Arty Z7 Reference Manual
The Arty Z7 is a ready-to-use development platform designed around the Zynq-7000™ All
Programmable System-on-Chip (AP SoC) from Xilinx. The Zynq-7000 architecture tightly
integrates a dual-core, 650 MHz ARM Cortex-A9 processor with Xilinx 7-series Field
Programmable Gate Array (FPGA) logic. This pairing grants the ability to surround a powerful
processor with a unique set of software defined peripherals and controllers, tailored by you for
the target application.
The Vivado, Petalinux, and SDSoC toolsets each provide an approachable path between defining
your custom peripheral set and bringing it's functionality up to a Linux OS or bare metal
program running on the processor. For those looking for a more traditional digital logic design
experience, it is also possible to ignore the ARM processors and program the Zynq's FPGA like
you would any other Xilinx FPGA. Digilent provides a number of materials and resources for the
Arty Z7 that will get you up and running with your tool of choice quickly.
Features
ZYNQ Processor
o 650MHz dual-core Cortex-A9 processor
o DDR3 memory controller with 8 DMA channels and 4 High Performance AXI3
Slave ports
o High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO
o Low-bandwidth peripheral controller: SPI, UART, CAN, I2C
o Programmable from JTAG, Quad-SPI flash, and microSD card
o Programmable logic equivalent to Artix-7 FPGA
Memory
o 512MB DDR3 with 16-bit bus @ 1050Mbps
o 16MB Quad-SPI Flash with factory programmed 48-bit globally unique EUI48/64™ compatible identifier
o microSD slot
Power
o Powered from USB or any 7V-15V external power source
USB and Ethernet
o Gigabit Ethernet PHY
o USB-JTAG Programming circuitry
o USB-UART bridge
o USB OTG PHY (supports host only)
Audio and Video
o HDMI sink port (input)
o HDMI source port (output)
o PWM driven mono audio output with 3.5mm jack
Switches, Push-buttons, and LEDs
o 4 push-buttons
o 2 slide switches
o 4 LEDs
o 2 RGB LEDs
Expansion Connectors
o Two standard Pmod ports
16 Total FPGA I/O
o Arduino/chipKIT Shield connector
Up to 49 Total FPGA I/O (see table below)
6 Single-ended 0-3.3V Analog inputs to XADC
4 Differential 0-1.0V Analog inputs to XADC
Purchasing Options
The Arty Z7 can be purchased with either a Zynq-7010 or Zynq-7020 loaded. These two Arty Z7
product variants are referred to as the Arty Z7-7010 and Arty Z7-7020, respectively. When
Digilent documentation describes functionality that is common to both of these variants, they are
referred to collectively as the “Arty Z7”. When describing something that is only common to a
specific variant, the variant will be explicitly called out by its name.
The only difference between the Arty Z7-7010 and Arty Z7-7020 are the capabilities of the Zynq
part and the amount of I/O available on the shield connector. The Zynq processors both have the
same capabilities, but the 7020 has about a 3 times larger internal FPGA than the 7010. The
differences between the two variants are summarized below:
Product Variant
Zynq Part
1 MSPS On-chip ADC
Look-up Tables (LUTs)
Flip-Flops
Block RAM
Clock Management Tiles
Available Shield I/O
Arty Z7-7010
XC7Z010-1CLG400C
Yes
17,600
35,200
270 KB
2
26
Arty Z7-7020
XC7Z020-1CLG400C
Yes
53,200
106,400
630 KB
4
49
On the Arty Z7-7010, the inner row of the digital shield (IO26-IO41) and IOA (also referred to
as IO42) are not connected to the FPGA, and A0-A5 can only be used as analog inputs. This will
not affect the functionality of most existing Arduino shields, because most do not use this inner
row of digital signals.
The board can be purchased stand-alone or with an accessory kit that contains a 12V/3A power
adapter, USB A to Micro B cable, an 8GB speed class 10 microSD card, and a voucher to unlock
the Xilinx SDSoC toolset. The SDSoC voucher unlocks a 1 year license and can only be used
with the Arty Z7. After the license expires, any version of SDSoC that was released during this 1
year period can continue to be used indefinitely. For more information on purchasing, see the
Arty Z7 Product Page.
Software Support
The Arty Z7 is fully compatible with Xilinx’s high-performance Vivado Design Suite. This
toolset melds FPGA logic design with embedded ARM software development into an easy to
use, intuitive design flow. It can be used for designing systems of any complexity, from a
complete operating system running multiple server applications in tandem, down to a simple
bare-metal program that controls some LEDs. It is also possible to treat the Zynq AP SoC as a
standalone FPGA for those not interested in using the processor in their design. As of Vivado
release 2015.4, the Logic Analyzer and High-level Synthesis features of Vivado are free to use
for all WebPACK targets, which includes the Arty Z7. The Logic Analyzer assists with
debugging logic, and the HLS tool allows you to compile C code directly into HDL.
Zynq platforms are well-suited to be embedded Linux targets, and Arty Z7 is no exception. To
help you get started, Digilent provides a Petalinux project that will get you up and running with a
Linux system quickly. For more information, see the Arty Z7 Resource Center.
The Arty Z7 can also be used in Xilinx's SDSoC environment, which allows you to design FPGA
accelerated programs and video pipelines with ease in an entirely C/C++ environment. For more
information on SDSoC, see the Xilinx SDSoC Site. Currently no SDSoC platform is available
for the Arty Z7, but we will be releasing a Video capable platform with Linux support in the
future.
Those familiar with the older Xilinx ISE/EDK toolsets from before Vivado was released can also
choose to use the Arty Z7 in that toolset. Digilent does not have many materials to support this,
but you can always ask for help on the Digilent Forum.
1 Power Supplies
The Arty Z7 can be powered from the Digilent USB-JTAG-UART port (J14) or from some other
type of power source such as a battery or external power supply. Jumper JP5 (near the power
switch) determines which power source is used.
A USB 2.0 port can deliver maximum 0.5A of current according to the specifications. This
should provide enough power for lower complexity designs. More demanding applications,
including any that drive multiple peripheral boards or other USB devices, might require more
power than the USB port can provide. In this case, power consumption will increase until it’s
limited by the USB host. This limit varies a lot between manufacturers of host computers and
depends on many factors. When in current limit, once the voltage rails dip below their nominal
value, the Zynq is reset by the Power-on Reset signal and power consumption returns to its idle
value. Also, some applications may need to run without being connected to a PC’s USB port. In
these instances an external power supply or battery can be used.
An external power supply (e.g. wall wart) can be used by plugging it into the power jack (J18)
and setting jumper JP5 to “REG”. The supply must use a coax, center-positive 2.1mm internaldiameter plug, and deliver 7VDC to 15VDC. Suitable supplies can be purchased from the
Digilent website or through catalog vendors like DigiKey. Power supply voltages above 15VDC
might cause permanent damage. A suitable external power supply is included with the Arty Z7
accessory kit.
Similar to using an external power supply, a battery can be used to power the Arty Z7 by
attaching it to the shield connector and setting jumper JP5 to “REG”. The positive terminal of the
battery must be connected to the pin labeled “VIN” on J7, and the negative terminal must be
connected to the pin labeled GND on J7.
The on-board Texas Instruments TPS65400 PMU creates the required 3.3V, 1.8V, 1.5V, and
1.0V supplies from the main power input. Table 1.1 provides additional information (typical
currents depend strongly on Zynq configuration and the values provided are typical of medium
size/speed designs).
The Arty Z7 does not have a power switch, so when a power source is connected and selected
with JP5 it will always be powered on. To reset the Zynq without disconnecting and
reconnecting the power supply, the red SRST button can be used. The power indicator LED
(LD13) is on when all the supply rails reach their nominal voltage.
Supply
3.3V
1.0V
1.5V
1.8V
Circuits
FPGA I/O, USB ports, Clocks, Ethernet, SD slot, Flash, HDMI
FPGA, Ethernet Core
DDR3
FPGA Auxiliary, Ethernet I/O, USB Controller
Current (max/typical)
1.6A/0.1A to 1.5A
2.6A/0.2A to 2.1A
1.8A/0.1A to 1.2A
1.8A/0.1A to 0.6A
Table 1.1. Arty Z7 power supplies.
2 Zynq APSoC Architecture
The Zynq APSoC is divided into two distinct subsystems: The Processing System (PS) and the
Programmable Logic (PL). Figure 2.1 shows an overview of the Zynq APSoC architecture, with
the PS colored light green and the PL in yellow. Note that the PCIe Gen2 controller and Multigigabit transceivers are not available on the Zynq-7020 device.
Figure 2.1 Zynq APSoC architecture
The PL is nearly identical to a Xilinx 7-series Artix FPGA, except that it contains several
dedicated ports and buses that tightly couple it to the PS. The PL also does not contain the same
configuration hardware as a typical 7-series FPGA, and it must be configured either directly by
the processor or via the JTAG port.
The PS consists of many components, including the Application Processing Unit (APU, which
includes 2 Cortex-A9 processors), Advanced Microcontroller Bus Architecture (AMBA)
Interconnect, DDR3 Memory controller, and various peripheral controllers with their inputs and
outputs multiplexed to 54 dedicated pins (called Multiplexed I/O, or MIO pins). Peripheral
controllers that do not have their inputs and outputs connected to MIO pins can instead route
their I/O through the PL, via the Extended-MIO (EMIO) interface. The peripheral controllers are
connected to the processors as slaves via the AMBA interconnect, and contain readable/writable
control registers that are addressable in the processors’ memory space. The programmable logic
is also connected to the interconnect as a slave, and designs can implement multiple cores in the
FPGA fabric that each also contain addressable control registers. Furthermore, cores
implemented in the PL can trigger interrupts to the processors (connections not shown in Fig. 3)
and perform DMA accesses to DDR3 memory.
There are many aspects of the Zynq APSoC architecture that are beyond the scope of this
document. For a complete and thorough description, refer to the Zynq Technical Reference
manual.
Table 2.1 depicts the external components connected to the MIO pins of the Arty Z7. The Zynq
Presets File found on the Arty Z7 Resource Center can be imported into EDK and Vivado
Designs to properly configure the PS to work with these peripherals.
MIO 500 3.3 V
Pin
0 (N/C)
1
2
3
4
5
6
7 (N/C)
8
9
10
11
12
Peripherals
ENET 0
SPI Flash
USB 0
Shield
CS
DQ0
DQ1
DQ2
DQ3
SCLK
SLCK FB
Ethernet Reset
Ethernet Interrupt
USB Over
Current
Shield
UART 0
Reset
13 (N/C)
14
UART Input
UART
Output
15
MIO 501
1.8V
Pin
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Peripherals
ENET
USB 0
0
TXCK
TXD0
TXD1
TXD2
TXD3
TXCTL
RXCK
RXD0
RXD1
RXD2
RXD3
RXCTL
DATA4
DIR
STP
NXT
DATA0
DATA1
DATA2
DATA3
CLK
DATA5
DATA6
DATA7
SDIO
0
CCLK
CMD
D0
D1
44
45
46
47
48 (N/C)
49 (N/C)
50 (N/C)
51 (N/C)
52
53
D2
D3
RESETN
CD
MDC
MDIO
Table 2.1. MIO Pinout
3 Zynq Configuration
Unlike Xilinx FPGA devices, APSoC devices such as the Zynq-7020 are designed around the
processor, which acts as a master to the programmable logic fabric and all other on-chip
peripherals in the processing system. This causes the Zynq boot process to be more similar to
that of a microcontroller than an FPGA. This process involves the processor loading and
executing a Zynq Boot Image, which includes a First Stage Bootloader (FSBL), a bitstream for
configuring the programmable logic (optional), and a user application. The boot process is
broken into three stages:
Stage 0
After the Arty Z7 is powered on or the Zynq is reset (in software or by pressing SRST), one of
the processors (CPU0) begins executing an internal piece of read-only code called the
BootROM. If and only if the Zynq was just powered on, the BootROM will first latch the state of
the mode pins into the mode register (the mode pins are attached to JP4 on the Arty Z7). If the
BootROM is being executed due to a reset event, then the mode pins are not latched, and the
previous state of the mode register is used. This means that the Arty Z7 needs a power cycle to
register any change in the programming mode jumper (JP4). Next, the BootROM copies an
FSBL from the form of non-volatile memory specified by the mode register to the 256 KB of
internal RAM within the APU (called On-Chip Memory, or OCM). The FSBL must be wrapped
up in a Zynq Boot Image in order for the BootROM to properly copy it. The last thing the
BootROM does is hand off execution to the FSBL in OCM.
Stage 1
During this stage, the FSBL first finishes configuring the PS components, such as the DDR
memory controller. Then, if a bitstream is present in the Zynq Boot Image, it is read and used to
configure the PL. Finally, the user application is loaded into memory from the Zynq Boot Image,
and execution is handed off to it.
Stage 2
The last stage is the execution of the user application that was loaded by the FSBL. This can be
any sort of program, from a simple “Hello World” design, to a Second Stage Boot loader used to
boot an operating system like Linux. For a more thorough explanation of the boot process, refer
to Chapter 6 of the Zynq Technical Reference manual.
The Zynq Boot Image is created using Vivado and Xilinx Software Development Kit (Xilinx
SDK). For information on creating this image please refer to the available Xilinx documentation
for these tools.
The Arty Z7 supports three different boot modes: microSD, Quad SPI Flash, and JTAG. The
boot mode is selected using the Mode jumper (JP4), which affects the state of the Zynq
configuration pins after power-on. Figure 3.1 depicts how the Zynq configuration pins are
connected on the Arty Z7.
Figure 3.1. Arty Z7 configuration pins.
The three boot modes are described in the following sections.
3.1 microSD Boot Mode
The Arty Z7 supports booting from a microSD card inserted into connector J9. The following
procedure will allow you to boot the Zynq from microSD with a standard Zynq Boot Image
created with the Xilinx tools:
1.
2.
3.
4.
Format the microSD card with a FAT32 file system.
Copy the Zynq Boot Image created with Xilinx SDK to the microSD card.
Rename the Zynq Boot Image on the microSD card to BOOT.bin.
Eject the microSD card from your computer and insert it into connector J9 on the Arty
Z7.
5. Attach a power source to the Arty Z7 and select it using JP5.
6. Place a single jumper on JP4, shorting the two top pins (labeled “SD”).
7. Turn the board on. The board will now boot the image on the microSD card.
3.2 Quad SPI Boot Mode
The Arty Z7 has an onboard 16MB Quad-SPI Flash that the Zynq can boot from. Documentation
available from Xilinx describes how to use Xilinx SDK to program a Zynq Boot Image into a
Flash device attached to the Zynq. Once the Quad SPI Flash has been loaded with a Zynq Boot
Image, the following steps can be followed to boot from it:
1. Attach a power source to the Arty Z7 and select it using JP5.
2. Place a single jumper on JP4, shorting the two center pins (labeled “QSPI”).
3. Turn the board on. The board will now boot the image stored in the Quad SPI flash.
3.3 JTAG Boot Mode
When placed in JTAG boot mode, the processor will wait until software is loaded by a host
computer using the Xilinx tools. After software has been loaded, it is possible to either let the
software begin executing, or step through it line by line using Xilinx SDK.
It is also possible to directly configure the PL over JTAG, independent of the processor. This can
be done using the Vivado Hardware Server.
The Arty Z7 is configured to boot in Cascaded JTAG mode, which allows the PS to be accessed
via the same JTAG port as the PL. It is also possible to boot the Arty Z7 in Independent JTAG
mode by loading a jumper in JP2 and shorting it. This will cause the PS to not be accessible from
the onboard JTAG circuitry, and only the PL will be visible in the scan chain. To access the PS
over JTAG while in independent JTAG mode, users will have to route the signals for the PJTAG
peripheral over EMIO, and use an external device to communicate with it.
4 Quad SPI Flash
The Arty Z7 features a Quad SPI serial NOR flash. The Spansion S25FL128S is used on this
board. The Multi-I/O SPI Flash memory is used to provide non-volatile code and data storage. It
can be used to initialize the PS subsystem as well as configure the PL subsystem.
The relevant device attributes are:
16 MB
x1, x2, and x4 support
Bus speeds up to 104 MHz, supporting Zynq configuration rates @ 100 MHz. In Quad
SPI mode, this translates to 400Mbs
Powered from 3.3V
The SPI Flash connects to the Zynq-7000 APSoC and supports the Quad SPI interface. This
requires connection to specific pins in MIO Bank 0/500, specifically MIO[1:6,8] as outlined in
the Zynq datasheet. Quad-SPI feedback mode is used, thus qspi_sclk_fb_out/MIO[8] is left to
freely toggle and is connected only to a 20K pull-up resistor to 3.3V. This allows a Quad SPI
clock frequency greater than FQSPICLK2 (See the Zynq Technical Reference manual for more
on this).
5 DDR Memory
The Arty Z7 includes an IS43TR16256A-125KBL DDR3 memory components creating a single
rank, 16-bit wide interface and a total of 512MiB of capacity. The DDR3 is connected to the
hard memory controller in the Processor Subsystem (PS), as outlined in the Zynq documentation.
The PS incorporates an AXI memory port interface, a DDR controller, the associated PHY, and a
dedicated I/O bank. DDR3 memory interface speeds up to 533 MHz/1066 Mbps are supported¹.
Arty Z7 was routed with 40 ohm (+/-10%) trace impedance for single-ended signals, and
differential clock and strobes set to 80 ohms (+/-10%). A feature called DCI (Digitally
Controlled Impedance) is used to match the drive strength and termination impedance of the PS
pins to the trace impedance. On the memory side, each chip calibrates its on-die termination and
drive strength using a 240 ohm resistor on the ZQ pin.
Due to layout reasons, the two data byte groups (DQ[0-7], DQ[8-15]) were swapped. To the
same effect, the data bits inside byte groups were swapped as well. These changes are
transparent to the user. During the whole design process the Xilinx PCB guidelines were
followed.
Both the memory chips and the PS DDR bank are powered from the 1.5V supply. The mid-point
reference of 0.75V is created with a simple resistor divider and is available to the Zynq as
external reference.
For proper operation it is essential that the PS memory controller is configured properly. Settings
range from the actual memory flavor to the board trace delays. For your convenience, the Zynq
presets file for the Arty Z7 is provided on the resource center and automatically configures the
Zynq Processing System IP core with the correct parameters.
For best DDR3 performance, DRAM training is enabled for write leveling, read gate, and read
data eye options in the PS Configuration Tool in Xilinx tools. Training is done dynamically by
the controller to account for board delays, process variations and thermal drift. Optimum starting
values for the training process are the board delays (propagation delays) for certain memory
signals.
Board delays are specified for each of the byte groups. These parameters are board-specific and
were calculated from the PCB trace length reports. The DQS to CLK Delay and Board Delay
values are calculated specific to the Arty Z7 memory interface PCB design.
For more details on memory controller operation, refer to the Xilinx Zynq Technical Reference
manual.
¹Maximum actual clock frequency is 525 MHz on the Arty Z7 due to PLL limitation.
6 USB UART Bridge (Serial Port)
The Arty Z7 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J14) that
lets you use PC applications to communicate with the board using standard COM port commands
(or the tty interface in Linux). Drivers are automatically installed in Windows and newer
versions of Linux. Serial port data is exchanged with the Zynq using a two-wire serial port
(TXD/RXD). After the drivers are installed, I/O commands can be used from the PC directed to
the COM port to produce serial data traffic on the Zynq pins. The port is tied to PS (MIO) pins
and can be used in combination with the UART 0 controller.
The Zynq presets file (available in the Arty Z7 Resource Center) takes care of mapping the
correct MIO pins to the UART 0 controller and uses the following default protocol parameters:
115200 baud rate, 1 stop bit, no parity, 8-bit character length.
Two on-board status LEDs provide visual feedback on traffic flowing through the port: the
transmit LED (LD11) and the receive LED (LD10). Signal names that imply direction are from
the point-of-view of the DTE (Data Terminal Equipment), in this case the PC.
The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USBUART and USB-JTAG functions behave entirely independent of one another. Programmers
interested in using the UART functionality of the FT2232 within their design do not need to
worry about the JTAG circuitry interfering with the UART data transfers, and vice-versa. The
combination of these two features into a single device allows the Arty Z7 to be programmed,
communicated with via UART, and powered from a computer attached with a single Micro USB
cable.
The DTR signal from the UART controller on the FT2232HQ is connected to MIO12 of the
Zynq device via JP1. Should the Arduino IDE be ported to work with the Arty Z7, this jumper
can be shorted and MIO12 could be used to place the Arty Z7 in a “ready to receive a new
sketch” state. This would mimic the behavior of typical Arduino IDE boot-loaders.
7 microSD Slot
The Arty Z7 provides a microSD slot (J9) for non-volatile external memory storage as well as
booting the Zynq. The slot is wired to Bank 1/501 MIO[40-47], including Card Detect. On the
PS side peripheral SDIO 0 is mapped out to these pins and controls communication with the SD
card. The pinout can be seen in Table 7.1. The peripheral controller supports 1-bit and 4-bit SD
transfer modes, but does not support SPI mode. Based on the Zynq Technical Reference manual,
SDIO host mode is the only mode supported.
Signal Name
SD_D0
SD_D1
SD_D2
SD_D3
SD_CCLK
SD_CMD
SD_CD
Description
Data[0]
Data[1]
Data[2]
Data[3]
Clock
Command
Card Detect
Zynq Pin
MIO42
MIO43
MIO44
MIO45
MIO40
MIO41
MIO47
SD Slot Pin
7
8
1
2
5
3
9
Table 7.1. microSD pinout
The SD slot is a powered from 3.3V, but is connected through MIO Bank 1/501 (1.8V).
Therefore, a TI TXS02612 level shifter performs this translation. The TXS02612 is actually 2port SDIO port expander, but only its level shifter function is used. The connection diagram can
be seen on Figure 7.1. Mapping out the correct pins and configuring the interface is handled by
the Arty Z7 Zynq presets file, available on the Arty Z7 Resource Center.
Figure 7.1. microSD slot signals
Both low speed and high speed cards are supported, the maximum clock frequency being 50
MHz. A Class 4 card or better is recommended.
Refer to section 3.1 for information on how to boot from an SD card. For more information,
consult the Zynq Technical Reference manual.
8 USB Host
The Arty Z7 implements one of the two available PS USB OTG interfaces on the Zynq device. A
Microchip USB3320 USB 2.0 Transceiver Chip with an 8-bit ULPI interface is used as the PHY.
The PHY features a complete HS-USB Physical Front-End supporting speeds of up to 480Mbs.
The PHY is connected to MIO Bank 1/501, which is powered at 1.8V. The usb0 peripheral is
used on the PS, connected through MIO[28-39]. The USB OTG interface is configured to act as
an embedded host. USB OTG and USB device modes are not supported.
The Arty Z7 is technically an “embedded host”, because it does not provide the required 150 µF
of capacitance on VBUS required to qualify as a general purpose host. It is possible to modify
the Arty Z7 so that it complies with the general purpose USB host requirements by loading C41
with a 150 µF capacitor. Only those experienced at soldering small components on PCBs should
attempt this rework. Many USB peripheral devices will work just fine without loading C41.
Whether the Arty Z7 is configured as an embedded host or a general purpose host, it can provide
500 mA on the 5V VBUS line. Note that loading C41 may cause the Arty Z7 to reset when
booting embedded Linux while powered from the USB port, regardless of if any USB device is
connected to the host port. This is caused by the in-rush current that C41 causes when the USB
host controller is enabled and the VBUS power switch (IC9) is turned on.
Note that if your design uses the USB Host port (embedded or general purpose), then the Arty Z7
should be powered via a battery or wall adapter capable of providing more power (such as the
one included in the Arty Z7 accessory kit).
9 Ethernet PHY
The Arty Z7 uses a Realtek RTL8211E-VL PHY to implement a 10/100/1000 Ethernet port for
network connection. The PHY connects to MIO Bank 501 (1.8V) and interfaces to the Zynq7000 APSoC via RGMII for data and MDIO for management. The auxiliary interrupt (INTB)
and reset (PHYRSTB) signals connect to MIO pins MIO10 and MIO9, respectively.
Figure 9.1. Ethernet PHY signals
After power-up the PHY starts with Auto Negotiation enabled, advertising 10/100/1000 link
speeds and full duplex. If there is an Ethernet-capable partner connected, the PHY automatically
establishes a link with it, even with the Zynq not configured.
Two status indicator LEDs are on-board near the RJ-45 connector that indicate traffic (LD9) and
valid link state (LD8). Table 9.1 shows the default behavior.
Function Designator State
c
LINK
LD8
Blinking 0.4s ON, 2s OFF
ACT
LD9
Blinking
Table 9.1. Ethernet status LEDs.
Description
Link 10/100/1000
Link, Energy Efficient Ethernet (EEE) mode
Transmitting or Receiving
The Zynq incorporates two independent Gigabit Ethernet Controllers. They implement a
10/100/1000 half/full duplex Ethernet MAC. Of these two, GEM 0 can be mapped to the MIO
pins where the PHY is connected. Since the MIO bank is powered from 1.8V, the RGMII
interface uses 1.8V HSTL Class 1 drivers. For this I/O standard an external reference of 0.9V is
provided in bank 501 (PS_MIO_VREF). Mapping out the correct pins and configuring the
interface is handled by the Arty Z7 Zynq Presets file, available on the Arty Z7 Resource Center.
Although the default power-up configuration of the PHY might be enough in most applications,
the MDIO bus is available for management. The RTL8211E-VL is assigned the 5-bit address
00001 on the MDIO bus. With simple register read and write commands, status information can
be read out or configuration changed. The Realtek PHY follows industry-standard register map
for basic configuration.
The RGMII specification calls for the receive (RXC) and transmit clock (TXC) to be delayed
relative to the data signals (RXD[0:3], RXCTL and TXD[0:3], TXCTL). Xilinx PCB guidelines
also require this delay to be added. The RTL8211E-VL is capable of inserting a 2ns delay on
both the TXC and RXC so that board traces do not need to be made longer.
The PHY is clocked from the same 50 MHz oscillator that clocks the Zynq PS. The parasitic
capacitance of the two loads is low enough to be driven from a single source.
On an Ethernet network each node needs a unique MAC address. To this end, the one-timeprogrammable (OTP) region of the Quad-SPI flash has been programmed at the factory with a
48-bit globally unique EUI-48/64™ compatible identifier. The OTP address range [0x20;0x25]
contains the identifier with the first byte in transmission byte order being at the lowest address.
Refer to the Flash memory datasheet for information on how to access the OTP regions. When
using Petalinux, this is automatically handled in the U-boot boot-loader, and the Linux system is
automatically configured to use this unique MAC address.
For more information on using the Gigabit Ethernet MAC, refer to the Zynq Technical Reference
manual.
10 HDMI
The Arty Z7 contains two unbuffered HDMI ports: one source port J11 (output), and one sink
port J10 (input). Both ports use HDMI type-A receptacles with the data and clock signals
terminated and connected directly to the Zynq PL.
Both HDMI and DVI systems use the same TMDS signaling standard, directly supported by
Zynq PL's user I/O infrastructure. Also, HDMI sources are backward compatible with DVI sinks,
and vice versa. Thus, simple passive adaptors (available at most electronics stores) can be used
to drive a DVI monitor or accept a DVI input. The HDMI receptacle only includes digital
signals, so only DVI-D mode is possible.
The 19-pin HDMI connectors include three differential data channels, one differential clock
channel five GND connections, a one-wire Consumer Electronics Control (CEC) bus, a two-wire
Display Data Channel (DDC) bus that is essentially an I2C bus, a Hot Plug Detect (HPD) signal,
a 5V signal capable of delivering up to 50mA, and one reserved (RES) pin. All non-power
signals are wired to the Zynq PL with the exception of RES.
Pin/Signal
J11 (source)
Description
D[2]_P,
D[2]_N
D[1]_P,
D[1]_N
D[0]_P,
D[0]_N
CLK_P,
CLK_N
J10 (sink)
FPGA
pin
Description
Data output
J18, H18 Data input
Data output
K19, J19 Data input
Data output
Clock output
K17,
K18
L16,
L17
Data input
Clock input
FPGA
pin
N20,
P20
T20,
U20
V20,
W20
N18,
P19
CEC
Consumer Electronics
Control bidirectional
G15
Consumer Electronics
Control bidirectional
H17
SCL, SDA
DDC bidirectional
M17,
M18
DDC bidirectional
U14,
U15
HPD/HPA
Hot-plug detect input
(inverted)
R19
Hot-plug assert output
T19
Table 10.1. HDMI pin description and assignment.
10.1 TMDS Signals
HDMI/DVI is a high-speed digital video stream interface using transition-minimized differential
signaling (TMDS). To make proper use of either of the HDMI ports, a standard-compliant
transmitter or receiver needs to be implemented in the Zynq PL. The implementation details are
outside the scope of this manual. Check out the vivado-library IP Core repository on the Digilent
github for ready-to-use reference IP.
10.2 Auxiliary signals
Whenever a sink is ready and wishes to announce its presence, it connects the 5V0 supply pin to
the HPD pin. On the Arty Z7, this is done by driving the Hot Plug Assert signal high. Note this
should only be done after a DDC channel slave has been implemented in the Zynq PL and is
ready to transmit display data.
The Display Data Channel, or DDC, is a collection of protocols that enable communication
between the display (sink) and graphics adapter (source). The DDC2B variant is based on I2C,
the bus master being the source and the bus slave the sink. When a source detects high level on
the HPD pin, it queries the sink over the DDC bus for video capabilities. It determines whether
the sink is DVI or HDMI-capable and what resolutions are supported. Only afterwards will video
transmission begin. Refer to VESA E-DDC specifications for more information.
The Consumer Electronics Control, or CEC, is an optional protocol that allows control messages
to be passed around on an HDMI chain between different products. A common use case is a TV
passing control messages originating from a universal remote to a DVR or satellite receiver. It is
a one-wire protocol at 3.3V level connected to a Zynq PL user I/O pin. The wire can be
controlled in an open-drain fashion allowing for multiple devices sharing a common CEC wire.
Refer to the CEC addendum of HDMI 1.3 or later specifications for more information.
11 Clock Sources
The Arty Z7 provides a 50 MHz clock to the Zynq PS_CLK input, which is used to generate the
clocks for each of the PS subsystems. The 50 MHz input allows the processor to operate at a
maximum frequency of 650 MHz and the DDR3 memory controller to operate at a maximum of
525 MHz (1050 Mbps). The Arty Z7 Zynq Presets file available on the Arty Z7 Resource Center
can be imported into the Zynq Processing System IP core in a Vivado project to properly
configure the Zynq to work with the 50 MHz input clock.
The PS has a dedicated PLL capable of generating up to four reference clocks, each with settable
frequencies, that can be used to clock custom logic implemented in the PL. Additionally, the
Arty Z7 provides an external 125 MHz reference clock directly to pin H16 of the PL. The
external reference clock allows the PL to be used completely independently of the PS, which can
be useful for simple applications that do not require the processor.
The PL of the Zynq-Z7020 also includes 4 MMCM’s and 4 PLL’s that can be used to generate
clocks with precise frequencies and phase relationships. Any of the four PS reference clocks or
the 125 MHz external reference clock can be used as an input to the MMCMs and PLLs. For a
full description of the capabilities of the Zynq PL clocking resources, refer to the “7 Series
FPGAs Clocking Resources User Guide” available from Xilinx.
Figure 11.1 outlines the clocking scheme used on the Arty Z7. Note that the reference clock
output from the Ethernet PHY is used as the 125 MHz reference clock to the PL, in order to cut
the cost of including a dedicated oscillator for this purpose. Keep in mind that CLK125 will be
disabled when the Ethernet PHY (IC1) is held in hardware reset by driving the PHYRSTB signal
low.
Figure 11.1. Arty Z7 clocking.
12 Basic I/O
The Arty Z7 board includes two tri-color LEDs, 2 switches, 4 push buttons, and 4 individual
LEDs as shown in Figure 12.1. The push buttons and slide switches are connected to the Zynq
PL via series resistors to prevent damage from inadvertent short circuits (a short circuit could
occur if an FPGA pin assigned to a push button or slide switch was inadvertently defined as an
output). The four push buttons are “momentary” switches that normally generate a low output
when they are at rest, and a high output only when they are pressed. Slide switches generate
constant high or low inputs depending on their position.
Figure 12.1. Arty Z7 GPIO.
The four individual high-efficiency LEDs are anode-connected to the Zynq PL via 330-ohm
resistors, so they will turn on when a logic high voltage is applied to their respective I/O pin.
Additional LEDs that are not user-accessible indicate power-on, PL programming status, and
USB and Ethernet port status.
12.1 Tri-Color LEDs
The Arty Z7 board contains two tri-color LEDs. Each tri-color LED has three input signals that
drive the cathodes of three smaller internal LEDs: one red, one blue, and one green. Driving the
signal corresponding to one of these colors high will illuminate the internal LED. The input
signals are driven by the Zynq PL through a transistor, which inverts the signals. Therefore, to
light up the tri-color LED, the corresponding signals need to be driven high. The tri-color LED
will emit a color dependent on the combination of internal LEDs that are currently being
illuminated. For example, if the red and blue signals are driven high and green is driven low, the
tri-color LED will emit a purple color.
Digilent strongly recommends the use of pulse-width modulation (PWM) when driving the tricolor LEDs. Driving any of the inputs to a steady logic ‘1’ will result in the LED being
illuminated at an uncomfortably bright level. You can avoid this by ensuring that none of the tricolor signals are driven with more than a 50% duty cycle. Using PWM also greatly expands the
potential color palette of the tri-color led. Individually adjusting the duty cycle of each color
between 50% and 0% causes the different colors to be illuminated at different intensities,
allowing virtually any color to be displayed.
13 Mono Audio Output
The on-board audio jack (J13) is driven by a Sallen-Key Butterworth Low-pass 4th Order Filter
that provides mono audio output. The circuit of the low-pass filter is shown in Figure 14.1. The
input of the filter (AUD_PWM) is connected to the Zynq PL pin R18. A digital input will
typically be a pulse-width modulated (PWM) or pulse density modulated (PDM) open-drain
signal produced by the FPGA. The signal needs to be driven low for logic ‘0’ and left in highimpedance for logic ‘1’. An on-board pull-up resistor to a clean analog 3.3V rail will establish
the proper voltage for logic ‘1’. The low-pass filter on the input will act as a reconstruction filter
to convert the pulse-width modulated digital signal into an analog voltage on the audio jack
output.
Figure 13.1. Audio Output Circuit.
The Audio shut-down signal (AUD_SD) is used to mute the audio output. It is connected to
Zynq PL pin T17. To use the audio output, this signal must be driven to logic high.
The frequency response of SK Butterworth Low-Pass Filter is shown in Figure 13.2. The AC
analysis of the circuit is done using NI Multisim 12.0.
Figure 13.2. Audio Output Frequency Response.
13.1 Pulse-Width Modulation
A pulse-width modulated (PWM) signal is a chain of pulses at some fixed frequency, with each
pulse potentially having a different width. This digital signal can be passed through a simple
low-pass filter that integrates the digital waveform to produce an analog voltage proportional to
the average pulse-width over some interval (the interval is determined by the 3dB cut-off
frequency of the low-pass filter and the pulse frequency). For example, if the pulses are high for
an average of 10% of the available pulse period, then an integrator will produce an analog value
that is 10% of the Vdd voltage. Figure 13.1.1 shows a waveform represented as a PWM signal.
Figure 13.1.1. PWM Waveform.
The PWM signal must be integrated to define an analog voltage. The low-pass filter 3dB
frequency should be an order of magnitude lower than the PWM frequency, so that signal energy
at the PWM frequency is filtered from the signal. For example, if an audio signal must contain
up to 5 KHz of frequency information, then the PWM frequency should be at least 50 KHz (and
preferably even higher). In general, in terms of analog signal fidelity, the higher the PWM
frequency, the better. Figure 13.1.2 shows a representation of a PWM integrator producing an
output voltage by integrating the pulse train. Note the steady-state filter output signal amplitude
ratio to Vdd is the same as the pulse-width duty cycle (duty cycle is defined as pulse-high time
divided by pulse-window time).
Figure 13.1.2. PWM Output Voltage.
14 Reset Sources
14.1 Power-on Reset
The Zynq PS supports external power-on reset signals. The power-on reset is the master reset of
the entire chip. This signal resets every register in the device capable of being reset. The Arty Z7
drives this signal from the PGOOD signal of the TPS65400 power regulator in order to hold the
system in reset until all power supplies are valid.
14.2 Program Push Button Switch
A PROG push switch, labeled PROG, toggles Zynq PROG_B. This resets the PL and causes
DONE to be de-asserted. The PL will remain unconfigured until it is reprogrammed by the
processor or via JTAG.
14.3 Processor Subsystem Reset
The external system reset, labeled SRST, resets the Zynq device without disturbing the debug
environment. For example, the previous break points set by the user remain valid after system
reset. Due to security concerns, system reset erases all memory content within the PS, including
the OCM. The PL is also cleared during a system reset. System reset does not cause the boot
mode strapping pins to be re-sampled.
The SRST button also causes the CK_RST signal to toggle in order to trigger a reset on any
attached shields.
15 Pmod Ports
Pmod ports are 2×6, right-angle, 100-mil spaced female connectors that mate with standard 2×6
pin headers. Each 12-pin Pmod port provides two 3.3V VCC signals (pins 6 and 12), two Ground
signals (pins 5 and 11), and eight logic signals, as shown in Figure 15.1. The VCC and Ground
pins can deliver up to 1A of current, but care must be taken not to exceed any of the power
budgets of the onboard regulators or the external power supply (see the 3.3V rail current limits
listed in the “Power Supplies” section).
Figure 15.1. Pmod Port Diagram
Digilent produces a large collection of Pmod accessory boards that can attach to the Pmod
expansion connectors to add ready-made functions like A/D’s, D/A’s, motor drivers, sensors, and
other functions. See www.digilentinc.com for more information.
Each Pmod port found on Digilent FPGA boards falls into one of four categories: standard, MIO
connected, XADC, or high-speed. The Arty Z7 has two Pmod ports, both of which are the highspeed type. The following section describes the high-speed type of Pmod port.
15.1 High-Speed Pmods
The High-speed Pmods have their data signals routed as impedance matched differential pairs for
maximum switching speeds. They have pads for loading resistors for added protection, but the
Arty Z7 ships with these loaded as 0-Ohm shunts. With the series resistors shunted, these Pmods
offer no protection against short circuits, but allow for much faster switching speeds. The signals
are paired to the adjacent signals in the same row: pins 1 and 2, pins 3 and 4, pins 7 and 8, and
pins 9 and 10.
Traces are routed 100 ohm (+/- 10%) differential.
If pins on this port are used as single-ended signals, coupled pairs may exhibit crosstalk. In
applications where this is a concern, one of the signals should be grounded (drive it low from the
FPGA) and use its pair for the signal-ended signal.
Since the High-Speed Pmods have 0-ohm shunts instead of protection resistors, the operator
must take precaution to ensure that they do not cause any shorts.
16 Arduino/chipKIT Shield Connector
The Arty Z7 can be connected to standard Arduino and chipKIT shields to add extended
functionality. Special care was taken while designing the Arty Z7 to make sure it is compatible
with the majority of Arduino and chipKIT shields on the market. The shield connector has 49
pins connected to the Zynq PL for general purpose Digital I/O on the Arty Z7-7020 and 26 on
the Arty Z7-7010. Due to the flexibility of FPGAs, it is possible to use these pins for just about
anything including digital read/write, SPI connections, UART connections, I2C connections, and
PWM. Six of these pins (labeled AN0-AN5) can also be used as single-ended analog inputs with
an input range of 0V-3.3V, and another six (labeled AN6-11) can be used as differential analog
inputs.
Note: The Arty Z7 is not compatible with shields that output 5V digital or analog signals.
Driving pins on the Arty Z7 shield connector above 5V may cause damage to the Zynq.
Figure 16.1. Shield Pin Diagram.
Pin Name
Shield Function
General purpose I/O
IO0-IO13
pins
Arty Z7-7020
IO26-IO41,
General purpose I/O
A (IO42)
pins
I2C Clock
SCL
I2C Data
SDA
SPI Clock
SCLK
SPI Data out
MOSI
SPI Data in
MISO
SPI Slave Select
SS
Single-Ended
A0-A5
Analog Input
Differential Analog
A6-A11
Input
Dedicated
V_P, V_N Differential Analog
Input
XADC Analog
XGND
Ground
XADC Analog
XVREF
Voltage Reference
Not Connected
N/C
Digital I/O Voltage
IOREF
reference
RST
Reset to Shield
3V3
3.3V Power Rail
5V0
5.0V Power Rail
GND, G
Ground
VIN
Power Input
Arty Z7 Connection
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Digital I/O”
See Section titled “Shield Analog I/O”
See Section titled “Shield Analog I/O”
See Section titled “Shield Analog I/O”
Connected to net used to drive the XADC ground reference
on the Zynq (VREFN)
Connected to 1.25 V, 25mA rail used to drive the XADC
voltage reference on the Zynq (VREFP)
Not Connected
Connected to the Arty Z7 3.3V Power Rail (See the “Power
Supplies” section)
Connected to the red “SRST” button and MIO pin 12 of the
Zynq. When JP1 is shorted, it is also connected to the DTR
signal of the FTDI USB-UART bridge.
Connected to the Arty Z7 3.3V Power Rail (See the “Power
Supplies” section)
Connected to the Arty Z7 5.0V Power Rail (See the “Power
Supplies” section)
Connected to the Ground plane of Arty Z7
Connected in parallel with the external power supply
connector (J18).
Table 16.1. Shield Pin Descriptions.
16.1 Shield Digital I/O
The pins connected directly to the Zynq PL can be used as general purpose inputs or outputs.
These pins include the I2C, SPI, and general purpose I/O pins. There are 200 Ohm series
resistors between the FPGA and the digital I/O pins to help provide protection against accidental
short circuits (with the exception of the AN5-AN0 signals, which have no series resistors, and
the AN6-AN12 signals, which have 100 Ohm series resistors). The absolute maximum and
recommended operating voltages for these pins are outlined in the table below.
IO26-IO41 and A (IO42) are not accessible on the Arty Z7-7010. Also, AN0-AN5 cannot be
used as Digital I/O on the Arty Z7-7010. This is due to fewer number of I/O pins being available
on the Zynq 7010 than on the Zynq 7020.
Absolute
Minimum
Voltage
Powered -0.4 V
Unpowered -0.4 V
Recommended
Absolute
Recommended
Maximum
Minimum Operating Maximum Operating
Voltage
Voltage
Voltage
-0.2 V
3.4 V
3.75 V
N/A
N/A
0.55 V
Table 16.1.1. Shield Digital Voltages.
For more information on the electrical characteristics of the pins connected to the Zynq PL,
please see the Zynq-7000 datasheet from Xilinx.
16.2 Shield Analog I/O
The pins labeled A0-A11 and V_P/V_N are used as analog inputs to the XADC module of the
Zynq. The Zynq expects that the inputs range from 0-1 V. On the pins labeled A0-A5 we use an
external circuit to scale down the input voltage from 3.3V. This circuit is shown in Figure 16.2.1.
This circuit allows the XADC module to accurately measure any voltage between 0V and 3.3V
(relative to the Arty Z7's GND) that is applied to any of these pins. If you wish to use the pins
labeled A0-A5 as Digital inputs or outputs, they are also connected directly to the Zynq PL
before the resistor divider circuit (also shown in Figure 16.2.1) on the Arty Z7-7020. This
additional connection is not made on the Arty Z7-7010, which is why these signals can only be
used as analog inputs on that variant.
Figure 16.2.1. Single-Ended Analog Inputs.
The pins labeled A6-A11 are connected directly to 3 pairs of analog capable pins on the Zynq PL
via an anti-aliasing filter. This circuit is shown in Figure 16.2.2. These pairs of pins can be used
as differential analog inputs with a voltage difference between 0-1V. The even numbers are
connected to the positive pins of the pair and the odd numbers are connected to the negative pins
(so A6 and A7 form an analog input pair with A6 being positive and A7 being negative). Note
that though the pads for the capacitor are present, they are not loaded for these pins. Since the
analog capable pins of the FPGA can also be used like normal digital FPGA pins, it is also
possible to use these pins for Digital I/O.
The pins labeled V_P and V_N are connected to the VP_0 and VN_0 dedicated analog inputs of
the FPGA. This pair of pins can also be used as a differential analog input with voltage between
0-1V, but they cannot be used as Digital I/O. The capacitor in the circuit shown in Figure 16.2.2
for this pair of pins is loaded on the Arty Z7.
Figure 16.2.2. Differential Analog Inputs.
The XADC core within the Zynq is a dual channel 12-bit analog-to-digital converter capable of
operating at 1 MSPS. Either channel can be driven by any of the analog inputs connected to the
shield pins. The XADC core is controlled and accessed from a user design via the Dynamic
Reconfiguration Port (DRP). The DRP also provides access to voltage monitors that are present
on each of the FPGA’s power rails, and a temperature sensor that is internal to the FPGA. For
more information on using the XADC core, refer to the Xilinx document titled “7 Series FPGAs
and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital
Converter”. It is also possible to access the XADC core directly using the PS, via the “PSXADC” interface. This interface is described in full in chapter 30 of the Zynq Technical
Reference manual.
https://reference.digilentinc.com/reference/programmable‐logic/arty‐z7/reference‐manual