0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
π163E31

π163E31

  • 厂商:

    2PAISEMI(荣湃)

  • 封装:

    SOIC16N

  • 描述:

    -

  • 数据手册
  • 价格&库存
π163E31 数据手册
2Pai Semi Enhanced ESD, 3.0 kV rms/6.0 kV rms 200Mbps Hexa-Channel Digital Isolators Data Sheet FEATURES Ultra low power consumption (1Mbps): 0.58mA/Channel High data rate: π16xAxx: 600Mbps π16xExx: 200Mbps π16xMxx: 10Mbps π16xUxx: 150kbps High common-mode transient immunity: 75 kV/µs typical High robustness to radiated and conducted noise Low propagation delay: 8 ns typical for 5 V operation 9 ns typical for 3.3 V operation Isolation voltages: π16xx3x: AC 3000Vrms π16xx6x: AC 6000Vrms High ESD rating: ESDA/JEDEC JS-001-2017 Human body model (HBM) ±8kV, all pins Safety and regulatory approvals (Pending): UL certificate number: E494497 3000Vrms/6000Vrms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A VDE certificate number: 40047929 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM = 707V peak/1200V peak CQC certification per GB4943.1-2011 3 V to 5.5 V level translation AEC-Q100 qualification Wide temperature range: -40°C to 125°C 16-lead, RoHS-compliant, (W)SOIC package π160E/π161E/π162E/π163E The π1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied. FUNCTIONAL BLOCK DIAGRAMS ENERAL DESCRIPTION Intelligent voltage divider technology (iDivider technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation. 16 VDD2 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VOD 5 12 VIE 6 11 VOE VIF 7 10 VOF GND1 8 9 GND2 VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VID 5 12 VOD VIE 6 11 VOE VOF 7 10 VIF GND1 8 9 GND 2 VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VOD π161XXX π162XXX VID 5 12 VOE 6 11 VOF 7 10 1 8 9 VDD1 1 16 VDD2 VIA 2 15 VOA VIB 3 14 VOB VIC 4 13 VOC VOD 5 12 VID VOE 6 11 V IE VOF 7 10 VIF GND 1 8 9 GND2 GND General-purpose multichannel isolation Industrial field bus isolation The π1xxxxx is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI iDivider technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. 1 VIA VID APPLICATIONS π160XXX VDD1 π163XXX VIE VIF GND 2 Figure1. π160xxx/π161xxx/π162xxx/π163xxx functional Block Diagram VDD1 VDD2 CIN COUT 0.1uF 0.1 uF 1 2 3 4 5 6 7 8 VIN_A VIN_B VIN_C VIN_D VIN_E VIN_F GND 1 VDD1 VIA VIB VIC VID VIE VIF GND1 VDD2 VOA VOB VOC VOD VOE VOF GND2 16 15 14 13 12 11 10 9 VOUT_A VOUT_B VOUT_C VOUT_D VOUT_E VOUT_F GND2 Figure2. π160xxx Typical Application Circuit Rev.1 Information furnished by 2Pai semi is believed to be accurate and reliable. However, no responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of 2Pai semi. Trademarks and registered trademarks are the property of their respective owners. Room 308-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681 2Pai Semiconductor Co., Limited. All rights reserved. http://www.rpsemi.com/ π160E/π161E/π162E/π163E Data Sheet PIN CONFIGURATIONS AND FUNCTIONS π160Exx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. 3 VIB Logic Input B. 4 VIC 5 VDD1 1 16 VDD2 π160 15 VOA VIA 2 VIB 3 14 VOB Logic Input C. VIC 4 13 VOC VID Logic Input D. VID 5 6 VIE Logic Input E. 6 VIF Logic Input F. VIE 7 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 10 VOF Logic Output F. 11 VOE Logic Output E. 12 VOD Logic Output D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. TOP VIEW (Not to scale) VIF 7 12 VOD 11 VOE 10 VOF GND1 8 9 GND2 Figure3. π160Exx Pin Configuration Figure3. π160Mxx Pin Configuration π161Exx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. VIA 3 VIB Logic Input B. VIC Logic Input C. VIB 3 14 VOB 4 5 VID Logic Input D. VIC 13 VOC 6 VIE Logic Input E. VID 5 7 VOF Logic Output F. VIE 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. VOF 7 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 10 VIF Logic Input F. 11 VOE Logic Output E. 12 VOD Logic Output D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 2 16 VDD2 π161 4 6 GND1 8 TOP VIEW (Not to scale) 15 VOA 12 VOD 11 VOE 10 VIF 9 GND2 Figure4. π161Exx Pin Configuration Figure8. π121x6 Pin Configuration Rev. 1 | Page 2 of 16 π160E/π161E/π162E/π163E Data Sheet π162Exx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. VIA 2 3 VIB Logic Input B. VIB 3 14 VOB 4 VIC Logic Input C. VIC 4 VID Logic Input D. 13 VOC 5 6 VOE Logic Output E. VID 5 7 VOF Logic Output F. VOE 6 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. VOF 7 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. GND1 8 10 VIF Logic Input F. 11 VIE Logic Input E. 12 VOD Logic Output D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 16 VDD2 π162 TOP VIEW (Not to scale) 15 VOA 12 VOD 11 VIE 10 VIF 9 GND2 Figure5. π162Exx Pin Configuration Figure9. π122x6 Pin Configuration π163Exx Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. VIA 2 3 VIB Logic Input B. VIB 3 14 VOB 4 VIC Logic Input C. VIC 4 VOD Logic Output D. 13 VOC 5 6 VOE Logic Output E. 7 VOF Logic Output F. VOE 6 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. VOF 7 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. GND1 8 10 VIF Logic Input F. 11 VIE Logic Input E. 12 VID Logic Input D. 13 VOC Logic Output C. 14 VOB Logic Output B. 15 VOA Logic Output A. 16 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 VOD 5 16 VDD2 π163 TOP VIEW (Not to scale) 15 VOA 12 VID 11 VIE 10 VIF 9 GND2 Figure6. π163Exx Pin Configuration Figure9. π122x6 Pin Configuration Rev. 1 | Page 3 of 16 π160E/π161E/π162E/π163E Data Sheet ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 1. Absolute Maximum Ratings4 Parameter Rating Supply Voltages (VDD1-GND1, VDD2-GND2) Input Voltages −0.5 V to +7.0 V (VIA, VIB)1 Output Voltages −0.5 V to VDDx + 0.5 V (VOA, VOB)1 −0.5 V to VDDx + 0.5 V Average Output Current per Pin2 Side 1 Output Current (IO1) −10 mA to +10 mA Average Output Current per Pin2 Side 2 Output Current (IO2) −10 mA to +10 mA Common-Mode Transients Immunity 3 −150 kV/µs to +150 kV/µs Storage Temperature (TST) Range −65°C to +150°C Ambient Operating Temperature (TA) Range −40°C to +125°C Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. 2 See Figure7 for the maximum rated current values for various temperatures. 3 See Figure21 for Common-mode transient immunity (CMTI) measurement. 4 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. RECOMMENDED OPERATING CONDITIONS Table 2. Recommended Operating Conditions Parameter Supply Voltage Symbol Min VDDx 1 3 High Level Input Signal Voltage VIH 0.7*VDDx Low Level Input Signal Voltage VIL 0 High Level Output Current IOH -6 Low Level Output Current IOL Typ 1 Max Unit 5.5 V VDDx 1 0.3*VDDx V mA 6 Maximum Data Rate V 1 mA 0 200 Mbps Junction Temperature TJ -40 150 °C Ambient Operating Temperature TA -40 125 °C Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. Truth Tables Table 3. π160xxx/π161xxx/π162xxx/π163xxx Truth Table Default Low Default High VOx Output1 VOx Output1 Test Conditions /Comments Powered2 Low Low Normal operation Powered2 High High Normal operation Open Powered2 Powered2 Low High Default output Don’t Care4 Unpowered3 Powered2 Low High Default output5 Don’t Care4 Powered2 Unpowered3 High Impedance High Impedance VIx Input1 VDDI State1 VDDO State1 Low Powered2 High Powered2 Notes: 1 VIx/VOx are the input/output signals of a given channel (A or B). VDDI/VDDO are the supply voltages on the input/output signal sides of this given channel. Rev. 1 | Page 4 of 16 π160E/π161E/π162E/π163E Data Sheet 2 Powered means VDDx≥ 2.9 V means VDDx < 2.3V 4 Input signal (VIx) must be in a low state to avoid powering the given VDDI1 through its ESD protection circuitry. 5 If the VDDI goes into unpowered status, the channel outputs the default logic signal after around 1us. If the VDDI goes into powered status, the channel outputs the input status logic signal after around 1us. 3 Unpowered SPECIFICATIONS ELECTRICAL CHARACTERISTICS Table 4. Switching Specifications VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted. Parameter Minimum Pulse Width Symbol Pulse Width Distortion4 Part to Part Propagation Delay Skew4 Channel to Channel Propagation Delay Skew4 Typ PW Maximum Data Rate Propagation Delay Time1,4 Min Max 5 200 tpHL, tpLH PWD Test Conditions/Comments ns Within pulse width distortion (PWD) limit Mbps Within PWD limit 5.5 8 12.5 ns The different time between 50% input signal to 50% output signal 50% @ 5VDC supply 6.5 9 13.5 ns @ 3.3VDC supply 0 0.3 0.8 ns The max different time between tpHL and tpLH@ 5VDC supply. And The value is | tpHL - tpLH | 0 0.3 0.8 ns @ 3.3VDC supply 1 ns The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5VDC supply 1 ns 0 1 ns 0 0.8 ns tPSK tCSK Unit @ 3.3VDC supply The max amount propagation delay time differs between any two output channels in the single device @ 5VDC supply. @ 3.3VDC supply Output Signal Rise/Fall Time4 tr/tf 1.5 Dynamic Input Supply Current per Channel IDDI (D) 9 µA /Mbps 10% to 90% signal terminated 50,See figure17. Inputs switching, 50% duty cycle square wave, CL = 0 pF @ 5VDC Supply Dynamic Output Supply Current per Channel IDDO (D) 38 µA /Mbps Inputs switching, 50% duty cycle square wave, CL = 0 pF @ 5VDC Supply Dynamic Input Supply Current per Channel IDDI (D) 5 µA /Mbps Inputs switching, 50% duty cycle square wave, CL = 0 pF @ 3.3VDC Supply Dynamic Output Supply Current per Channel IDDO (D) 23 µA /Mbps Inputs switching, 50% duty cycle square wave, CL = 0 pF @ 3.3VDC Supply Common-Mode Transient Immunity3 CMTI 75 kV/µs VIN = VDDx2 or 0V, VCM = 1000 V 120 ps p-p See the Jitter Measurement section 20 ps rms See the Jitter Measurement section ±8 kV All pins Jitter ESD(HBM - Human body model) ESD ns Notes: 1 tpLH = low-to-high propagation delay time, tpHL = high-to-low propagation delay time. See figure 18. 2V DDx is the side voltage power supply VDD, where x = 1 or 2. 3 See Figure21 for Common-mode transient immunity (CMTI) measurement. 4 Output Signal Terminated 50 Rev. 1 | Page 5 of 16 π160E/π161E/π162E/π163E Data Sheet Table 5. DC Specifications VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted. Symbol Rising Input Signal Voltage Threshold Falling Input Signal Voltage Threshold High Level Output Voltage VIT+ Low Level Output Voltage VOL Input Current per Signal Channel VDDx1 Undervoltage Rising Threshold VDDx1 Undervoltage Falling Threshold VDDx1 Hysteresis Min Typ Max 0.6*VDDx 1 0.7*VDDx Unit 1 Test Conditions/Comments V VIT- 0.3* VDDX1 0.4* VDDX1 V VOH 1 VDDx − 0.1 VDDx V −20 µA output current VDDx − 0.2 VDDx − 0.1 V −2 mA output current 0 0.1 V 20 µA output current 0.1 0.2 V 2 mA output current 0 V ≤ Signal voltage ≤ VDDX1 IIN −10 0.5 10 µA VDDxUV+ 2.45 2.65 2.9 V VDDxUV− 2.3 2.5 2.75 V VDDxUVH 0.15 V Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. Table 6. Quiescent Supply Current VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted. Parameter π160Exx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π161Exx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π162Exx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply Symbol Min Typ Max Unit Test Conditions IDD1 (Q) 192 240 312 µA 0V Input signal IDD2 (Q) 2342 2928 3806 µA 0V Input signal IDD1 (Q) 473 591 768 µA 5V Input signal IDD2 (Q) 2215 2769 3600 µA 5V Input signal IDD1 (Q) 190 237 308 µA 0V Input signal IDD2 (Q) 2316 2895 3764 µA 0V Input signal IDD1 (Q) 348 435 566 µA 3.3V Input signal IDD2 (Q) 2126 2658 3455 µA 3.3V Input signal IDD1 (Q) 547 684 889 µA 0V Input signal IDD2 (Q) 1981 2476 3219 µA 0V Input signal IDD1 (Q) 751 939 1221 µA 5V Input signal IDD2 (Q) 1913 2391 3108 µA 5V Input signal IDD1 (Q) 541 676 879 µA 0V Input signal IDD2 (Q) 1958 2448 3182 µA 0V Input signal IDD1 (Q) 640 800 1040 µA 3.3V Input signal IDD2 (Q) 1826 2282 2967 µA 3.3V Input signal IDD1 (Q) 902 1128 1466 µA 0V Input signal IDD2 (Q) 1619 2024 2631 µA 0V Input signal IDD1 (Q) IDD2 (Q) 1030 1610 1287 2013 1673 2617 µA µA 5V Input signal 5V Input signal IDD1 (Q) 892 1115 1450 µA 0V Input signal IDD2 (Q) 1601 2001 2601 µA 0V Input signal IDD1 (Q) 932 1165 1515 µA 3.3V Input signal Rev. 1 | Page 6 of 16 π160E/π161E/π162E/π163E Data Sheet IDD2 (Q) π163Exx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply 1525 1906 2478 µA 3.3V Input signal IDD1 (Q) 1258 1572 2044 µA 0V Input signal IDD2 (Q) 1258 1572 2044 µA 0V Input signal IDD1 (Q) IDD2 (Q) 1308 1308 1635 1635 2126 2126 µA µA 5V Input signal 5V Input signal IDD1 (Q) 1243 1554 2020 µA 0V Input signal IDD2 (Q) 1243 1554 2020 µA 0V Input signal IDD1 (Q) 1224 1530 1989 µA 3.3V Input signal IDD2 (Q) 1224 1530 1989 µA 3.3V Input signal Table 7. Total Supply Current vs. Data Throughput (CL = 0 pF) VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted. Parameter Symbol π160Exx Supply Current @ 5VDC @ 3.3VDC π161Exx Supply Current @ 5VDC @ 3.3VDC π162Exx Supply Current @ 5VDC @ 3.3VDC π163Exx Supply Current @ 5VDC @ 3.3VDC 150 Kbps Min Typ Max IDD1 0.42 IDD2 10 Mbps Min 100 Mbps Typ Max 0.63 0.72 2.85 4.28 IDD1 0.33 IDD2 Min Typ Max Unit 1.08 5.58 8.37 mA 5.28 7.92 25.80 38.70 mA 0.50 0.54 0.81 3.24 4.86 mA 2.79 4.19 4.29 6.44 16.71 25.07 mA IDD1 0.82 1.23 1.45 2.18 8.92 13.38 mA IDD2 2.44 3.66 4.49 6.74 22.40 33.60 mA IDD1 0.74 1.11 1.13 1.70 5.45 8.18 mA IDD2 2.38 3.57 3.63 5.45 14.43 21.65 mA IDD1 1.22 1.83 2.18 3.27 12.26 18.39 mA IDD2 2.03 3.05 3.70 5.55 19.00 28.50 mA IDD1 1.15 1.73 1.72 2.58 7.66 11.49 mA IDD2 1.97 2.96 2.97 4.46 12.15 18.23 mA IDD1 1.62 2.43 2.91 4.37 15.60 23.40 mA IDD2 1.62 2.43 2.91 4.37 15.60 23.40 mA IDD1 1.56 2.34 2.31 3.47 9.87 14.81 mA IDD2 1.56 2.34 2.31 3.47 9.87 14.81 mA INSULATION AND SAFETY RELATED SPECIFICATIONS Table 8. Insulation Specifications Parameter Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Minimum External Tracking (Creepage) Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Material Group Symbol Value Unit Test Conditions/Comments π16xE3x π16xE6x 3000 6000 L (CLR) 4 8 mm min L (CRP) 4 8 mm min 11 21 µm min Insulation distance through insulation >400 >400 V DIN IEC 112/VDE 0303 Part 1 II II CTI V rms Rev. 1 | Page 7 of 16 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Material Group (DIN VDE 0110, 1/89, Table 1) π160E/π161E/π162E/π163E Data Sheet PACKAGE CHARACTERISTICS Table 9. Package Characteristics Parameter Symbol Typical Value π16xE3x π16xE6x Unit Test Conditions/Comments Resistance (Input to Output)1 RI-O 10 11 10 11 Ω Capacitance (Input to Output)1 CI-O 0.6 0.6 pF @1MHz CI 3 3 pF @1MHz θJA 76 45 °C/W Thermocouple located at center of package underside Input Capacitance2 IC Junction to Ambient Thermal Resistance Notes: 1The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin 9 - Pin 16(WSOIC-16 Pin 9-Pin16) are shorted together as the other terminal. 2Testing from the input signal pin to ground. REGULATORY INFORMATION See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels. Table10. Regulatory π16xE3x Regulatory UL CSA π16xE6x Recognized under UL 1577 Recognized under UL 1577 Component Recognition Program1 Component Recognition Program1 Single Protection, 3000 V rms Isolation Voltage Single Protection, 6000 V rms Isolation Voltage File (E494497) File (pending) Approved under CSA Component Acceptance Notice 5A Approved under CSA Component Acceptance Notice 5A CSA 60950-1-07+A1+A2 and CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2: IEC 60950-1, second edition, +A1+A2: Basic insulation at 500 V rms (707 V peak) Basic insulation at 845 V rms (1200 V peak) Reinforced insulation at 250 V rms Reinforced insulation at 422 V rms (353 V peak) (600 V peak) File (pending) VDE CQC DIN V VDE V 0884-10 (VDE V File (pending) 0884-10):2006-122 DIN V VDE V 0884-10 (VDE V 0884-10):2006-122 Basic insulation, VIORM = 707 V peak, VIOSM = 4615 V peak Basic insulation, VIORM = 1200 V peak, VIOSM = 7000 V peak File (40047929) File (pending) Certified under Certified under CQC11-471543-2012 CQC11-471543-2012 GB4943.1-2011 GB4943.1-2011 Basic insulation at 500 V rms (707 V peak) working voltage Basic insulation at 845 V rms (1200 V peak) working voltage Reinforced insulation at Reinforced insulation at 250 V rms (353 V peak) 422 V rms (600 V peak) File (pending) File (pending) Notes: 1 In accordance with UL 1577, each π160E3x/π161E3x/π162E3x /π163E3xis proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π160E6x/π161E6x/π162E6x /π163E6xis proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec 2 In accordance with DIN V VDE V 0884-10, eachπ160E3x/π161E3x/π162E3x /π163E3x is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each π160E6x/π161E6x/π162E6x /π163E6x is proof tested by ≥ 2250 V peak for 1 sec. The * marking branded on the component designates DIN V VDE V 0884-10 approval. Rev. 1 | Page 8 of 16 π160E/π161E/π162E/π163E Data Sheet DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval. Table 11. VDE Insulation Characteristics Description Test Conditions/Comments Symbol Characteristic π16xx3x π16xx6x For Rated Mains Voltage ≤ 150 V rms For Rated Mains Voltage ≤ 300 V rms I to IV I to IV I to III I to III For Rated Mains Voltage ≤ 400 V rms I to III I to III 40/105/21 40/105/21 2 2 Unit Installation Classification per DIN VDE 0110 Climatic Classification Pollution Degree per DIN VDE 0110, Table 1 Maximum Working Insulation Voltage Input to Output Test Voltage, Method B1 VIORM 707 1200 V peak VIORM × 1.875 = Vpd (m), 100% production test, tini = tm = 1 sec, partial discharge < 5 pC Vpd (m) 1326 2250 V peak VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC Vpd (m) 1061 1800 V peak 849 1440 V peak VIOTM 4200 8500 V peak 4615 7000 V peak Input to Output Test Voltage, Method A After Environmental Tests Subgroup 1 After Input and/or Safety Test Subgroup 2 and Subgroup 3 Highest Allowable Overvoltage VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC Surge Isolation Voltage Basic Basic insulation, 1.2 µs rise time, 50 µs, 50% fall time VIOSM Surge Isolation Voltage Reinforced Reinforced insulation, 1.2 µs rise time, 50 µs, 50% fall time VIOSM Safety Limiting Values Maximum value allowed in the event of a failure (see Figure 7) Maximum Junction Temperature TS Total Power Dissipation at 25°C Insulation Resistance at TS π16xE3x VIO = 800 V V peak 150 °C PS 1.56 2.78 W RS >109 >109 Ω π16xE6x Figure7. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE Rev. 1 | Page 9 of 16 150 π160E/π161E/π162E/π163E 3 12.0 2.9 Propagation Delay Time(nS) Power Supply Undervoltage Threshold Data Sheet 2.8 2.7 2.6 2.5 VDDxUV+(V) VDDxUV−(V) 2.4 2.3 2.2 10.0 8.0 6.0 tpHL(ns)@3.3V tpLH(ns)@3.3V tpHL(ns)@5.0V tpLH(ns)@5.0V 4.0 2.0 0.0 0 50 100 150 0 50 Free-Air Temperature ( °C) 2 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 0.5 0 0 50 100 150 Free-Air Temperature ( °C) π160Exx Quiescent Supply Current (mA) π160Exx Quiescent Supply Current (mA) Figure9. Propagation Delay Time vs. Free-Air Temperature 2.5 1 2 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 1 0.5 0 0 50 100 Free-Air Temperature ( °C) Figure12. π161Exx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 2.5 2 1.5 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 1 0.5 0 0 50 100 150 Free-Air Temperature ( °C) Figure11. π160Exx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature 150 π161Exx Quiescent Supply Current (mA) π161Exx Quiescent Supply Current (mA) Figure10. π160Exx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 1.5 150 Free-Air Temperature ( °C) Figure8. UVLO vs. Free-Air Temperature 1.5 100 2 1.5 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 1 0.5 0 0 50 100 150 Free-Air Temperature ( °C) Figure13. π161Exx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature Rev. 1 | Page 10 of 16 π160E/π161E/π162E/π163E π162Exx Quiescent Supply Current (mA) 1.6 1.4 1.2 1 0.8 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 0.6 0.4 0.2 0 0 50 100 150 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 0 Figure14. π162Exx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 50 100 150 Free-Air Temperature ( °C) Free-Air Temperature ( °C) Figure15. π162Exx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature 1.4 π163Exx Quiescent Supply Current (mA) π162Exx Quiescent Supply Current (mA) Data Sheet 1.2 1 0.8 @3.3V Supply with 0V Input 0.6 @3.3V Supply with 3.3V Input 0.4 @5V Supply with 0V Input @5V Supply with 5V Input 0.2 0 0 50 100 150 Free-Air Temperature ( °C) Figure16. π163Exx Quiescent Supply Current vs. Free-Air Temperature VDDX Figure17. Transition time waveform measurement Figure18. Propagation delay time waveform measurement Rev. 1 | Page 11 of 16 π160E/π161E/π162E/π163E Data Sheet APPLICATIONS INFORMATION the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect. OVERVIEW The π1xxxxx are 2PaiSemi digital isolators product family based on 2PaiSEMI unique iDivider technology. Intelligent voltage Divider technology (iDivider technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, iDivider is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced antiinterference ability, lower noise. By using maturated standard semiconductor CMOS technology and the innovative iDivider design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The π1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The π160Exx/π161Exx/π162Exx/π163Exx are the outstanding 10 Mbps hexa-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation. The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The π160Exx/π161Exx/π162Exx/π163Exx have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It’s return path. VDD1 VIA VIB VIC VID/VOD VIE/VOE VIF/VOF VDD2 VOA VOB VOC VOD/VID VOE/VIE VOF/VIF GND1 GND2 Figure19.Recommended Printed Circuit Board Layout JITTER MEASUREMENT The eye diagram shown in the figure18 provides the jitter measurement result for the π160Exx/π161Exx/π162Exx/π163Exx. The Keysight 81160A pulse function arbitrary generator works as the data source for the π160Exx/π161Exx/π162Exx/π163Exx, which generates 10Mbps pseudo random bit sequence (PRBS). The Keysight DSOS104A digital storage oscilloscope captures the π160Exx/π161Exx/π162Exx/π163Exx output waveform and recoveries the eye diagram with the SDA tools and eye diagram analysis tools. The result shows a typical measurement 120ps p-p jitter. See the Ordering Guide for the model numbers that have the failsafe output state of low or high. Figure20. π160Exx/π161Exx/π162Exx/π163Exx Eye Diagram PCB LAYOUT The low-ESR ceramic bypass capacitors must be connected between VDD1 and GND1 and between VDD2 and GND2. The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between 0.1 μF and 10 μF. To enhance the robustness of a design, the user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy. CMTI MEASUREMENT To measure the Common-Mode Transient Immunity (CMTI) of π1xxxxx isolator under specified common-mode pulse magnitude Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias. To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, Rev. 1 | Page 12 of 16 Figure21. Common-mode transient immunity (CMTI) measurement π160E/π161E/π162E/π163E Data Sheet (VCM) and specified slew rate of the common-mode pulse (dVCM/dt) and other specified test or ambient conditions, The common-mode pulse generator (G1) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (VCM) and the maximum common- mode slew rates (dVCM/dt) can be applied to π1xxxxx isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of π1xxxxx isolator and shall be capable of providing positive transients as well as negative transients. OUTLINE DIMENSIONS Figure22. 16-Lead Standard Small Outline Package [16-Lead SOIC_N] Figure23. 16-Lead Wide Body Outline Package [16-Lead SOIC_W] Rev. 1 | Page 13 of 16 π160E/π161E/π162E/π163E Data Sheet REEL INFORMATION 16-Lead SOIC_N 16-Lead SOIC_W Rev. 1 | Page 14 of 16 π160E/π161E/π162E/π163E Data Sheet ORDERING GUIDE Model Name Temperature Range No. of Inputs, VDD1 Side No. of Inputs, VDD2 Side Withstand Voltage Rating (kV rms) FailSafe Output State Package Description Package Option Quantity π160E31 Pai160E31 −40°C to +125°C 6 0 3 High 16-Lead SOIC_N S-16-N 2500 per reel π160E30 Pai160E30 −40°C to +125°C 6 0 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π161E31 Pai161E31 −40°C to +125°C 5 1 3 High 16-Lead SOIC_N S-16-N 2500 per reel π161E30 Pai161E30 −40°C to +125°C 5 1 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π162E31 Pai162E31 −40°C to +125°C 4 2 3 High 16-Lead SOIC_N S-16-N 2500 per reel π162E30 Pai162E30 −40°C to +125°C 4 2 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π163E31 Pai163E31 −40°C to +125°C 3 3 3 High 16-Lead SOIC_N S-16-N 2500 per reel π163E30 Pai163E30 −40°C to +125°C 3 3 3 Low 16-Lead SOIC_N S-16-N 2500 per reel π160E61 Pai160E61 −40°C to +125°C 6 0 6 High 16-Lead SOIC_W S-16-W 1500 per reel π160E60 Pai160E60 −40°C to +125°C 6 0 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π161E61 Pai161E61 −40°C to +125°C 5 1 6 High 16-Lead SOIC_W S-16-W 1500 per reel π161E60 Pai161E60 −40°C to +125°C 5 1 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π162E61 Pai162E61 −40°C to +125°C 4 2 6 High 16-Lead SOIC_W S-16-W 1500 per reel π162E60 Pai162E60 −40°C to +125°C 4 2 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π163E61 Pai163E61 −40°C to +125°C 3 3 6 High 16-Lead SOIC_W S-16-W 1500 per reel π163E60 Pai163E60 −40°C to +125°C 3 3 6 Low 16-Lead SOIC_W S-16-W 1500 per reel Notes: 1 π16xxxxQ special for Auto, qualified for AEC-Q100 PART NUMBER NAMED RULE π(1)(2)(0)(A)(3)(0)(S) SeriesNumber: 1,2,3... Total Channel Am ount: N=N Channels N=1,2,3,4,5,6... Reverse Channel Amount: N=N Channels N=0,1,2,3... Data Rate:A=600Mbps E=200Mbps M=10Mbps U=150Kbps Isolation Voltag es: N=1 1.5KVrms AC N=3 3KVrms AC N=6 6KVrms AC Fail-Safe Output Stat e: 0=Logic Low 1=Logic High Optional: S=SSOP Package Q=AEC-Q100 Qualified Notes:Pai16xxxx is equals to π16xxxx in the customer BOM Rev. 1 | Page 15 of 16 π160E/π161E/π162E/π163E Data Sheet REVISION HISTORY Revision Updated Date Page 1 Devin 2018/09/19 All 2 Devin 2018/11/28 P1,P12 3 Devin 2019/09/08 P1,P13, P15,P16 Change Record Initial version Changed CIN,COUT in Figure2 from 0.1uF to 1uF Changed the recommended bypass capacitor value from between 0.1 μF and 1 μF to between 0.1 μF and 10 μF. P1: Changed the address from ‘Room 19307, Building 8, No.498, GuoShouJing Road’ to ‘Room 308-309, No.22, Boxia Road’; Add iDivider technology description in General Description. Changed propagation delay for 5V from 7.5ns to 8ns. Changed CMTI from 50KV/us to 75KV/us. Changed CIN,COUT in Figure2 from 1uF to 0.1uF. P13: Add iDivider technology description in overview. P15: Updated 16-Lead SOIC_W reel drawing. P16: Changed the SOIC_W quantity from ‘1000 per reel’ to ‘1500 per reel’. Rev. 1 | Page 16 of 16
π163E31 价格&库存

很抱歉,暂时无法提供与“π163E31”相匹配的价格&库存,您可以联系我们找货

免费人工找货