0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX9387EUG+T

MAX9387EUG+T

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    IC INTEGRATED CIRCUIT

  • 数据手册
  • 价格&库存
MAX9387EUG+T 数据手册
19-2617; Rev 1; 12/02 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers The differential inputs D_, D_ can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output VBB. All the differential inputs have internal bias and clamping circuits that ensure low-default output states when the inputs are left open. The MAX9386/MAX9387/MAX9388 operate with a wide supply range | V CC - V EE | of 2.375V to 5.5V. The MAX9386/MAX9388 are offered in 20-pin TSSOP and QSOP packages. The MAX9387 is offered in 24-pin TSSOP and QSOP packages. Features ♦ 318ps (typ) Propagation Delay ♦ >2.7GHz Toggle Frequency ♦ 0.3ps(RMS) Random Jitter ♦ 2kV ESD Protection (Human Body Model) Ordering Information PART MAX9386EUP TEMP RANGE PINPACKAGE -40°C to +85°C 20 TSSOP MAX9386EEP* -40°C to +85°C 20 QSOP SELECTION 5:1 mux with 1 output buffer 5:1 mux with 1 output buffer Ordering Information continued at end of data sheet. *Future product—contact factory for availability. Pin Configurations Applications High-Speed Telecom and Datacom Applications Central Office Backplane Clock Distribution DSLAM/DLC TOP VIEW DO 1 20 VCC DO 2 19 SEL2 D1 3 18 SEL1 D1 4 D2 5 17 SEL0 MAX9386 16 Q D2 6 15 Q D3 7 14 VCC D3 8 13 VBB1 D4 9 12 VBB2 D4 10 11 VEE TSSOP/QSOP Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX9386/MAX9387/MAX9388 General Description The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, low-jitter ECL/PECL multiplexers (muxes) with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and output-to-output skews (3.9ps, typ). The MAX9386 is a 5:1 mux with a single output buffer. The MAX9387 is a 5:1 mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57. Three single-ended select inputs, SEL0, SEL1, and SEL2, control the mux function on the MAX9386/ MAX9387. The MAX9388 has two select inputs, SEL0 and SEL1. The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output VBB, nominally VCC - 1.425V. The select inputs accept signals between VCC and VEE. Internal pulldowns to VEE ensure a low-default condition if the select inputs are left open. MAX9386/MAX9387/MAX9388 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers ABSOLUTE MAXIMUM RATINGS 20-Lead QSOP (derate 9.1mW/°C above +70°C) .......727mW θJA in Still Air .........................................................+110°C/W θJC ...........................................................................+34°C/W 24-Lead QSOP (derate 9.5mW/°C above +70°C) .......762mW θJA in Still Air .........................................................+105°C/W θJC ...........................................................................+34°C/W Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C ESD Protection Human Body Model (D_, D_, Q_, Q_, SEL_, VBB_) .............≥2kV Lead Temperature (soldering, 10s) .................................+300°C VCC - VEE ...............................................................-0.3V to +6.0V Inputs (D_, D_, SEL_) to VEE ......................-0.3V to (VCC + 0.3V) D_ to D_ ..............................................................................±3.0V Continuous Output Current .................................................50mA Surge Output Current........................................................100mA VBB_ Sink/Source Current ...............................................±600µA Continuous Power Dissipation (TA = +70°C) 20-Lead TSSOP (derate 11.0mW/°C above +70°C) ....880mW θJA in Still Air ...........................................................+91°C/W θJC ...........................................................................+20°C/W 24-Lead TSSOP (derate 12.2mW/°C above +70°C) ....976mW θJA in Still Air ...........................................................+82°C/W θJC ...........................................................................+15°C/W Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (VCC - VEE = 2.375V to 5.5V, outputs loaded with 50Ω ±1% to VCC - 2V. Typical values are at VCC - VEE = 3.3V, VIHD = VCC - 1V, VILD = VCC - 1.5V, unless otherwise noted.) (Notes 1–4) PARAMETER SYMBOL CONDITIONS -40°C MIN TYP +25°C MAX MIN TYP +85°C MAX MIN TYP MAX UNITS INPUT (D_, D_, SEL_) Single-Ended Input High Voltage VIH VBB connected to the unused input (Figure 1) VCC 1.225 VCC - VCC 0.880 1.225 VCC - VCC 0.880 1.225 VCC 0.880 V Single-Ended Input Low Voltage VIL VBB connected to the unused input (Figure 1) VCC 1.945 VCC - VCC 1.625 1.945 VCC - VCC 1.625 1.945 VCC 1.625 V Differential Input High Voltage VIHD Figure 1 VEE + 1.2 VCC VEE + 1.2 VCC VEE + 1.2 VCC V Differential Input Low Voltage VILD Figure 1 VEE VCC 0.095 VEE VCC 0.095 VEE VCC 0.095 V VCC - VEE < 3.0V 0.095 VCC VEE 0.095 VCC VEE 0.095 VCC VEE VCC - VEE ≥ 3.0V 0.095 3.000 0.095 3.000 0.095 3.000 -100 +100 +100 +100 Differential Input Voltage Input Current 2 VIHD - VILD Figure 1 IIN VIH, VIL, VIHD, VILD -100 -100 _______________________________________________________________________________________ V µA Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers (VCC - VEE = 2.375V to 5.5V, outputs loaded with 50Ω ±1% to VCC - 2V. Typical values are at VCC - VEE = 3.3V, VIHD = VCC - 1V, VILD = VCC - 1.5V, unless otherwise noted.) (Notes 1–4) PARAMETER SYMBOL CONDITIONS -40°C MIN TYP +25°C MAX MIN TYP +85°C MAX MIN TYP MAX UNITS OUTPUT (Q_, Q_) Single-Ended Output High Voltage VOH Figure 2 VCC 1.145 VCC - VCC 0.895 1.145 VCC - VCC 0.895 1.145 VCC 0.895 V Single-Ended Output Low Voltage VOL Figure 2 VCC 1.945 VCC - VCC 1.695 1.945 VCC - VCC 1.695 1.945 VCC 1.695 V Differential Output Voltage VOH - VOL Figure 2 650 830 650 840 650 840 mV REFERENCE OUTPUT (VBB_ ) Reference Voltage Output VBB1, VBB2 IBB1 + IBB2 = ±0.5mA (Note 5) VCC - VCC - VCC - VCC - VCC - VCC - VCC - VCC - VCC 1.525 1.425 1.325 1.525 1.425 1.325 1.525 1.425 1.325 V POWER SUPPLY Supply Current (Note 6) IEE MAX9386 34 50 36 50 38 50 MAX9387 40 60 42 60 45 60 MAX9388 31 47 33 47 35 47 mA AC ELECTRICAL CHARACTERISTICS (VCC - VEE = 2.375V to 5.5V, outputs loaded with 50Ω ±1% to VCC - 2V, VIHD - VILD = 0.15V to 1V, fIN ≤ 2.5GHz input duty cycle = 50%, input transition time = 125ps (20% to 80%). Typical values are at VCC - VEE = 3.3V, VIHD = VCC - 1V, VILD = VCC - 1.5V, fIN = 622MHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS -40°C +25°C +85°C UNITS MIN TYP MAX MIN TYP MAX MIN TYP MAX 222 309 377 238 318 395 254 333 431 ps 1.6 ns Differential Input-to-Output Delay tPLHD, tPHLD Figure 2 SEL_-to-Output Delay tPLH2, tPHL2 Figure 4, input transition time = 500ps (20% to 80%) (Note 8) Output-toOutput Skew tSKOO MAX9387 only, Figure 5 (Note 9) 3.9 26 3.9 14 8.0 26 ps Input-to-Output Skew tSKIO Figure 6 (Note 10) 7.3 53 7.7 50 8.3 50 ps Part-to-Part Skew tSKPP (Note 11) 133 ps 1.64 111 1.4 130 _______________________________________________________________________________________ 3 MAX9386/MAX9387/MAX9388 DC ELECTRICAL CHARACTERISTICS (continued) MAX9386/MAX9387/MAX9388 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers AC ELECTRICAL CHARACTERISTICS (continued) VCC - VEE = 2.375V to 5.5V, outputs loaded with 50Ω ±1% to VCC - 2V, VIHD - VILD = 0.15V to 1V, fIN ≤ 2.5GHz input duty cycle = 50%, input transition time = 125ps (20% to 80%). Typical values are at VCC - VEE = 3.3V, VIHD = VCC - 1V, VILD = VCC - 1.5V, fIN = 622MHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.) (Note 7) PARAMETER SYMBOL Added Random Jitter (Note 12) tRJ Added Deterministic Jitter (Note 12) TDJ Switching Frequency fMAX Select Toggle Frequency fSEL Output Rise and Fall Time (20% to 80%) t R , tF CONDITIONS Clock pattern PRBS 223 - 1 +25°C TYP MAX fIN = 156MHz 0.3 fIN = 622MHz 0.3 fIN = 2.5GHz MIN +85°C TYP MAX 1.15 0.3 1.15 0.3 0.3 1.15 fIN = 156Mbps 33 fIN = 622Mbps 21 MIN TYP MAX 1.15 0.3 1.15 1.15 0.3 1.15 0.3 1.15 0.3 1.15 95 33 95 33 95 61 21 61 21 61 UNITS ps(RMS) psP-P VOH - VOL ≥ 300mV, Figure 2 Figure 2 -40°C MIN 2.7 2.7 2.7 GHz 100 100 100 MHz 67 105 138 74 117 155 81 128 165 ps Measurements are made with the device in thermal equilibrium. Current into an I/O pin is defined as positive. Current out of an I/O pin is defined as negative. DC parameters production tested at TA = +25°C and guaranteed by design over the full operating temperature range. Single-ended data input operation using VBB_ is limited to (VCC - VEE) ≥ 3.0V. Use VBB_ only for inputs that are on the same device as the VBB_ reference. All pins open except VCC and VEE. Guaranteed by design and characterization. Limits are set at ±6 sigma. Measured from the 50% point of the input signal with the 50% point equal to VBB, to the 50% point of the output signal. Measured between outputs of the same part at the signal crossing points for a same-edge transition. Measured between input-to-output paths of the same part at the signal crossing points for a same-edge transition of the differential input signal. Note 11: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition. Note 12: Device jitter added to the differential input signal. Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: 4 _______________________________________________________________________________________ Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers OUTPUT AMPLITUDE (VOH - VOL) vs. FREQUENCY OUTPUT VOLTAGE (mV) 45 40 35 30 140 RISE/FALL TIME (ps) 800 50 150 MAX9386 toc02 55 600 400 20 10 35 60 85 90 400 0 TEMPERATURE (°C) 800 1200 1600 2000 2400 2800 -15 360 35 60 85 DIFFERENTIAL PROPAGATION DELAY vs. TEMPERATURE 350 340 TRANSITION TIME (ps) 350 10 TEMPERATURE (°C) MAX9386 toc04 370 340 tPHLD 320 tPLHD 310 -40 FREQUENCY (MHz) DIFFERENTIAL PROPAGATION DELAY vs. INPUT HIGH VOLTAGE 330 110 300 MAX9386 toc05 -15 FALL 120 100 0 -40 130 RISE 200 25 PROPAGATION DELAY (ps) SUPPLY CURRENT (mA) 1000 MAX9386 toc01 60 OUTPUT RISE/FALL vs. TEMPERATURE MAX9386 toc03 SUPPLY CURRENT (IEE) vs. TEMPERATURE 330 tPLHD 320 tPHLD 310 300 290 290 280 270 280 1.2 1.5 1.8 2.1 2.4 INPUT HIGH VOLTAGE (V) 2.7 3.0 -40 -15 10 35 60 85 TEMPERATURE (°C) _______________________________________________________________________________________ 5 MAX9386/MAX9387/MAX9388 Typical Operating Characteristics (VCC - VEE = 3.3V, VIHD = VCC - 1V, VILD = VCC - 1.5V, outputs loaded with 50Ω ±1% to VCC - 2V, fIN = 1.5GHz, input duty cycle = 50%, input transition time = 125ps (20% to 80%), unless otherwise noted.) MAX9386/MAX9387/MAX9388 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers MAX9386/MAX9388 Pin Description PIN NAME FUNCTION MAX9386 MAX9388 1 2 D0 Noninverting Differential Input 0. Internal 250kΩ to VCC and 150kΩ to VEE. 2 3 D0 Inverting Differential Input 0. Internal 150kΩ to VCC and 150kΩ to VEE. 3 4 D1 Noninverting Differential Input 1. Internal 250kΩ to VCC and 150kΩ to VEE. 4 5 D1 Inverting Differential Input 1. Internal 150kΩ to VCC and 150kΩ to VEE. 5 6 D2 Noninverting Differential Input 2. Internal 250kΩ to VCC and 150kΩ to VEE. 6 7 D2 Inverting Differential Input 2. Internal 150kΩ to VCC and 150kΩ to VEE. 7 8 D3 Noninverting Differential Input 3. Internal 250kΩ to VCC and 150kΩ to VEE. 8 9 D3 Inverting Differential Input 3. Internal 150kΩ to VCC and 150kΩ to VEE. 9 — D4 Noninverting Differential Input 4. Internal 250kΩ to VCC and 150kΩ to VEE. 10 — D4 Inverting Differential Input 4. Internal 150kΩ to VCC and 150kΩ to VEE. 11 10, 11 VEE Negative Supply 12 12 VBB2 Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass VBB2 to VCC with a 0.01µF ceramic capacitor. Otherwise leave open. 13 13 VBB1 Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass VBB1 to VCC with a 0.01µF ceramic capacitor. Otherwise leave open. 14, 20 1, 14 17, 20 VCC Positive Supply. Bypass each VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device. 15 15 Q Inverting Output. Typically terminate with 50Ω resistor to VCC - 2V. 16 16 Q Noninverting Output. Typically terminate with 50Ω resistor to VCC - 2V. 17 18 SEL0 Select Logic Input 0. Internal 120kΩ pulldown to VEE. 18 19 SEL1 Select Logic Input 1. Internal 120kΩ pulldown to VEE. 19 — SEL2 Select Logic Input 2. Internal 120kΩ pulldown to VEE. 6 _______________________________________________________________________________________ Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers PIN NAME FUNCTION MAX9387 Positive Supply. Bypass each VCC to VEE with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device. 1, 18, 24 VCC 2 D0 Noninverting Differential Input 0. Internal 250kΩ to VCC and 150kΩ to VEE. 3 D0 Inverting Differential Input 0. Internal 150kΩ to VCC and 150kΩ to VEE. 4 D1 Noninverting Differential Input 1. Internal 250kΩ to VCC and 150kΩ to VEE. 5 D1 Inverting Differential Input 1. Internal 150kΩ to VCC and 150kΩ to VEE. 6 D2 Noninverting Differential Input 2. Internal 250kΩ to VCC and 150kΩ to VEE. 7 D2 Inverting Differential Input 2. Internal 150kΩ to VCC and 150kΩ to VEE. 8 D3 Noninverting Differential Input 3. Internal 250kΩ to VCC and 150kΩ to VEE. 9 D3 Inverting Differential Input 3. Internal 150kΩ to VCC and 150kΩ to VEE. 10 D4 Noninverting Differential Input 4. Internal 250kΩ to VCC and 150kΩ to VEE. 11 D4 Inverting Differential Input 4. Internal 150kΩ to VCC and 150kΩ to VEE. 12, 13 VEE Negative Supply 14 VBB2 Reference Output Voltage 2. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass VBB2 to VCC with a 0.01µF ceramic capacitor. Otherwise leave open. 15 VBB1 Reference Output Voltage 1. Connect to the inverting or noninverting data input to provide a reference for single-ended operation. When used, bypass VBB1 to VCC with a 0.01µF ceramic capacitor. Otherwise leave open. 16 Q1 Inverting Output 1. Typically terminate with 50Ω resistor to VCC - 2V. 17 Q1 Noninverting Output 1. Typically terminate with 50Ω resistor to VCC - 2V. 19 Q0 Inverting Output 0. Typically terminate with 50Ω resistor to VCC - 2V. 20 Q0 Noninverting Output 0. Typically terminate with 50Ω resistor to VCC - 2V. 21 SEL0 Select Logic Input 0. Internal 120kΩ pulldown to VEE. 22 SEL1 Select Logic Input 1. Internal 120kΩ pulldown to VEE. 23 SEL2 Select Logic Input 2. Internal 120kΩ pulldown to VEE. _______________________________________________________________________________________ 7 MAX9386/MAX9387/MAX9388 MAX9387 Pin Description MAX9386/MAX9387/MAX9388 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers VCC VCC VIHD (MAX) VIHD - VILD VIH VILD (MAX) VBB VIL VIHD (MIN) VIHD - VILD VILD (MIN) VEE VEE SINGLE-ENDED INPUT VOLTAGE DEFINITION DIFFERENTIAL INPUT VOLTAGE DEFINITION Figure 1. Input Definitions VIHD D_ VIHD - VILD VILD D_ tPLHD tPHLD VOH Q_ VOH - VOL VOL Q_ 80% VOH - VOL 80% DIFFERENTIAL OUTPUT WAVEFORM 0V (DIFFERENTIAL) VOH - VOL 20% 20% Q_ - Q_ tR tF Figure 2. Differential Input-to-Output Propagation Delay Timing Diagram VIH D_ WHEN D_ = VBB VBB OR VBB VIL D_ WHEN D_ = VBB tPLH1 tPHL1 VOH Q_ VOH - VOL Q_ VOL Figure 3. Single-Ended Input-to-Output Propagation Delay Timing Diagram 8 _______________________________________________________________________________________ Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers MAX9386/MAX9387/MAX9388 VIHD D_, D1 VIHD - VILD VILD D_, D1 VIH VBB SEL_ = VIL OR OPEN SELO VIL tPLH2 tPHL2 VOH Q_ VOH - VOL VOL Q_ Figure 4. Select Input (SEL0)-to-Output (Q_, Q_) Delay Timing Diagram Q0 Q0 Q1 Q1 tSKOO tSKOO Figure 5. Output-to-Output Skew (tSKOO) Definition (MAX9387 Only) D0 D0 Q0 Q0 tPLHD* tPHLD* tPLHD** tPHLD** D1 OR D2 OR D3 D1 OR D2 OR D3 Q0 Q0 tSKIO = | tPLHD* - tPLHD** | OR | tPHLD* - tPHLD** | tPLHD*: MEASURED BETWEEN D0, D0 INPUT, AND OUTPUT. tPLHD**: MEASURED BETWEEN ANY OTHER INPUT AND OUTPUT. Figure 6. Input-to-Output Skew (tSKIO) Definition _______________________________________________________________________________________ 9 MAX9386/MAX9387/MAX9388 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers Detailed Description The MAX9386/MAX9387/MAX9388 are fully differential, high-speed, and low-jitter ECL/PECL muxes with output buffer(s). The devices are designed for clock-and-data distribution applications, and feature extremely low propagation delays (318ps, typ) and output-to-output skews (3.9ps, typ). The MAX9386 is a 5:1 mux with a single output buffer. The MAX9387 is a 5:1 mux with dual output buffers, and is intended for use in redundant systems. The MAX9388 is a 4:1 mux with a single output buffer, and is pin compatible with the MC100EP57. Three single-ended select inputs, SEL0, SEL1, and SEL2, control the mux function on the MAX9386/ MAX9387. The MAX9388 has two select inputs, SEL0 and SEL1 (see Tables 1 and 2). The mux select inputs are compatible with ECL/PECL logic, and are internally referenced to the on-chip output VBB, nominally VCC 1.425V. The select inputs accept signals between VCC and VEE. Internal 120kΩ pulldowns to VEE ensure a low default condition if the select inputs are left open, selecting the D0, D0 input. The differential inputs D, D can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference voltage Table 1. Mux Select Input Truth Table for MAX9386/MAX9387 SEL2 SEL1 SEL0 DATA OUTPUT L or open L or open L or open D0* L or open L or open H D1 L or open H L or open D2 L or open H H D3 H X X D4 *Default output when SEL0, SEL1, and SEL2 are left open. Table 2. Mux Select Input Truth Table for MAX9388 SEL1 SEL0 DATA OUTPUT L or open L or open D0* L or open H D1 H L or open D2 H H D3 VBB. The reference output voltages, VBB1 and VBB2, provide the reference voltage for single-ended operation for each mux. A single-ended input of at least VBB_ ±100mV or a differential input of at least 100mV switches the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics. The maximum magnitude of the differential input from D to D is ±3.0V. This limit also applies to the difference between a single-ended input and any reference voltage input. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously. Single-Ended Operation The recommended supply voltage for single-ended operation is 3.0V to 5.5V. The differential inputs (D, D) can be configured to accept single-ended inputs when operating at supply voltages greater than 2.725V. In single-ended mode operation, the unused complementary input needs to be connected to the on-chip reference voltage, VBB, as a reference. For example, the differential D, D input is converted to a noninverting, single-ended input by connecting VBB to D and connecting the single-ended input to D. Similarly, an inverting input is obtained by connecting VBB to D and connecting the single-ended input to D. With a differential input configured as single ended (using VBB), the single-ended input can be driven to VCC or VEE or with a single-ended LVPECL/LVECL signal. In single-ended mode operation, a user must ensure that the supply voltage (VCC - V EE ) is greater than 2.725V. This is because the input high minimum level must be at (VEE + 1.2V) or higher for proper operation. The reference voltage, VBB, must be at least (VEE + 1.2V) for the same reason because it becomes the highlevel input when a single-ended input swings below it. The minimum VBB output for the MAX9386/MAX9387/ MAX9388 is (VCC - 1.38V). Substituting the minimum VBB output for (VBB = VEE + 1.2V) results in a minimum supply (VCC - VEE) of 2.725V. Rounding up to standard supplies gives the recommended single-ended operating supply ranges (VCC - VEE) of 3.0V to 5.5V. When using the VBB reference output, bypass it with a 0.01µF ceramic capacitor to VCC. If not used, leave it open. The VBB reference can source or sink a total of 0.5mA (shared between VBB1 and VBB2), which is sufficient to drive five inputs. *Default output when SEL0 and SEL1 are left open. 10 ______________________________________________________________________________________ Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers Functional Block Diagram Output Termination Terminate the outputs through 50Ω to VCC - 2V or use equivalent Thevenin terminations. Terminate each Q and Q output with identical termination on each for minimal distortion. When a single-ended signal is taken from the differential output, terminate both Q and Q. Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device’s total thermal limits should be observed. Supply Bypassing Bypass VCC to VEE with high-frequency surface-mount ceramic 0.1µF and 0.01µF capacitors. For PECL, bypass each VCC to VEE. For ECL, bypass each VEE to VCC. Place the capacitors as close to the device as possible with the 0.01µF capacitor closest to the device pins. Use multiple vias when connecting the bypass capacitors to ground. When using the VBB1 or VBB2 reference outputs, bypass each one with a 0.01µF ceramic capacitor to VCC. If the VBB1 or VBB2 reference outputs are not used, they can be left open. D0 D0 Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces. Chip Information TRANSISTOR COUNT: 583 PROCESS: Bipolar VEE D1 D1 Q0 (Q*) D2 Q0 (Q*) MUX D2 Q1* D3 Q1* D3 VBB1 D4** VBB2 VCC D4** SEL0 250kΩ 150kΩ SEL1 D_ D_ SEL2** 120kΩ Traces Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity. VCC MAX9386 MAX9387 MAX9388 150kΩ 150kΩ VEE VEE MAX9386 (*) DOES NOT HAVE Q1 AND Q1 OUTPUTS, AND MAX9388 (**) DOES NOT HAVE D4, D4, AND SEL2 INPUTS. Ordering Information (continued) PART TEMP RANGE PINPACKAGE SELECTION MAX9387EUG -40°C to +85°C 24 TSSOP 5:1 mux with 2 output buffers MAX9387EEG* -40°C to +85°C 24 QSOP 5:1 mux with 2 output buffers MAX9388EUP -40°C to +85°C 20 TSSOP MAX9388EEP* -40°C to +85°C 20 QSOP 4:1 mux with 1 output buffer 4:1 mux with 1 output buffer *Future product—contact factory for availability. ______________________________________________________________________________________ 11 MAX9386/MAX9387/MAX9388 Applications Information Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers MAX9386/MAX9387/MAX9388 Pin Configurations (continued) TOP VIEW VCC 1 20 VCC VCC 1 24 VCC DO 2 19 SEL1 DO 2 23 SEL2 DO 3 18 SEL0 DO 3 22 SEL1 17 VCC D1 4 16 Q D1 5 D2 6 15 Q D2 6 19 Q0 D2 7 14 VCC D2 7 18 VCC D3 8 13 VBB1 D3 8 17 Q1 D3 9 12 VBB2 D3 9 16 Q1 VEE 10 11 VEE D4 10 15 VBB1 D4 11 14 VBB2 VEE 12 13 VEE D1 4 D1 5 MAX9388 TSSOP/QSOP 21 SEL0 MAX9387 20 Q0 TSSOP/QSOP 12 ______________________________________________________________________________________ Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers TSSOP4.40mm.EPS ______________________________________________________________________________________ 13 MAX9386/MAX9387/MAX9388 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) QSOP.EPS MAX9386/MAX9387/MAX9388 Differential 5:1 or 4:1 ECL/PECL Multiplexers with Single/Dual Output Buffers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX9387EUG+T 价格&库存

很抱歉,暂时无法提供与“MAX9387EUG+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货