN3 AM4 UNUSED rfgp_w_RFE_2 rfgn_w_RFE_2 in in LNA input gate Wideband LNA – Gate : Channel 2 LNA input gate Wideband LNA – Gate : Channel 2 Pin Name Type in out out out out out out Description Table 12 Pin descriptions LMS7002M 21 Notes LMS7002M – FPRF MIMO Transceiver IC Pin No Pin ID 70 71 72 73 74 75 76 77 78 79 80 81 82 AL5 AK6 AJ7 AN5 AM6 AL7 AK8 AJ9 AP6 AN7 AM8 AL9 AK10 UNUSED UNUSED rfsn_l_RFE_2 rfgp_l_RFE_2 UNUSED UNUSED UNUSED rfsp_l_RFE_2 rfgn_l_RFE_2 rfgp_h_RFE_2 rfgn_h_RFE_2 UNUSED UNUSED in/out in in/out in in in - LNA Lowband LNA – Source: Channel 2 LNA input gate Lowband LNA – Gate : Channel 2 LNA Lowband LNA – Source : Channel 2 LNA input gate Lowband LNA – Gate : Channel 2 LNA input gate Highband LNA – Gate : Channel 2 LNA input gate Highband LNA – Gate : Channel 2 - 83 84 85 86 87 88 89 90 91 92 AJ11 AN9 AM10 AL11 AP10 AK12 AN11 AJ13 AM12 AL13 UNUSED rfgp_w_RFE_1 UNUSED UNUSED rfgn_w_RFE_1 rfsn_l_RFE_1 rfgp_l_RFE_1 UNUSED rfgn_l_RFE_1 rfsp_l_RFE_1 in in in/out in in in/out LNA input gate Wideband LNA – Gate : Channel 1 LNA input gate Wideband LNA – Gate : Channel 1 LNA Lowband LNA – Source : Channel 1 LNA input gate Lowband LNA – Gate : Channel 1 LNA input gate Lowband LNA – Gate : Channel 1 LNA Lowband LNA – Source : Channel 1 93 94 95 96 97 98 99 AK14 AJ15 AN17 AM18 AL19 AJ19 AM20 rfgp_h_RFE_1 rfgn_h_RFE_1 VDD_MXLOBUF_RFE VDD18_SXR VDD_CP_SXR GND_CP_SXR VDD_DIV_SXR in in analog supply analog supply analog supply analog gnd analog supply LNA input gate Highband LNA – Gate : Channel 1 LNA input gate Highband LNA – Gate : Channel 1 1.25V supply: RX LO buffers 1.8V supply: RX SX 1.25V supply: RX SX Charge pump GND: RX SX Charge pump 1.25V supply: RX SX frequency divider 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 AK20 AL21 AJ21 AM22 AN23 AK22 AL23 AM24 AN25 AP26 AM26 AN27 AJ25 AK26 AL27 AM28 AN29 GND_DIV_SXR DVDD_SXR UNUSED DGND_SXR VDD12_VCO_SXR VDD18_VCO_SXR GND_VCO_SXR xoscin_rx GND_RXBUF VDD12_RXBUF VDD18_RXBUF UNUSED VDD_AFE UNUSED UNUSED UNUSED UNUSED analog gnd digital supply digital gnd analog supply analog supply analog gnd in analog gnd analog supply analog supply analog supply - GND: RX SX frequency divider 1.25V digital supply: RX SX f GND: RX SX 1.25V supply: RX SX 1.8V supply: RX SX GND: RX SX VCO 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 AP30 AJ27 AK28 AL29 AM30 AN31 AP32 AJ29 AL31 AK30 AM34 AL33 AK32 AJ31 AH30 AG29 AK34 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED - - DIGPRVDD2 DIGPRGND1 UNUSED DVDD pad gnd - Digital Pad Ring power supply for post-driver Digital Pad Ring ground for pre-driver - 134 135 AJ33 AH32 UNUSED UNUSED - - 136 137 138 AG31 AF30 AE29 DIQ1_D0 DIQ1_D1 IO_cmos1225 IO_cmos1225 DIQ bus, bit 0. LML Port 1 DIQ bus, bit 1. LML Port 1 DIGPRVDD1 DVDD Digital Pad Ring power supply for pre-driver Pin Name Type Description GND – RX XOSC buffer 1.25V supply – RX XOSC buffer 1.8V supply – RX XOSC buffer 1.25V supply – ADC/DAC - Table 13: Pin descriptions (continued) LMS7002M 22 Notes LMS7002M – FPRF MIMO Transceiver IC Pin No Pin ID 139 140 141 142 143 144 145 146 147 148 149 150 151 AG33 AF32 AE31 AD30 AF34 AE33 AC29 AD32 AC31 AB30 AC33 AB32 AA29 UNUSED - - DIGPRGND2 DIQ1_D3 DIQ1_D4 DIQ1_D2 DIQ1_D6 DIQ1_D5 pad gnd IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 Digital Pad Ring ground for post-driver DIQ bus, bit 3. LML Port 1 DIQ bus, bit 4. LML Port 1 DIQ bus, bit 2. LML Port 1 DIQ bus, bit 6. LML Port 1 DIQ bus, bit 5. LML Port 1 DIQ1_D7 DIQ1_D8 DIQ1_D10 DIQ1_D9 DIQ1_D11 DIGPRVDD1 IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 DVDD DIQ bus, bit 7. LML Port 1 DIQ bus, bit 8. LML Port 1 DIQ bus, bit 10. LML Port 1 DIQ bus, bit 9. LML Port 1 DIQ bus, bit 11. LML Port 1 Digital Pad Ring power supply for pre-driver 152 153 154 155 156 157 158 159 160 161 AB34 AA31 AA33 Y30 Y32 W29 W31 W33 V30 V32 162 V34 MCLK1 DIGPRGND1 FCLK1 DIGPRGND2 ENABLE_IQSEL1 DIGPRGND1 DIGPRPOC DIGPRVDD2 LOGIC_RESET TXNRX1 RXEN out_cmos1225 DGND in_cmos1225 pad gnd IO_cmos1225 pad gnd POC DVDD analog supply/gnd in_cmos1225 in_cmos1225 Clock from RFIC to BBIC in JESD207 mode. LML Port 1 Digital Pad Ring ground for pre-driver Clock from BBIC to RFIC in JESD207 mode. LML Port 1 Digital Pad Ring ground for post-driver IQ flag in RXTXIQ mode; enable flag in JESD207 mode. LML Port 1 Digital Pad Ring ground for pre-driver POC circuit Digital Pad Ring power supply for post-driver Not used IQ data protocol control in JESD207 mode. LML Port 1 RX hard power off 163 U33 CORE_LDO_EN analog supply/gnd External enable control signal for the internal LDO’s. 164 165 166 U31 U29 T32 TXNRX2 TXEN DIGPRVDD2, DIGPRPOC in_cmos1225 in_cmos1225 DVDD IQ data protocol control in JESD207 mode. LML Port 2 TX hard power off Digital Pad Ring power supply for post-driver and POC 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 T30 R33 R31 P34 R29 P32 P30 N33 N31 M32 L33 M30 K34 L31 K32 J33 K30 DIGPRGND1, DIGPRGND2 ENABLE_ IQSEL2 DIGPRVDD1 MCLK2 FCLK2 DIQ2_D11 DIQ2_D10 DIQ2_D9 DIQ2_D8 DIQ2_D7 DIGPRVDD1 pad gnd IO_cmos1225 DVDD out_cmos1225 in_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 DVDD Digital Pad Ring ground for pre-driver and post-driver IQ flag in RXTXIQ mode; enable flag in JESD207 mode. LML Port 2 Digital Pad Ring power supply for pre-driver Clock from RFIC to BBIC in JESD207 mode. LML Port 2 Clock from BBIC to RFIC in JESD207 mode. LML Port 2 DIQ bus, bit 11. LML Port 2 DIQ bus, bit 10. LML Port 2 DIQ bus, bit 9. LML Port 2 DIQ bus, bit 8. LML Port 2 DIQ bus, bit 7. LML Port 2 Digital Pad Ring power supply for pre-driver DIQ2_D6 DIQ2_D5 DIQ2_D4 DIQ2_D3 DIGPRGND1 IO_cmos1225 IO_cmos1225 IO_cmos1225 IO_cmos1225 DGND DIQ bus, bit 6. LML Port 2 DIQ bus, bit 5. LML Port 2 DIQ bus, bit 4. LML Port 2 DIQ bus, bit 3. LML Port 2 Digital Pad Ring ground for pre-driver DIQ2_D2 IO_cmos1225 DIQ bus, bit 2. LML Port 2 184 185 186 187 188 189 J31 H32 H30 G31 F32 G29 DIQ2_D1 DIGPRVDD2 IO_cmos1225 DVDD DIQ bus, bit 1. LML Port 2 Digital Pad Ring supply for post-driver DIQ2_D0 DIGPRGND2 UNUSED UNUSED IO_cmos1225 pad gnd - 190 F30 SDIO IO_cmos1225 191 192 193 194 195 196 197 198 199 200 E31 D32 C31 D30 E29 F28 C29 D28 E27 F26 UNUSED UNUSED UNUSED UNUSED UNUSED SDO SCLK SEN RESET UNUSED out_cmos1225 in_cmos1225 in_cmos1225 in_cmos1225 - DIQ bus, bit 0. LML Port 2 Digital Pad Ring ground for post-driver Serial port data input-output in 3 wire mode, Serial port data input in 4 wire mode, CMOS Serial port data output, CMOS Serial port clock, positive edge sensitive, CMOS Serial port enable, active low, CMOS Hardware reset, active low, CMOS level - 201 202 203 204 C27 D26 E25 F24 SCL SDA GND_SPI_BUF VDD_SPI_BUF IO_cmos1225 IO_cmos1225 digital gnd digital supply uControler uControler GND – SPI buffer 1.25V supply – SPI buffer Pin Name Type Description Table 14: Pin descriptions (continued) LMS7002M 23 Notes Should be fixed to analog supply if internal LDO’s are used. Should be fixed to analog gnd if internal LDO’s are NOT used. LMS7002M – FPRF MIMO Transceiver IC Pin No Pin ID 205 206 207 208 209 210 211 212 213 214 215 216 217 C25 D24 E23 F22 C23 D22 B22 E21 C21 F20 A21 D20 B20 VDD12_DIG VDD18_DIG UNUSED tstdo GND_DIG tstdo tstao VDD18_VCO_CGEN VDD14_VCO_CGEN VDD_CP_CGEN UNUSED GND_DIV_CGEN GND_CP_CGEN digital supply digital supply out_cmos1225 digital gnd out_cmos1225 out_cmos1225 analog supply analog supply analog supply analog gnd analog gnd output 1.2V supply for digital LDO 1.8V supply for digital LDO digital output test pin GND for the digital LDO digital output test pin analog test pin 1.8V supply – VCO CLKGEN 1.4V supply – VCO CLKGEN 1.25V supply – Charge Pump – CLKGEN GND –frequency divider – CLKGEN GND –Charge Pump – CLKGEN 218 219 220 221 222 223 224 225 226 227 E19 C19 F18 D18 B18 A17 C17 E17 B16 D16 VDD_DIV_CGEN UNUSED vr_rext UNUSED DGND_CGEN DVDD_CGEN UNUSED VDD18_BIAS VDD_TPAD_TRF VDD18_TRF analog supply in digital gnd digital supply analog supply analog supply analog supply 1.25V supply – frequency divider – CLKGEN external 10 kOhm accurate reference resistor GND – CLKGEN 1.25V supply- Digital supply for CLK GEN 1.8V supply – Bias 1.25V supply – TX PAD 1.8V supply – TX RF 228 229 230 231 232 233 234 F16 C15 E15 B14 D14 A13 F14 UNUSED UNUSED UNUSED pa2on_2 UNUSED pa2op_2 UNUSED out out - PA driver output RF pad PAD2, Channel 2 PA driver output RF pad PAD2, Channel 2 - 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 C13 B12 E13 D12 C11 F12 B10 A9 E11 D10 C9 B8 A7 F10 E9 D8 C7 UNUSED pa1op_2 UNUSED UNUSED pa1on_2 UNUSED pa2on_1 pa2op_1 UNUSED UNUSED UNUSED pa1op_1 pa1on_1 UNUSED UNUSED UNUSED out out out out out out - PA driver output RF pad PAD1, Channel 2 PA driver output RF pad PAD1, Channel 2 PA driver output RF pad PAD2, Channel 1 PA driver output RF pad PAD2, Channel 1 PA driver output RF pad PAD1, Channel 1 PA driver output RF pad PAD1, Channel 1 - 252 253 254 255 256 257 258 259 260 261 A5 F8 D6 C5 B4 E5 C3 F6 B2 D4 GND_TLOBUF_TRF UNUSED VDD_TLOBUF_TRF VDDO_TLOBUF_TRF UNUSED UNUSED xoscin_tx UNUSED GND_TXBUF UNUSED UNUSED analog gnd analog supply analog supply in analog gnd - Ground for TX LO buffers 1.25V supply – TX LO BUFFER Pin Name Type Description TX XOSC buffer input GND supply – TX XOSC buffer - Table 15: Pin descriptions (continued) LMS7002M 24 Notes LMS7002M – FPRF MIMO Transceiver IC TYPICAL APPLICATION RF Section Example A typical application circuit of the LMS7002M is given in Figure 53. Note that only the RF part of a single MIMO TRX chain is shown. More details can be found in the LMS7002M evaluation board schematics. Figure 53: Typical RF application circuit LMS7002M 25 LMS7002M – FPRF MIMO Transceiver IC Digital Interface Configuration Example Figure 54 shows one useful example of clock generation and distribution as well as interfacing LMS7002M to digital BB modem. Note that interface control signals such as ENABLE, TXNRX, IQSEL are not shown for clarity. As can be seen, CLKPLL block generates 491.52MHz (integer multiple of 61.44MHz) clock. CLKPLL output is divided by programmable divider (division set to 4 in this example) to construct 122.88MHz clock driving DACs, TXTSP and TX part of LimeLight™. Similarly, CLKPLL output is divided by fixed division of 4 to construct 122.88MHz clock driving ADCs, RXTSP and RX part of LimeLight™. Interpolation and decimation are both set to 2. Hence, the configuration provides 245.76MS/s double data rate (DDR) interface to BB modem. This translates into the overall system performance as below: • • • • • • TX/RX IF bandwidth: 20MHz TX/RX RF bandwidth: 40MHz Digital interpolation image suppression: 60dB DACs analog image suppression: 72dB ADCs analog alias suppression: 43dB assuming no off chip filtering Digital decimation alias suppression: 60dB 122.88MHz TXFCLK DDR TX FIFO/DEMUX 12 122.88MHz DDR 2 HB1 12 2 61.44MS/s SDR TXFCLK 12 TXD[11:0] 245.76MS/s WRITECLK 245.76MS/s TXD[11:0] 12 READCLK TX Interface TX Interface HB1 2 HB1 12 2 HB1 61.44MS/s 12 12 12 12 DAC AI DAC AQ DAC BI DAC BQ To TX Front End Interpolation 12 122.88MS/s /2 Automatically Enabled/Set TXMCLK Ignored TXMCLK Ignored 122.88MHz 122.88MHz CLKGEN /4 491.52MHz Automatically RXD[11:0] RX Interface BB Side 12 RXD[11:0] 245.76MS/s 12 DDR RX Interface 61.44MS/s 12 12 12 12 /4 Fixed HB1 2 HB1 2 HB1 2 HB1 2 Decimation LMS7002M Side Figure 54: Digital interface setup LMS7002M 26 122.88MS/s 12 12 12 12 ADC AI ADC AQ ADC BI ADC BQ From RX Front End 245.76MS/s WRITECLK RXFCLK Ignored RX FIFO/MUX RXFCLK Ignored 61.44MS/s SDR /2 Enabled/Set 122.88MHz 122.88MHz 491.52MHz READCLK RXMCLK Used to sample RXD[11:0] RXMCLK 122.88MHz DDR CLKPLL LMS7002M – FPRF MIMO Transceiver IC ORDERING INFORMATION Model LMS7002M LMS7002M-REEL LMS7002M-EVB Temperature Range -40oC to +85oC -40oC to +85oC Package Description 261 pin aQFN 261 pin aQFN Evaluation board REVISION HISTORY The following table shows the revision history of this document: Date 05/11/2013 02/07/2014 10/09/2014 28/10/2014 06/03/2015 13/04/2015 27/07/2015 Version 2.0.0 2.1.0 2.2.0 2.3.0 2.4.0 2.5.0 2.6.0 06/09/2015 2.7.0 10/09/2015 03/05/2017 2.8.0 3.1.00 Description of Revisions Major update Performance parameters corrections based on measurement data Performance parameters corrections based on measurement data Updated table 5, 8 and 9 Correction in LimeLight™ interface description Updated pin description More details on analog low pass filters added. Amplitude responses updated. LimeLight™ figure captions corrected. Clock PLL forward divider equations updated. Interpolation/Decimation pass band equation generalized. “INITIALIZATION AND CALIBRATION” section moved and updated. “IMPROVING FRACTIONAL-N CLOSE TO INTEGER RF PLL SPURS PERFORMANCE” section added. Digital interface configuration example added. Few pin names/description corrected. RF bandwidth through digital interface updated. In Table 1, RF Modulation Bandwidth provided instead of Baseband Bandwidth. Some clarifications based on customers feedback added. Text modified based on new features/enhancements offered by mask=1 silicon. NOTICE OF DISCLAMER The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Lime Microsystems products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Lime Microsystems hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRRANTIES OF MERCHANTABILITY, NON-INFRIGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Lime Microsystems shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Lime Microsystems had been advised of the possibility of the same. Lime Microsystems assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties. Lime Microsystems products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Lime Microsystems products in Critical Applications. Lime Microsystems Surrey Technology Centre Occam Road The Surrey Research Park Guildford GU2 7YG, Surrey United Kingdom Tel: +44 (0) 1483 685 063 e-mail: enquiries@limemicro.com http://www.limemicro.com
LMS7002M 价格&库存

很抱歉,暂时无法提供与“LMS7002M”相匹配的价格&库存,您可以联系我们找货

免费人工找货