0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DRV8809PAP

DRV8809PAP

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    HTQFP64_EP

  • 描述:

    IC MTR DRVR BIPOLAR 7-40V 64HQFP

  • 数据手册
  • 价格&库存
DRV8809PAP 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 DRV8809/10 Combination Motor Drivers With DC-DC Converters 1 Features 2 Applications • • • • • 1 • • • • • • • Configurable to Eight Modes of Combination Motor Driver – Bipolar Stepper Motor Driver – 16-Step Current-Mode Control – 800-mA Average Output Current as Stepper Motor Drive – DC Motor Driver – 800-mA Maximum Continuous Current and 8-A/500-ns or 3-A/100-ms Peak Current for Each DC Motor Drive – Low ON resistance Rds(ON) = 0.55 Ω at TJ = 25°C (Typ) Three Integrated DC-DC Converters – On/Off Selectable Using C_SELECT Pin and Serial Interface – Outputs Programmable With External Resistor Network From 1.5 V to VDIN × 0.8 – 1.5-A Output Capability for All Three Channels 7-V to 40-V Operating Voltage Range for DC-DC Converters Two Serial Interfaces for Communications Thermally Enhanced Surface-Mount 64-Pin QFP PowerPAD™ Package (Eco-Friendly – RoHS and No Sb/Br) Power-Down Function (Deep-Sleep Mode) Reset Signal Output (Active Low) Reset (All Clear) Control Input Printers Document Scanners POS Copiers 3 Description The DRV8809/DRV8810 provides an integrated motor driver solution. The chip has four H-bridges internally and is configurable to eight different modes of combination motor driver control. The output driver block for each H-bridge consists of N-channel power MOSFETs configured as full Hbridges to drive the motor windings. The stepper motor control has a 16-step mode programmable through the 3-wire serial interface (SPI). The SPI input pins are 3.3-V compatible and 5-V tolerant. The DRV8809/DRV8810 has three DC-DC switchmode buck converters to generate a programmable output voltage from 1.5 V to 80% of VDIN (channel A) or up to 10 V (for channel B and channel C), with up to 1.5-A load current capability. The outputs are selected using the C_SELECT terminal at start-up or using serial interface during operation. An internal shutdown function is provided for overcurrent protection (OCP), short-circuit protection, overvoltage/undervoltage lockout (UVLO), and thermal shutdown (TSD). Also, the device has a reset function that operates at power on and at input to the In-Reset pin. Device Information(1) PART NUMBER DRV8809 PACKAGE HTQFP (64) DRV8810 BODY SIZE (NOM) 10.00 mm x 10.00 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. spacing Block Diagram RdsON vs Idrain OUTA+ OD_A DC/DC convertor Ch-A Motor Drive Output Control A 1.1 VM 1 OUTA- FBA OUTB+ DC/DC convertor Ch-B VM 0.9 Stepper Motor RSB OUTBOUTSC+ FBB Motor Drive Output Control C VM RSC DC Motor RdsON (:) Motor Drive Output Control B OD_B TJ=120qC TJ=70qC TJ=25qC RSA 0.8 0.7 0.6 OD_C OUTSC- DC/DC convertor Ch-C FBC 0.5 OUTSD+ Motor Drive Output Control D VM RSD DC Motor 0.4 0 0.5 1 1.5 2 Idrain (A) 2.5 3 3.5 D001 OUTSD1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 7 1 1 1 2 3 7 Absolute Maximum Ratings ...................................... 7 Handling Ratings....................................................... 7 Recommended Operating Conditions....................... 7 Thermal Information .................................................. 7 Electrical Characteristics........................................... 8 Typical Characteristics ............................................ 11 Detailed Description ............................................ 12 7.1 Overview ................................................................. 12 7.2 Functional Block Diagram ....................................... 13 7.3 Feature Description................................................. 14 7.4 Device Functional Modes........................................ 35 7.5 Register Maps ......................................................... 36 8 Application and Implementation ........................ 41 8.1 Application Information............................................ 41 8.2 Typical Application ................................................. 42 9 Power Supply Recommendations...................... 44 10 Layout................................................................... 44 10.1 Layout Guidelines ................................................. 44 10.2 Layout Example .................................................... 45 11 Device and Documentation Support ................. 46 11.1 11.2 11.3 11.4 11.5 Device Support...................................................... Related Links ........................................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 46 46 46 46 46 12 Mechanical, Packaging, and Orderable Information ........................................................... 46 4 Revision History Changes from Revision D (May 2012) to Revision E • 2 Page Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section................................................................ 1 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 5 Pin Configuration and Functions 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 In-Reset nSLEEP CLK_AB DATA_AB CLK_CD DATA_CD OSCM_mon LGND nORT STROBE_AB (nc) LOGIC_OUT TH_OUT STROBE_CD (nc) C_SELECT PAP Package 64 Pins Top View Test-LGND MGND OUTA– RSA RSA OUTA+ MGND MGND OUTB+ RSB RSB OUTB– MGND LGND DCDC_MODE FBC 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 GND MGND OUTD– RSD RSD OUTD+ MGND MGND OUTC+ RSC RSC OUTC– MGND LGND OD_A OD_A OD_C OD_C OD_B OD_B FBB VCP OSCD_mon CP2 CP1 VDIN VDIN VDIN VM VREF_AB VREF_CD FBA 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pin Functions PIN PULLUP/ PULLDOWN SHUNT RESISTOR NO. NAME IN SETUP MODE NAME IN OPERATION I/O DESCRIPTION 1 Test-LGND Test-LGND - Low power or analog ground 2 MGND MGND - Power ground for motor 3 OUTA- OUTA- O Motor-drive output for winding A– 4 RSA RSA I Channel A current-sense resistor 5 RSA RSA I Channel A current-sense resistor 6 OUTA+ OUTA+ O Motor-drive output for winding A+ 7 MGND MGND - Power ground for motor 8 MGND MGND - Power ground for motor 9 OUTB+ OUTB+ O Motor-drive output for winding B+ 10 RSB RSB I Channel B current-sense resistor 11 RSB RSB I Channel B current-sense resistor 12 OUTB- OUTB- O Motor-drive output for winding B– 13 MGND MGND - Power ground for motor 14 LGND LGND - 15 DCDC_MODE DCDC_MODE I Low-power or analog ground Up 200 kΩ DC-DC Ch-B/Ch-C operation mode select 16 FBC FBC I Feedback signal for DC-DC converter C 17 OD_C OD_C O Output for DC-DC switch mode regulator C 18 OD_C OD_C O Output for DC-DC switch mode regulator C 19 OD_B OD_B O Output for DC-DC switch mode regulator B 20 OD_B OD_B O Output for DC-DC switch mode regulator B 21 FBB FBB I Feedback signal for DC-DC converter B Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 3 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Pin Functions (continued) PIN NO. 4 NAME IN SETUP MODE NAME IN OPERATION I/O PULLUP/ PULLDOWN SHUNT RESISTOR DESCRIPTION 22 VCP VCP - Charge pump capacitor 23 OSCD_mon OSCD_mon O OSCD clock monitoring 24 CP2 CP2 - Charge-pump bucket capacitor (high side) 25 CP1 CP1 - Charge-pump bucket capacitor (low side) 26 VDIN VDIN Voltage supply for DC-DC converter 27 VDIN VDIN Voltage supply for DC-DC converter 28 VDIN VDIN 29 VM VM - Voltage supply for motors 30 VREF_AB VREF_AB I Voltage reference for maximum stepper motor current through A and B bridges 31 VREF_CD VREF_CD I Voltage reference for maximum stepper motor current through C and D bridges Voltage supply for DC-DC converter 32 FBA FBA I Feedback signal for DC-DC converter A 33 OD_A OD_A O Output for DC-DC switch mode regulator A 34 OD_A OD_A O Output for DC-DC switch mode regulator A 35 LGND LGND - Low-power or analog ground 36 MGND MGND - Power ground for motor 37 OUTC– OUTC– O Motor-drive output for winding C– 38 RSC RSC I Channel C current-sense resistor 39 RSC RSC I Channel C current-sense resistor 40 OUTC+ OUTC+ O Motor-drive output for winding C+ 41 MGND MGND - Power ground for motor 42 MGND MGND - Power ground for motor 43 OUTD+ OUTD+ O Motor-drive output for winding D+ 44 RSD RSD I Channel D current-sense resistor 45 RSD RSD I Channel D current-sense resistor 46 OUTD– OUTD– O Motor drive output for winding D– 47 MGND MGND - Power ground for motor 48 GND GND - Must be grounded 49 C_SELECT C_SELECT I Up 200 kΩ DC-DC converter selector 50 - ENABLE_SD I Down 100 kΩ Enable input for DC motor D control 50 - Reserved I Down 100 kΩ Reserved for DC motor operation 51 STROBE_CD ENABLE_SC I Down 100 kΩ Enable for DC motor C control 51 STROBE_CD ENABLE_LCD I Down 100 kΩ Enable for large DC motor CD control 51 STROBE_CD STROBE_CD I Down 100 kΩ Serial interface data strobe for H-bridge C, D stepper motor drive (latch on rising edge) 52 TH_OUT TH_OUT O Open drain 53 LOGIC OUT LOGIC OUT O Open drain 54 - Reserved I Down 100 kΩ Reserved for four DC motor operation 54 - ENABLE_SB I Down 100 kΩ Enable for DC motor B control 55 STROBE_ AB STROBE_ AB I Down 100 kΩ Serial interface data strobe for H-bridge A, B stepper motor drive (latch on rising edge) 55 STROBE_AB ENABLE_LAB I Down 100 kΩ Enable for large DC motor AB control 55 STROBE_AB ENABLE_SA I Down 100 kΩ Enable for DC motor A control 56 nORT nORT O Open drain 57 LGND LGND - 58 OSCM_mon OSCM_mon O Submit Documentation Feedback Temperature-sensing output Protection-monitoring output Reset output (open drain) Low power or analog ground Open drain OSCM clock monitoring Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Pin Functions (continued) PIN NO. NAME IN SETUP MODE NAME IN OPERATION I/O PULLUP/ PULLDOWN SHUNT RESISTOR 59 DATA_CD PHASE_SD I Down 100 kΩ Serial input data for H-bridge C and D control 59 DATA_CD DATA_CD I Down 100 kΩ Serial input data for H-bridge C and D control 60 CLK_CD PHASE_SC I Down 100 kΩ Phase input for DC motor C control 60 CLK_CD CLK_CD I Down 100 kΩ Clock input synchronization for serial data CD 60 CLK_CD PHASE_LCD I Down 100 kΩ Phase input for large DC motor CD control 61 DATA_AB DATA_AB I Down 100 kΩ Serial input data for H-bridge A and B control 61 DATA_AB PHASE_SB I Down 100 kΩ Phase input for DC motor B control 62 CLK_AB CLK_AB I Down 100 kΩ Clock input synchronization for serial data AB 62 CLK_AB PHASE_LAB I Down 100 kΩ Phase input for large DC motor AB control 62 CLK_AB PHASE_SA I Down 100 kΩ Phase input for DC motor A control 63 nSLEEP=L nSLEEP I Down 100 kΩ Enable/disable (part can be in sleep state) 64 In-Reset In-Reset I Up 200 kΩ Reset (L: Reset, H/open: Normal operation) DESCRIPTION Alternate Functions of Select Pins By Operation Mode CONFIG PIN 50 51 54 55 59 60 61 62 Default Name ENABLE_SD ENABLE_SC ENABLE_SB STROBE_AB PHASE_ SD PHASE_SC DATA_AB CLK_AB Dual Stepper - STROBE_CD - STROBE_AB DATA_CD CLK_CD DATA_AB CLK_AB Stepper + Large DC - ENABLE_LCD - STROBE_AB - PHASE_LCD DATA_AB CLK_AB Stepper + Dual Small DC ENABLE_SD ENABLE_SC - STROBE_AB PHASE_SD PHASE_SC DATA_AB CLK_AB Large DC + Dual Small DC ENABLE_SD ENABLE_SC - ENABLE_LAB PHASE _SD PHASE_SC - PHASE_LAB Dual Large DC - ENABLE_LCD - ENABLE_LAB - PHASE_LCD - PHASE_LAB Quad Small DC ENABLE_SD ENABLE_SC ENABLE_SB ENABLE_SA PHASE_SD PHASE_SC PHASE_SB PHASE_SA Large Stepper - STROBE_CD - STROBE_AB DATA_CD CLK_CD DATA_AB CLK_AB Ultra-Large DC - - - ENABLE_UL - - - PHASE_UL Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 5 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Internal 3.3v supply 200k ohm (+/- 40%) 1) Pin open ; 3.0 to 3.3v ; A /ON, B /ON, C /ON Soft start Control 2) External R to GND ( 200kO +/-10% ); 1.3 to 2.0v ; DC_MODE Dependant # C_SELECT 3) GND; 0.0 to 0.3v ; All off GND Internal 3.3v supply 200k ohm (+/- 40%) # DCDC_MODE # In-Reset Hysteresis Deglitch Reset Control Deglitch is for In-Reset only GND # nSLEEP # ENABLE_x # STROBE_CD/ENABLE # STROBE_AB/ENABLE # DATA_CD/PHASE # CLK_CD/PHASE # DATA_AB/ENABLE # CLK_AB/ENABLE Hysteresis Serial Interface 100k ohm (+/- 30%) GND GND External 3.3v supply 1k ohm ( external ) # Th_OUT # LOGIC_OUT # nORT # OSCM_mon # OSCD_mon GND Figure 1. Input Pin Configurations External 3.3 V supply # Th_out # Logic_out # nORT 1 kW (external) # OSCM_mon # OSCD_mon GND Figure 2. Open-Drain Output Pin Configurations 6 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT 50 V Supply voltage (1) VM Logic input voltage range, serial I/F inputs, and reset (2) 5.5 V Continuous total power dissipation (θJA = 20°C/W) –0.3 4 W Continuous motor-drive output current for each H-bridge (100 ms) 3 A Peak motor-drive output current for each H-bridge (500 ns) TJ 8 A Continuous DC-DC converter output current 1.5 A Continuous DC-DC converter output current ODB, C in parallel mode 3.0 A 150 °C 260 °C Operating junction temperature range (1 h) 0 Lead temperature 1.6 mm (1/16 in) from case for 10 s (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The negative spike less than –5 V and narrower than 50-ns duration should not cause any problem. 6.2 Handling Ratings Tstg Storage temperature range V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) MIN MAX UNIT –65 150 °C -2 2 -500 500 kV V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN NOM MAX 18 27 40 V 7 27 40 V Average output current for motor driver for each H-bridge 800 mA DC output current for DC-DC converter 1.2 A DC output current for DC-DC in Ch-B/C parallel mode 2.4 A –40 50 °C 0 120 °C Supply voltage, VM for motor control Supply voltage for DC-DC converter (VDIN) (1) Operating ambient temperature (2) Operating junction temperature (1) (2) UNIT VDIN should be connected to VM externally. If the total power is less than 4 W, then the operating ambient temperature range is -40°C to 60°C. 6.4 Thermal Information DRV8809 THERMAL METRIC (1) HTQFP UNIT 64 PINS RθJA Junction-to-ambient thermal resistance 26.2 RθJC(top) Junction-to-case (top) thermal resistance 12.6 RθJB Junction-to-board thermal resistance 10.4 ψJT Junction-to-top characterization parameter 0.3 ψJB Junction-to-board characterization parameter 10.3 RθJC(bot) Junction-to-case (bottom) thermal resistance 0.5 (1) °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 7 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 6.5 Electrical Characteristics TJ = 0°C to 120°C, VM = 7 V to 40 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SUPPLY (SLEEP) CURRENT ISLEEP1 Supply (sleep) current 1 nSLEEP = L, DC-DC all off 4 5 mA ISLEEP2 Supply (sleep) current 2 nSLEEP = L, VM = 8 V, Full duty cycle 7 10 mA ISLEEP3 Supply (sleep) current 3 nSLEEP = L, VM = 40 V, Full duty cycle 8 10 mA DIGITAL INTERFACE CIRCUIT VIH Digital high-level input voltage Digital inputs (1) IIH Digital high-level input current Digital inputs VIL Digital low-level input voltage Digital inputs 0.8 V IIL Digital low-level input current Digital inputs 100 μA Vhys Digital input hysteresis Digital inputs 0.3 0.6 V Tdegl Digital input deglitch time In-Reset 2.5 7.5 μs 2 0.45 5 V 100 μA CHARGE-PUMP VCP (CP = 0.1 μF to 0.47 μF, Cbk = 0.01 μF ± 10%) VO(CP) Output voltage f(CP) Switching frequency tstart Start-up time ILOAD = 0 mA, VM > VthVM2 VM + 10 VM + 13 1.6 CStorage = 0.1 μF, VM ≥ 16 V V MHz 0.5 2 ms INTERNAL CLOCK OSCI fOSCi System clock frequency 5.76 6.4 7.04 MHz VREF Reference voltage input 0.8 2.5 3.6 V Ileak-vr Input leak current 1 μA VREF INPUT C_SELECT FOR DC-DC START-UP SELECTION (DCDC_MODE = L) Vcs0 DC-DC all off Vcs1 DC-DC all off Pull down by external 200-kΩ resistor Vcs2 Turn on ODA then ODB and ODC As pin open 0 0.3 V 1.3 2 V 3 3.3 V 0.3 V 1.3 2 V 3 3.6 V C_SELECT FOR DC-DC START-UP SELECTION (DCDC_MODE = H OR OPEN, CH-B/C PARALLEL MODE) Vcs0 DC-DC all off 0 Vcs1 Turn on ODB/C then ODA Pull down by external 200-kΩ resistor Vcs2 Turn on ODA then ODB/C As pin open THREE DC-DC CONVERTERS (2) 1.25 = VO VDINOPE Operating supply voltage Ratio to VOUT(DC) VoutA = 1.5 V – 30 V, VoutB/C = 1.5 V – 10 V, Programmable with external reference on FBX × VDIN > 1.25 × Vout (largest) 20 V ≤ VDIN < 40 V –3% VO 3% ODA ODB ODC 6.5 V ≤ VDIN < 20 V –3% VO 5% –3% VO 5% VFB FBX feedback voltage For ODA/B/C IO ODx ODx output current (dc) With external L and C IO ODBC ODBC output current (DC) in Ch-B/Ch-C parallel mode With external L and C DCDC_MODE = H IO ODx2 Output current (dc) at low VDIN VDIN = 7 V, VO = 5 V IO ODx3 Output current (dc) at low VDIN VDIN = 7 V, VO = 3.3 V fOSCD Switching (chopping frequency) fOSCD = (0,0) Rds(ON) FET ON resistance at 0.8 A for OD_x TJ = 25°C (1) (2) 8 VthVM– < VDIN < 6.5 V, VO ≤ 3.3 V V 1.50 90 100 V 1.5 A 3 A 0.8 A 1.5 A 110 kHz 0.35 TJ = 120°C 0.50 Ω Absolute maximum rating for charge-pump circuit is 60 V. DCDC_MODE = H, Ch-B and Ch-C are in parallel driving mode. Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Electrical Characteristics (continued) TJ = 0°C to 120°C, VM = 7 V to 40 V (unless otherwise noted) PARAMETER TEST CONDITIONS 5.5-V VO at VDIN = VthV_ 5 V-Low MIN TYP UNIT 4 VDIN = VthV_, VthV_ = 5-V load (dc) = 0.5 A (3) VO voltage to 5.5 V V –30% VO voltage drop from VDIN Vo_min6 MAX 1 VO setting without kick UVP when VDIN = VthVM+ (VO setting at VDIN = 10 V) VthVM+ = 6-V load (DC) = 0.5 A (4) V 6 V THREE DC-DC CONVERTER PROTECTION IO DD ODx Overcurrent detect for OD_x source Peak current in each ON cycle tFILTOCP OCP filtering time By OSCi cycles 2 cycles tODSD DC-DC shutdown filter Number of subsequent chopping cycles with OCP detection 4 chop cycles Vovpx Overvoltage protection (OVP) Percentage of nominal Voutx detected at VFB 25% 30% 35% Vuvpx Undervoltage protection (UVP) Percentage of nominal Voutx detected at VFB (VFB decreasing) -25% -30% -35% tVfilter OVP/UVP filtering time 3 8 13 us tsst Start-up time with soft start 56 ms Vstover Start-up overshoot 1.8 3 Ratio to VO A 3% VM SUPERVISORY VthVM– nORT for VM low threshold VM decreasing 4.5 5 6 V VthVM+ nORT for VM high threshold VM increasing 5.5 6 7 V VthVMh nORT for VM detect hysteresis (VthVM+) - (VthV—) 0.5 1 VthVM2 For motor driver off tVM filt VM monitor filtering time (5) For VM threshold detect 10 V 15 V 30 μs THERMAL SHUTDOWN (TSD) TTSD Thermal shutdown set points 150 170 190 °C TEMPERATURE SENSE, PRE TSD (See Extended Setup Register Definition) TTSD0 Temperature sense point 0 Register selectable, Assert logic H at TH_OUT 130 150 170 °C TTSD1 Temperature sense point 1 Register selectable, Assert logic H at TH_OUT 120 140 160 °C Tc_sens TH_OUT (analog out) temperature coefficient Specified by design 6 mV/°C RESET/NORT: OPEN-DRAIN OUTPUTS (NORT, LOGIC_OUT, TH_OUT) VOH High-state voltage RL = 1 kΩ to 3.3 V VOL Low-state voltage RL = 1 kΩ to 3.3 V 3 V IOL Low-state sink current VO = 0.4 V tr Rise time 10% to 90% 1 μs tf Fall time 90% to 10% 50 ns 390 ms 0.3 3 V mA RESET/NORT DELAY: START-UP SEQUENCE tord1 nORT delay 1 Reset deassertion from VthVM+ < VDIN for DC-DC wake up falling 300 tord3 DC-DC turnon delay From one DC-DC wake up to following DC-DC to go soft-start sequence 1.7 tord4 nORT delay 4 Reset deassertion from 2nd DC-DC wake up 120 (3) (4) (5) ms 180 ms Lower VDIN decrease gate drive and the voltage drop is increased. Specified by bench characterization only. VOUT (at VDIN = VthVM+) is lower than VO setting. When VDIN is down to VthVM+, undervoltage protection (UVP) shuts down the device, in case the VO is set as VO > 7 V. Specified by design. No nORT assertion to VthVM2 detection Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 9 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Electrical Characteristics (continued) TJ = 0°C to 120°C, VM = 7 V to 40 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 5 10 μs In-Reset In-Reset assertion to nORT assertion delay treset In-Reset falling to nORT failing H-BRIDGE DRIVERS (OUTX+ AND OUTX–) IOUT1(max) Peak output current 1 Less than 500-ns period 8 A IOUT2(max) Peak output current 2 Less than 100-ms period 3 A IOUT(max) Average continuous output current 0.8 A Rds(ON) FET ON resistance at 0.8 A ICEX Output leakage current VOUTX = 0 V or 10 V 10 μA IRS Sense resistor supply current nORT = Low 15 μA IOC Motor Motor overcurrent threshold for each H-bridge (6) 5 A tfilterM Motor overcurrent filter time 2.5 5 8.5 μs fOSCM Motor oscillator frequency F_OSCM = (0,0) 720 800 880 kHz fchop Motor chopping frequency = fOSCM/8 F_OSCM = (0,0) 90 100 110 kHz TJ = 25°C 0.55 TJ = 120°C 1 3 Ω STEPPER MOTOR DRIVE (PARAMETERS ARE TESTED WITHOUT MOTOR LOADING) ISTEPMOTORAVG Average stepper motor current for H-bridge VM = 40 V 800 mA ISTEPMOTORPeak Peak stepper motor current for H-bridge VM = 40 V 1.3 A Stepper motor current limit threshold (internal reference) (7) VL16 , Phase angle = 90° 100% VL15 , Phase angle = 84° 100% VL14 , Phase angle = 79° 98% VL13 , Phase angle = 73° 96% VL12 , Phase angle = 68° 92% VL11 , Phase angle = 62° 88% VL10 , Phase angle = 56° 83% VL9 , Phase angle = 51° 77% VL8 , Phase angle = 45° 71% VL7 , Phase angle = 40° 63% VL6 , Phase angle = 34° 56% VL5 , Phase angle = 28° 47% VL4 , Phase angle = 23° 38% VL3 , Phase angle = 17° 29% VL2 , Phase angle = 11° 20% VL1 , Phase angle = 6° 10% VL0 , Phase angle = 0° 0% IOUT Output current accuracy at 100% Excludes VREF and RSENS errors, setting (7) IOUT > 1 A (7) (8) IswLeakage Switch (driver MOSFET) leakage Outputs off current tab Stepper motor blanking time (6) (7) (8) 10 By OSCi cycles –5% 5% –10 10 μA 8 9 cycles When the overcurrent is detected, all H-bridges are shut down and assert nORT pulse (40 ms). This is not measured directly, checked by Itrip amplifier gain without motor loading This device may show current setting error when motor current is less than 1 A, due to noise filter delay at the Itrip comparator. Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Electrical Characteristics (continued) TJ = 0°C to 120°C, VM = 7 V to 40 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT STEPPER AND DC MOTOR DRIVERS tr Rise time VM = 27 V 100 300 ns tf Fall time 20% to 80% 100 300 ns tPDOFF Enable or strobe detection to sink or source gate off delay tCOD Crossover delay time, to prevent shoot through tPDON Enable or strobe detection to sink or source gate on delay 50 150 400 ns 100 600 1000 ns 750 ns DC MOTOR DRIVERS TBLNK = (0,0) for Min, (1,1) for Max, fCHOP = 100 kHz 5.65 μs Minimum pulse duration (phase) 1 μs Minimum pulse duration (enable) 1 μs 25 MHz tblank Blanking time twPminp twPmine 1.6 SERIAL INTERFACE f(CLK) Clock frequency twh(CLK) Minimum high-level pulse width 10 1 ns twl(CLK) Minimum low-level pulse width 10 ns tsu Setup time, data to CLK↓ 10 ns th Hold time, CLK↓ to data 10 ns tcs CLK↓ to STROBE↑ 10 ns tsc STROBE↓ to CLK↑ 10 ns tw(STRB) Minimum strobe pulse duration 20 tss_min Strobe mask time from nSLEEP 1.5 ns 4 μs SERIAL INTERFACE: ID MONITOR FUNCTION AT LOGIC_OUT, EXTENDED SETUP MODE tODL 0 data output delay bit 3 to bit 0 (ext-setup) = (1100) From strobe rise to LOGIC_OUT, 1 kΩ to external 3.3 V 4000 ns tODH 1 data output delay bit 3 to bit 0 (ext-setup) = (1111) From strobe rise to LOGIC_OUT, 1 kΩ to external 3.3 V 4000 ns 6.6 Typical Characteristics 2.6 1.1 Unit Linear TJ=120qC TJ=70qC TJ=25qC T sens output voltage (V) 1 RdsON (:) 0.9 0.8 0.7 0.6 2.4 2.2 2 1.8 0.5 0.4 1.6 0 0.5 1 1.5 2 Idrain (A) 2.5 3 3.5 0 30 D002 Figure 3. RdsON vs Idrain 60 90 120 Temperature (qC) 150 180 D003 Figure 4. Tsens (Analog Out) Temperature Coefficient Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 11 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 7 Detailed Description 7.1 Overview The DRV8809/DRV8810 provides an integrated motor driver solution. The chip has four H-bridges internally and is configurable to eight different modes of combination motor driver control. The output driver block for each Hbridge consists of N-channel power MOSFETs configured as full H-bridges to drive the motor windings. Their Rdson is low, 0.55 ohm at Tj = 25 C, it allows 800 mA maximum continuous current and 3 A @ 100 ms peak current. The stepper motor control has a 16-step mode programmable through the three-wire serial interface (SPI). The SPI input pins are 3.3-V compatible and 5-V tolerant. The DRV8809/DRV8810 has three DC-DC switch-mode buck converters to generate a programmable output voltage from 1.5 V to 80% of VDIN (Channel A) or up to 10 V (for Channel B and Channel C), with up to 1.5-A load current capability. Their Rdson is low, 0.35 ohm only at Tj = 25 C. The outputs are selected using the C_SELECT terminal at start-up or using serial interface during operation. An internal shutdown function is provided for overcurrent protection (OCP), shortcircuit protection, overvoltage/undervoltage lockout (UVLO), and thermal shutdown (TSD). Also, the device has a reset function that operates at power on and at input to the In-Reset pin. 12 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 7.2 Functional Block Diagram VM 0.01 uF Cstorage VDIN Cbkt VM 0.1 uF TH_OUT DCDC_MODE C_SELECT Vout 1 VCP Temperature Sens : Pre-TSD or Tsens (analog) OD_A DC/DC convertor Ch-A Voltage charge pump CP1 CP2 To To To Highside DC/DC H-bridges gate drive OUTA+ VM Motor Drive Output Control A Thermal Shut down RSA FBA OUTA MGND Vout 2 OD_B OUTB + DC/DC convertor Ch-B VM FBB Vout 3 RSB Regulator Internal supply Voltage Supervisory OD_C OUTB - OUTC + Pre-Drive, Latch Registers & control circuitry DC/DC convertor Ch-C Stepper Motor VM Motor Drive Output Control B VM Motor Drive Output Control C RSC DC Motor FBC OUTCMGND Freq divider for DC/DC In-Reset OSCD_mon OUTD+ OSCi 6.4 MHz OSCM_mon LOGIC_OUT VM Motor Drive Output Control D Freq divider Motor PWM RSD nORT DC Motor OUTD- nSLEEP VREF_AB Setup / ex-setup registers LGND ENABLE_SD MTR Config ; Stepper x 2 Stepper + LDC Step + SDCx2 LDC + SDCx2 LDC x 2 SDC x 4 Large Stepper Ultra Large DC Pin # 50 (NC) (NC) ENABLE_SD ENABLE_SD (NC) ENABLE_SD (NC) (NC) NC Serial Interface A-B STROBE_AB DATA_AB Pin # 54 (NC) (NC) (NC) (NC) (NC) ENABLE_SB (NC) (NC) Pin # 55 STROBE_AB STROBE_AB STROBE_AB ENABLE_LAB ENABLE_LAB ENABLE_SA STROBE_AB ENABLE_UL Pin # 61 Data_AB Data_AB Data_AB (NC) (NC) PHASE_SB Data_AB (NC) CLK_AB Pin # 62 CLK_AB CLK_AB CLK_AB PHASE_LAB PHASE_LAB PHASE_SA CLK_AB PHASE_UL VREF_CD Serial Interface C-D ENABLE_SC PHASE_SD PHASE_SC Pin # 51 STROBE_CD ENABLE_LCD ENABLE_SC ENABLE_SC ENABLE_LCD ENABLE_SC STROBE_CD (NC) Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Pin # 59 Data_CD (NC) PHASE_SD PHASE_SD (NC) PHASE_SD Data_CD (NC) Pin # 60 CLK_CD PHASE_LCD PHASE_SC PHASE_SC PHASE_LCD PHASE_SC CLK_CD (NC) Submit Documentation Feedback 13 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 7.3 Feature Description 7.3.1 Serial Interface The device has two serial interface circuit blocks for stepper motor driving control. These two serial interfaces provide controls to each motor driver independently. CLKAB Serial clock for H-bridge A, B DATAAB Serial data for H-bridge A, B STROBEAB Strobe input for H-bridge A, B CLKCD Serial clock for H-bridge C, D DATACD Serial data for H-bridge C, D STROBECD Strobe signal for H-bridge C, D Sixteen bits serial data is shifted into the least significant bit (LSB) of the serial data input (DATA) shift register on the falling edge of the serial clock (CLK). After 16 bits of data transfer, the strobe signal (Strobe) rising edge latches all the shifted data. During data transfer, Strobe voltage level is acceptable high or low. DATA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CLK Strobe Figure 5. Serial Interface 7.3.1.1 Setup Mode/Power-Down Mode The motor output mode is configured through serial interface (DATA AB, CLK AB and STROBEAB) when nSLEEP = L. After setup, the nSLEEP pin must be pulled high for normal motor drive control. The condition that the device requires for setup (initialization) is after the nORT (Reset) output goes to high from the low level (power on, recovery from VM < 7 V). While nSLEEP is low, all the motor drive functions are shut down and their outputs are high-impedance state. Also the stepper parameters in the register are all reset to 0. This device forces motor driver functions to shut down for the power-down mode, and it is not damaged even if nSLEEP is asserted during motor driving. At the Strobe pulse rising edge, the DATA signal level must be low for normal setup mode (see the Extended Setup Mode section for another option). 7.3.1.2 Extended Setup Mode While nSLEEP = L, if the DATA signal level is set high when the Strobe pulse is set, the serial interface recognizes the input data to set the extended setup mode. This extended setup register enables monitoring and controlling the fault condition of this chip. One of the internal protection control signals is selected and provided to LOGIC OUT pin. Also, this enables the application to ignore the protection control and/or suppress the reset signal generation. This device has device ID (3-bit ROM) and vendor ID (1-bit ROM), which can be read out from LOGIC OUT. Four bits are assigned to select the LOGIC OUT signal, including the ID ROM bit readout. 14 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Serial Interface A-B: Set A-B motor operating parameters and access to setup/extended setup register 16-bit shift register 16-bit latch (A-B drivers) Latch select 16-bit latch (setup) 16-bit latch (extended setup) Protection detect signal selector or Device ID/Vendor ID (ROM) A. A-B register at EXT-setup mode has device/vendor ID ROM. The ID must be read out at LOGIC OUT pin. Figure 6. Serial Interface A-B Serial interface C-D: Set C-D motor operating parameters Data 16-bit shift register Clock 16-bit latch (C-D drivers) Strobe Figure 7. Serial Interface C-D Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 15 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 7.3.1.3 Serial Interface Timing Data Bit 0 tsu Bit 1 Bit 14 Bit 15 th Clock twl(clk) twh(clk) tcs Strobe tw(strb) nSleep Figure 8. nSLEEP = H: Set Stepper Motor Operating Parameters Data Bit 0 Bit 1 tsu Bit 15 Bit 16 = L th Clock twl(clk) twh(clk) tcs Strobe tw(strb) tss_min nSleep ( Don't care ) Figure 9. nSLEEP = L (Bit 16 = L): Setup Mode Bit 0 Data tsu Bit 1 Bit 15 Bit 16 = H th Clock twl(clk) tcs twh(clk) Strobe tw(strb) tss_min nSleep A. ( Don't care ) For initial setup, nSLEEP state can be don’t care before the tss_min timing prior to the strobe. Figure 10. nSLEEP = L (Bit 16 = H): Extended Setup Mode 7.3.1.4 Bipolar Current Regulated Stepper Motor Drive The following functionality is common to all the H-bridge drives. A crossover delay is inherent to the control circuitry to prevent cross conduction of the upper and lower switches on the same side of the H-bridge. A blanking (deglitch) time is incorporated to prevent false triggering due to initial current spikes at turnon with a discharged capacitive load. The stepper motor current can be programmed to 16 different current levels using a 4-bit register. The average current level for a particular angular rotation is shown in Table 1. 16 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Enable or Phase reversal or Itrip detection tPDON Sink or source gate off to on tPDOFF tCOD Sink or source gate on to off tBLANK – DC motor blanking time Current sense blanking time tab Stepper blanking time Figure 11. Crossover and Blanking Timing for H-Bridge For stepper motor configured H-bridges, only tab (stepper blanking time) is set for current sensing. For DC motor-configured H-bridges, tBLANK is included to ignore huge current spike due to rush current to varistor capacitance. 7.3.1.5 Short/Open for Motor Outputs When a short/open situation happens, the protection circuit prevents device damage under certain conditions (short at start up, and so forth). Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 17 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com VM Charge pump RSA VM Rsens OSCM_mon OSCM ( 800kHz ) OUTA OSCi ( 6.4MHz ) OUTA/ Control logic & Pre-driver DATA_AB CLK_AB Strobe_AB Stepper parameter register Current Sens Torque, Decay, Current, & Phase MGND RSB Current limit VM Rsens OUTB Stepper Motor VM supervisor (15v) turn on/off OUTB/ over current detect Protect disable Setup/ex-setup register Protection control & nORT assertion Figure 12. Stepper Motor Driver Table 1. Angular Rotation Setting for Stepping Motor Driver (Parameter Bit in Stepper Register) STEP 18 SET ANGLE (deg) BIT 14 BIT 13 BIT 12 BIT 11 BIT 7 BIT 6 BIT 5 BIT 4 CURRENT A (C) 3 CURRENT A (C) 2 CURRENT A (C) 1 CURRENT A (C) 0 CURRENT B (D) 3 CURRENT B (D) 2 CURRENT B (D) 1 CURRENT B (D) 0 16 90 H H H H L L L L 15 84.4 H H H H L L L H 14 78.8 H H H L L L H L 13 73.1 H H L H L L H H 12 67.5 H H L L L H L L 11 61.2 H L H H L H L H 10 56.3 H L H L L H H L Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Table 1. Angular Rotation Setting for Stepping Motor Driver (Parameter Bit in Stepper Register) (continued) BIT 14 BIT 13 BIT 12 BIT 11 BIT 7 BIT 6 BIT 5 BIT 4 CURRENT A (C) 3 CURRENT A (C) 2 CURRENT A (C) 1 CURRENT A (C) 0 CURRENT B (D) 3 CURRENT B (D) 2 CURRENT B (D) 1 CURRENT B (D) 0 STEP SET ANGLE (deg) 9 50.6 H L L H L H H H 8 45 H L L L H L L L 7 39.4 L H H H H L L H 6 33.8 L H H L H L H L 5 28.1 L H L H H L H H 4 22.5 L H L L H H L L 3 16.9 L L H H H H L H 2 11.3 L L H L H H H L 1 5.6 L L L H H H H H 0 0 L L L L H H H H RdsON vs Idrain 1.0 TJ = 120°C 0.9 RdsON (W) 0.8 0.7 TJ = 70°C 0.6 0.5 TJ = 25°C 0.4 0.5 1 1.5 2 2.5 3 3.5 Idrain (A) A. This plot includes both actual device characterization data and extrapolated data. B. Actual device has self-heating effect to increase the junction temperature, with continuous loading current more than 1 A. C. The device temperature is set to 70°C for the Rds(ON) test. Figure 13. Typical Rds(ON) Value vs Drain Current (DMOS FET in H-Bridge) Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 19 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com VM Charge pump VM Rssx Rsens OSCM_mon OSCM ( 800kHz ) Control logic & Pre-driver OSCi ( 6.4MHz ) OUTx DC Motor Current Sens Enable_x Phase_x OUTx/ Current limit VM supervisor (15v) turn on/off over current detect MGND Protect disable Protection control & nORT assertion Figure 14. DC Motor Drive The motor configuration setup bits in the setup register can select three types of DC motor driving: utilizing a single H-bridge, utilizing two (A and B, or C and D) H-bridges in parallel, or utilizing four H-bridges in parallel. For the setup register value (bit 2,1,0) = (1,0,1), the device configuration is 4× DC motor, which enables each Hbridge to drive a DC motor independently. The ENABLEx and PHASEx input terminals are reassigned from the serial interface pins and some reserved pins, after nSLEEP pin is set to H. For the setup register value (bit 2,1,0) = (0,1,1), the device configuration is 1× large DC + 2× DC motor mode. The large DC driving utilizes two H-bridges in parallel and controlled by ENABLE_AB and PHASE_AB pins. Two Rsens pins should be connected together. The VREF inputs are used for the Rsense comparator reference voltage. VREF_AB provides the voltage to both Hbridge A and B, and VREF_CD provides the voltage for H-bridge C and D. Table 2. DC Motor Drive Truth Table 20 FAULT CONDITION nSLEEP ENABLEX PHASEX + HIGH SIDE + LOW SIDE - HIGH SIDE - LOW SIDE 0 0 X X OFF OFF OFF OFF 0 1 0 X OFF OFF OFF OFF 0 1 1 0 OFF ON ON OFF 0 1 1 1 ON OFF OFF ON Motor OCP 1 X X OFF OFF OFF OFF TSD X X X OFF OFF OFF OFF Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 7.3.1.6 DCDC_MODE for Parallel-Mode Control The DCDC_MODE pin selects the DC-DC converter parallel driving for Ch-B and Ch-C. The input is pulled up to internal 3.3 V by a 200-kΩ resistor. When the pin is H or left open, Ch-B and Ch-C are driven in parallel. Table 3. C_SELECT for Start-Up C_SELECT PIN VOLTAGE DC-DC Vout1, ODA DC-DC Vout2, ODB DC-DC Vout3, ODC OFF OFF OFF Gnd 0 V to 0.3 V Pull Down (by external 200 kW) 1.3 V to 2 V OPEN 3 V to 3.3 V See Table 4 ON ON ON 7.3.1.7 DCDC_MODE and C_SELECT Timing Delay and Start-Up Order DCDC_MODE and C_SELECT play a role in the order of regulator enablement, as well as the time when the first regulator is enabled to when the second is enabled. Regulators B and C are always enabled together, whether they are working in parallel mode or not. Table 4. DCDC_MODE and C_SELECT Timing Delay (DRV8809) DCDC_MODE C_SELECT TIMING DELAY DESCRIPTION L GND None No regulator is enabled. L Pull down None No regulator is enabled. L 3 V to 3.3 V 1.6 ms H GND None H Pull down 1.6 ms Ch-B and Ch-C followed by Ch-A H 3 V to 3.3 V 1.6 ms Ch-A followed by Ch-B and Ch-C Ch-A followed by Ch-B and Ch-C No regulator is enabled. Table 5. DCDC_MODE and C_SELECT Timing Delay (DRV8810) DCDC_MODE C_SELECT TIMING DELAY DESCRIPTION L GND None No regulator is enabled. L Pull down None No regulator is enabled. L 3 V to 3.3 V 1.6 ms H GND None H Pull down 20 ms to 40 ms Ch-B and Ch-C followed by Ch-A H 3 V to 3.3 V 20 ms to 40 ms Ch-A followed by Ch-B and Ch-C Ch-A followed by Ch-B and Ch-C No regulator is enabled. 7.3.1.8 In-Reset: Input for System Reset In-Reset pin assertion stops all the DC-DC converters and H-bridges. It also reset all the register contents to default value. After deassertion of the input, the device follows the initial start-up sequence. The C_SELECT state is captured after the In-Reset deassertion. The input is pulled up to internal 3.3 V by 200-kΩ resistor. When the pin = H or left open, reset function is asserted. Also it has deglitch filter of 2.5 μs to 7.5 μs. Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 21 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com VM (CSELECT = Open) VthVM + VM=6.0v Capture C_select then start Charge Pump VthVM VM=5.0v VCP C P s tart to D C/ D C d el a y 10 ms (Note A) DC/DC_A DC/DC_B DC/DC_C 120 ms (20 ms + 100 ms) Delay (Note B) nORT (= L ) Protection mask: OCP/OVP/UVP for CH-A/B/C (= H ) A. Charge-pump wake-up delay, from 10 ms to 20 ms, due to asynchronous event capture B. For the DRV8809, delay is 1.6 ms for both DC_MODE high and low. For the DRV8810, delay is 20 ms to 40 ms for DC_MODE high and 1.6 ms for DC_MODE low. Figure 15. Power-Up Timing (Power Up With DC-DC Turn-On By C_SELECT) NOTE When VM crosses VthVM+ (about 6 V), the C_select state is captured. If C_SELECT is open (pulled up to internal 3.3 V), all DC-DC regulator channels (A, B, and C) are turned on. The time of channels B and C to be turned on, with regards to channel A, depends on the state of DC_MODE. 22 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Figure 16. Power-Up Timing (Power Up Without DC-DC Turn-On: C_SELECT = GND) NOTE When VM crosses VthVM+ (about 6 V) with C_SELECT = GND, none of the three regulators are turned on. The nORT output is released to H after 300 ms from the VthVM+ crossing. See Note B 120 ms (See Note A) A. 120 ms to 140 ms due to asynchronous event capture B. After VM power up, DC-DC starts at the setup register strobe. Figure 17. Power-Up Timing (DC-DC Regulator Wake Up by Setup Register) Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 23 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com NOTE The regulator is started from the strobe input, same as charge pump. There is no 10-ms waiting period, because VCP pin already reached VM – 0.7 V. VM ( CSELECT = GND ) VthVM+ VM=6.0v DC/DC_B ( off -> on ) DC/DC_C (off -> on ) Delay (Note B) DC/DC_A ( off -> on ) See Note A Setup register strobe [ Setup (9,8,7) =(0,0,0) ] nORT (= H) protection mask (=L) 120 ms A. After VM power up, DC-DC starts at the setup register strobe. B. For the DRV8809, delay is 1.6 ms for both DC_MODE high and low. For the DRV8810, delay is 20 ms to 40 ms for DC_MODE high and 1.6 ms for DC_MODE low. Figure 18. Power-Up Timing (DC-DC Regulator Wake Up by Setup Register, All Three Channels On) 24 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 10 ms (Note A) A. Charge-pump wake-up delay, from 10 ms to 20 ms, due to asynchronous event capture B. Start-up with VM glitch (not below VthV—). Only channels B and C are shown. Same applies to Channel A. Figure 19. VM Start-Up/Power-Down and Glitch Condition Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 25 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 10 ms (Note A) 10 ms (Note A) A. Charge-pump wake-up delay, from 10 ms to 20 ms, due to asynchronous event capture B. Start-up with VM glitch (below VthV_). Only channels B and C are shown. Same applies to Channel A. Figure 20. VM Startup/Power-Down and Glitch Condition VthVM+ VM=6.0v VM VthVMVM=5.0v Mask Shutdown DC/DC_B DC/DC_C nORT protection mask A. Only channels B and C are shown. Same applies to Channel A. Figure 21. Power Down (Normal) 26 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 VthVM+ VM=6.0v VM VthVM- Mask VM=5.0v DC/DC_B DC/DC_C nORT protection mask A. Only channels B and C are shown. Same applies to Channel A. Figure 22. Power Down (Glitch on VM) VthVM+ VM=6.0v VthVM+ VM VM=5.0v VthVM- Restart ( CSELECT = OPEN ) Shutdown DC/DC_B 10 ms (Note A) 10 ms (Note A) DC/DC_ C t 40 ms 120 ms in case t VthVM+ when VM is increasing. In case VM decreases, DC-DCs are shut down when VM VM > VthV_, the DC-DC output voltage supervisor is ignored. Motor shutdown is released by VM < 4.5 V or nSLEEP rising edge. nORT (reset) ON/OFF time is 40 ms. The data in Table 21 is valid if the protection control bits in the EX-setup register are all 0. Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 29 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Table 8. Modes of Operation (1) POR M OFF VM VM (1) (2) ISD Vout1 Vout2 Vout3 MOTOR OVP TSD Vout1 Vout2 Vout3 MOTOR nSLE EP (2) EXTERNAL PIN IC CSEL BLOCK FUNCTIONS MOT OR Vout1 Vout2 Vout3 nORT H 0 0 0 0 0 0 0 0 0 0 H N On On On On 1 X X X X X X X X X X X Off Off Off Off Off L 0 1 X X X X X X X X X X O On Off On/Off On/Off H 0 1 X X X X X X X X X p S/D S/D S/D S/D L 0 1 X X X X X X X X e S/D S/D S/D S/D L 0 1 X X X X X X X r S/D S/D S/D S/D L 0 1 X X X X X X a Off On On On L/P 0 1 X X X X X t S/D S/D S/D S/D L 0 1 X X X X I S/D S/D S/D S/D L 0 1 X X X o S/D S/D S/D S/D L 0 1 X X n S/D S/D S/D S/D L 0 Low X S Off On On On H High All off X Off Off Off L 200 k X On On Off H Open X Off On On H Valid only if the protection control bits (in EX-setup register) are all 0. N = Normal operation, S = Sleep mode, 0 = Off, 1 = On, X = Don’t care, S/D = Shutdown, P = Pulse after fault occurs (retry), OFF = Must toggle sleep terminal or power-on reset (nORT), S/D = Must do a power-on reset (nORT) 7.3.2 Motor Driver Configuration OUTAVREF_AB Motor Drive Output Control A NC DATA_AB RSA OUTA+ Pre Drive and Control STROBE_AB VM OUTB+ Motor Drive Output Control B VM Stepper Motor RSB CLK_AB OUTB- OUTCVREF_CD Motor Drive Output Control C NC OUTC+ Pre Drive and Control STROBE_CD VM RSC OUTD+ DATA_CD Motor Drive Output Control D CLK_CD VM Stepper Motor RSD OUTD- Figure 27. Motor Configuration 0, Two Stepper 30 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 OUTAVREF_AB Motor Drive Output Control A NC DATA_AB RSA OUTA+ Pre Drive and Control STROBE_AB VM OUTB+ Motor Drive Output Control B VM Stepper Motor RSB CLK_AB OUTB- OUTLCDVREF_CD Motor Drive Output Control C NC OUTLCD+ Pre Drive and Control ENABLE_LCD VM RSLB OUTLCD+ NC Motor Drive Output Control D PHASE_LCD Large DC Motor RSLB OUTLCD- Figure 28. Motor Configuration 1, One Stepper and One Large DC OUTAVREF_AB Motor Drive Output Control A NC DATA_AB RSA OUTA+ Pre Drive and Control STROBE_AB VM OUTB+ Motor Drive Output Control B VM Stepper Motor RSB CLK_AB OUTB- OUTSCVREF_CD Motor Drive Output Control C ENABLE_SD OUTSD+ PHASE_SD Motor Drive Output Control D PHASE_SC DC Motor RSC OUTSC+ Pre Drive and Control ENABLE_SC VM VM DC Motor RSD OUTSD- Figure 29. Motor Configuration 2, One Stepper and Two Small DCs Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 31 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com OUTLABVREF_AB Motor Drive Output Control A NC NC RSLAB OUTLAB+ Pre Drive and Control ENABLE_LAB VM OUTLAB+ Motor Drive Output Control B Large DC Motor RSLAB PHASE_LAB OUTLAB- OUTSCVREF_CD Motor Drive Output Control C ENABLE_SD DC Motor OUTSC+ Pre Drive and Control ENABLE_SC VM RSC OUTSD+ PHASE_SD Motor Drive Output Control D PHASE_SC VM DC Motor RSD OUTSD- Figure 30. Motor Configuration 3, One Large DC and Two Small DCs OUTLABVREF_AB Motor Drive Output Control A NC ENABLE_LAB OUTLAB+ Pre Drive and Control NC VM RSLAB OUTLAB+ Motor Drive Output Control B Large DC Motor RSLAB PHASE_LAB OUTLAB- OUTLCDVREF_CD Motor Drive Output Control C NC ENABLE_LCD VM RSLCD OUTLCD+ Pre Drive and Control OUTLCD+ NC PHASE_LCD Motor Drive Output Control D Large DC Motor RSLCD OUTLCD- Figure 31. Motor Configuration 4, Two Large DCs 32 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 OUTSAVREF_AB VM Motor Drive Output Control A ENABLE_SB OUTSA+ Pre Drive and Control ENABLE_SA PHASE_SB DC Motor RSA OUTSB+ VM Motor Drive Output Control B DC Motor RSB PHASE_SA OUTSB- OUTSCVREF_CD VM Motor Drive Output Control C ENABLE_SD OUTSC+ Pre Drive and Control ENABLE_SC OUTSD+ PHASE_SD VM Motor Drive Output Control D PHASE_SC DC Motor RSC DC Motor RSD OUTSD- Figure 32. Motor Configuration 5, Four Small DCs OUTAVREF_AB Motor Drive Output Control A NC STROBE_AB VM RSA OUTA+ Pre Drive and Control OUTB+ DATA_AB Motor Drive Output Control B RSB CLK_AB OUTB- OUTCVREF_CD VM Motor Drive Output Control C NC STROBE_CD RSC Stepper Motor OUTC+ Pre Drive and Control OUTD+ DATA_CD Motor Drive Output Control D CLK_CD RSD OUTD- Figure 33. Motor Configuration 6, Single Large Stepper Motor Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 33 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com OUTSAVREF_AB Motor Drive Output Control A ENABLE_SB PHASE_SB RSA OUTSA+ Pre Drive and Control ENABLE_SA VM OUTSB+ Motor Drive Output Control B PHASE_SA OUTSB- DC Motor OUTSCVREF_CD Motor Drive Output Control C ENABLE_SD OUTSC+ Pre Drive and Control ENABLE_SC OUTSD+ PHASE_SD Motor Drive Output Control D PHASE_SC OUTSD- Figure 34. Motor Configuration 7, Ultra-Large DC 7.3.3 Charge Pump The charge-pump voltage-generator circuit utilizes external storage and bucket capacitors. It provides the necessary voltage to drive the high-side switches for both DC-DC regulators and motor drivers. The chargepump circuit is driven at a frequency of 1.6 MHz (nom). Recommended bucket capacitance is 10 nF, 16 V (min), and storage capacitance is 0.1 μF, 60 V (min). The charge-pump storage capacitor, Cstage, should be connected from the VCP output, pin 22, to VM. For power-saving purposes in sleep mode, the charge pump is stopped when n_sleep = L and all three regulators are turned OFF. When the part is powered up, the charge pump is started first after the C_select capture, and 10 ms after the CP startup, the first regulator is started up. Table 9. Charge Pump FAULT CONDITION DC-DC Ch-A DC-DC Ch-B DC-DC Ch-C nSLEEP CHARGE PUMP 0 OFF OFF OFF 0 OFF 0 ON X X X ON 0 X ON X X ON 0 X X ON X ON 0 X X X 1 ON Motor OCP X X X 1 ON TSD X X X X OFF 34 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 VM Charge pump OSCD (100 kHz) OSCi (6.4 MHz) Vref 1.5 V Overcurrent sense OD_x Control logic and predriver Current limit Output voltage supervisor Disable (mask) FBx Over current detect Protect disable UVP OVP (-30%) (+30%) C_SELECT Soft start, Protection control, and nORT assertion Setup/ Extended Setup register Figure 35. DC-DC Converter This is a switch-mode regulator with integrated switches, to provide a programmed output set by the feedback terminal. The DC-DC converter has a fixed frequency variable duty cycle topology with a switching frequency of 100 kHz (nom). External filtering (inductor and capacitor) and external catch diode are required. The output voltage is short-circuit protected. If the system has a high input voltage and a very light load on the output, the converter may not provide energy to the inductor (skip) until the load line or the minimum voltage threshold is reached. The regulator has a soft-start function to limit the rush current during start up. It is achieved by using VFB ramp during soft start. For unused DC-DC converter channels, the external components can be removed if the channel is set to inactive by the C_SELECT pin and register bits. Also, the VFB pin can be left open or connected to ground. DCDC_MODE selector can operate channel B and C in parallel mode to handle 2× output driving capability. VFB_B pin is active for feedback, and VFB_C pin must be pulled down internally. 7.4 Device Functional Modes 7.4.1 Operation With 7 V < VM and VDIN < 18 V The devices starts operating with input voltages above 6.0 V typ. Between 7 V and 18 V, DC-DC converters can operate. Enabling motors in not allowed. 7.4.2 Operation With 18 V ≤ VM and VDIN ≤ 40 V The device can operate with full function. Both DC-DC converter and motor drivers can be enabled. Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 35 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 7.5 Register Maps 7.5.1 Setup Register Bit Assignment Setup register bits are assigned for motor configuration, blanking time, gain, and DC-DC switches. This register can be accessed only in Setup mode (nSLEEP = L and bit 16 data = L) . Table 10. Setup Register BIT NO. NAME DEFAULT 0 Motor select 0 0 DESCRIPTION 1 Motor select 1 0 2 Motor select 2 0 3 TBLNK AB0 0 4 TBLNK AB1 0 5 TBLNK CD0 0 6 TBLNK CD1 0 7 DC/DC_A SW 0 DC-DC ODA control, 0: ON (default), 1: OFF 8 DC/DC_B SW 0 DC-DC ODB control, 0: ON (default), 1: OFF 9 DC/DC_C SW 0 DC-DC ODC control, 0: ON (default), 1: OFF This bit is ignored when DCDC_MODE = H or open 10 Motor_AB gain 0 0: 1/10 (default), 1: 0 11 Motor_CD gain 0 0: 1/10 (default), 1: 0 12 OSCD frequency 0 0 13 OSCD frequency 1 0 = (0,0) 100 kHz (default) (0,1) 50 kHz (1,0) 200 kHz (1,1) 132.5 kHz These setup bits can be changed when the DC-DC regulators are in operation. 14 OSCM frequency 0 0 15 OSCM frequency 1 0 Motor configuration, < 2,1,0 > (0,0,0): Stepper × 2 (default) (0,0,1): Stepper + LDC, (0,1,0): Stepper + 2 × sDCs (0,1,1): DCL + 2 × sDC, (1,0,0): DCL × 2 (1,0,1): 4 × sDC (1,1,0): Large stepper (1,1,1): Ultra-large DC Tblank for DC motor driving, Tblank is inserted at any phase change and beginning of each chopping cycle. AB1 AB0: Blanking time for A/B side drivers, CD1 CD0: Blanking time for C/D side drivers, 00: (1 ÷ fCHOP) ÷ 8 × 5 (= 6.25 μs) (default) 01: (1 ÷ fCHOP) ÷ 8 × 6 (= 7.50 μs) 10: (1 ÷ fCHOP) ÷ 8 × 3 (= 3.75 μs) 11: (1 ÷ fCHOP) ÷ 8 × 4 (= 5.00 μs) For stepper motor driving, only the fixed blanking time is applied. = (0,0) 800 kHz (default) (0,1) 400 kHz (1,0) 1.06 MHz (1,1) 1.6 MHz The device can be configured to one out of eight different motor control combination modes. When the device is powered on or is recovering from reset, the mode can be selected by writing to the setup register through the serial interface AB, during Setup mode (nSLEEP = L). Table 11. DC and Stepper Motor Configuration SETUP REGISTER H-BRIDGE AND MOTOR CONFIGURATION BIT 2 BIT 1 BIT 0 OUTA+, OUTA– 0 0 0 Stepper motor drive OUTB+, OUTB– OUTC+, OUTC– 0 0 1 Stepper motor drive 0 1 0 Stepper motor drive DC motor drive DC motor drive 0 1 1 Large DC motor drive DC motor drive DC motor drive 1 0 0 1 0 1 1 1 0 Large stepper motor drive: A + B for first winding, C + D for second winding 1 1 1 Ultra-large DC motor drive Large DC motor drive Large DC motor drive DC motor drive OUTD+, OUTD– Stepper motor drive Large DC motor drive DC motor drive DC motor drive DC motor drive Default setting is (M0, M1, M2) = (0, 0, 0) 36 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Extended setup (EX-setup) register bits are assigned for protection control, pre TSD, and multiplexer test mode selection. This register can be accessed only in Setup mode (nSLEEP = L and bit 16 data = H). Table 12. Extended Setup Register (EX-Setup) Bit Assignment BIT NO. NAME DEFAULT DESCRIPTION 0 Signal select 0 0 1 Signal select 1 0 2 Signal select 2 0 3 Signal select 3 0 Signal selector monitored on LOGIC_OUT DC-DC OCP detection, DC-DC voltage supervisor (OVP or UVP), Motor overcurrent (four H-bridges), TSD, and so forth [shutdown (protection) signals must be latched] 4 Ignore SD 0 0 0 = Normal operation, 1 = Ignore DC-DC OCP 5 Ignore SD 1 0 0 = Normal operation, 1 = Ignore DC-DC voltage supervisor 6 Ignore SD 2 0 0 = Normal operation, 1 = Ignore motor OCP 7 Ignore SD 3 0 0 = Normal operation, 1 = Ignore thermal shutdown 8 Disable nORT 0 (selective shutdown for DC-DC Ch-C) 0 0 = Normal operation 1 = Disable nORT assertion but shut down DC-DC Ch-C, in case of DC-DC Ch-C fault condition Ch-C shutdown is released by nSLEEP rise edge. If fault condition is on the other channels (with bit = 0), assert nORT and shut down all three DC-DC channels. This bit is ignored when DCDC_MODE = H or open 9 Disable nORT 1 (Selective shutdown for DC-DC Ch-B) 0 0 = Normal operation 1 = Disable nORT assertion but shut down DC-DC channel B, in case of DC-DC Ch-B fault condition Ch-B shutdown is released by nSLEEP rise edge. If fault condition on the other channels (with bit = 0), assert nORT and shut down all three DC-DC channels. 10 Disable nORT 2 (Selective shutdown for DC-DC Ch-A) 0 0 = Normal operation, 1 = Disable nORT assertion but shutdown the DC-DC ChA, in case of DC-DC Ch-A fault condition. Ch-A shutdown is released by nSLEEP rise edge. If fault condition on the other channels (with bit is 0), assert nORT and shut down all three DC-DC channels . 11 Pre TSD 0 0 0 = Ttsd0 = Ttsd - 20°C, 1 = Ttsd1= Ttsd - 30°C 12 Pre TSD 1 0 0 = Pre-TSD (logic) output, 1 = TH_OUT Analog output 13 Test mux 0 0 14 Test mux 1 0 15 Test mux 2 0 Test mode selection, < 2,1,0 > = (0,0,0) Normal operation (0,0,1) TSD control – 1, (0,1,0) TSD control – 2, (0,1,1) OSC monitor enable, Table 13. LOGIC OUT Selection NO. EX-setup REGISTER (BITS 3–0) 0 0000 (default) DC-DC OCP_A DC-DC OVP_A DC-DC UVP_A Latched out 1 0001 DC-DC OCP_B DC-DC OVP_B DC-DC UVP_B Latched out DC-DC OCP_C DC-DC OVP_C DC-DC UVP_C Latched out SIGNAL SELECTION MONITORED ON LOGIC OUT (LISTED SIGNALS TO BE MUXED BY OR) SIGNAL POINT 2 0010 3 0011 DC-DC OCP_A DC-DC OCP_B DC-DC OCP_C Latched out 4 0100 DC-DC OVP_A DC-DC OVP_B DC-DC OVP_C Latched out 5 0101 DC-DC UVP_A DC-DC UVP_B DC-DC UVP_C Latched out 6 0110 Motor OCP Latched out 7 0111 TSD Latched out 8 1000 Revision = 1: For this device = (1,0,1) = 5 ROM 9 1001 Revision = 0: For this device ROM 10 1010 Revision = 1: For this device ROM 11 1011 Vendor = 0: For TI = TI (0,0), NG (1,0) ROM 12 1100 Vendor = 0: For TI = Reserve (0,1), (1,1) ROM 13 1101 Internal oscillator clock (as divided by 32 = 200 kHz) 14 1110 Fixed value as 1 (open-drain output buffer off) This bit is ignored when DCDC_MODE pin = H or open. Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 37 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Table 13. LOGIC OUT Selection (continued) NO. EX-setup REGISTER (BITS 3–0) 15 1111 SIGNAL SELECTION MONITORED ON LOGIC OUT (LISTED SIGNALS TO BE MUXED BY OR) SIGNAL POINT Fixed value as 1 (open-drain output buffer off) Table 14. Test Mux Selection NO. BITS 15, 14, 13 DESCRIPTION 0 0, 0, 0 Normal operation 1 0, 0, 1 TSD control 1 At TSD event, shut down only motor driver part, DC-DC keep ON, keep setup register values, motor shutdown released by nSLEEP = L, no nORT assertion 2 0, 1, 0 TSD control 2 At TSD event, shut down only motor driver part, DC-DC keep ON, keep setup register values, motor shutdown released by nSLEEP = L, nORT assertion: 40-ms single pulse 3 0, 1, 1 OSC monitor enable Provide clock to OSCD_mon and OSCM_mon pins The serial interfaces communicate to the stepper parameter registers during nSLEEP = H . When nSLEEP = L, all register values are cleared. (1) (2) Table 15. Register Settings for Stepper Motor Driving Parameter (1) (2) (1) 38 BIT NO. NAME DEFAULT VALUE 0 Torque 0 0 1 Torque 1 0 2 Decay B(D)0 0 3 Decay B(D)1 0 4 Current B(D)0 0 5 Current B(D)1 0 6 Current B(D)2 0 7 Current B(D)3 0 8 Phase B(D) 0 9 Decay A(C)0 0 10 Decay A(C)1 0 11 Current A(C)0 0 12 Current A(C)1 0 13 Current A(C)2 0 14 Current A(C)3 0 15 Phase A(C) 0 DESCRIPTION Torque control, b1 b0 00 equates to 50% 01 equates to 70 % 10 equates to 85% 11 equates to 100% Specified by design Decay mode control (1) B(D)1, B(D)0: 00 equates to 12.5 % (do not use) 01 equates to 37.5 % (do not use) 10 equates to 75% 11 equates to fast decay Specified by design Phase B(D) current level setting (1) Control direction of current flow through winding B(D). A logic 1 allows conventional current flow from OUTB(D)+ to OUTB(D)–. Decay mode control (1) A(C)1, A(C)0: 00 equates to 12.5 % (do not use) 01 equates to 37.5 % (do not use) 10 equates to 75% 11 equates to fast decay Phase A current level setting (1) Control direction of current flow through winding A(C). A logic 1 allows conventional current flow from OUTA(C)+ to OUTA(C)–. This device has issues with stepper motor current setting accuracy. Decay mode should be 75% or fast decay (do not use mode 00 and 01) in this device. Decay mode should be 75% or fast decay (do not use mode 00 and 01) in this device. Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Table 16. Torque Control Bit VREF INPUT CONTROL MOTOR TORQUE BIT VALUE ROUGH OUTPUT CURRENT SETTING Torque 0, 1 = 0, 0 50% high power consumption, I(max) = VREF * gain/RSense Torque 0, 1 = 0, 1 70% power Torque 0, 1 = 1, 0 85% power Torque 0, 1 = 1, 1 100% power Table 17. Decay Mode Control Bit BIT VALUE DECAY MODE SETTING Decay x0, x1 = 0, 0 12.5% decay mode (do not use) Decay x0, x1 = 0, 1 37.5% decay mode (do not use) Decay x0, x1 = 1, 0 75% decay mode Decay x0, x1 = 1, 1 100% fast decay mode Table 18. Current Flow Direction Bit BIT VALUE CURRENT DIRECTION Phase X = 0 OUTx+ = L, OUTx– = H Phase X = 1 OUTx+ = H, OUTx– = L Table 19. Revision Code/Vendor Code ROM Readout at LOGIC OUT NO. EX-setup REGISTER (BITS 3–0) 8 1000 Revision = 1: For this device * = (1,0,1) = 5 9 1001 Revision = 0: For this device 10 1010 Revision = 1: For this device 11 1011 Vendor = 0: For TI = TI (0,0), NG(1,0) 12 1100 Vendor = 0: For TI = Reserve (0,1), (1,1) SIGNAL SELECTION MONITORED ON LOGIC OUT Table 20. Different Motor Drive Configuration Pinouts (Selected By Setup Register Bits 0 to 3) SETUP 0 (0,0,0) 1 (0,0,1) 2 (0,1,0) 3 (0,1,1) 4 (1,0,0) 5 (1,0,1) 6 (1,1,0) 7 (1,1,1) STEPPER MTR ×2 STEPPER MTR AND DC (LARGE) STEPPER MTR AND DC (SMALL) ×2 DC (LARGE) AND DC (SMALL) ×2 DC (LARGE) ×2 DC (SMALL) ×4 LARGE STEPPER ULTRALARGE DC 1 Test-LGND 2 MGND 3 OUTA– OUTA– OUTA– OUTA– OUTLAB– OUTLAB– OUTSA– OUTLAB– OUTULABCD– 4 RSA1 RSA1 RSA1 RSA1 RSLAB1 RSLAB1 RSA1 RSLAB1 RSULABCD1 5 RSA2 RSA2 RSA2 RSA2 RSLAB2 RSLAB2 RSA2 RSLAB2 RSULABCD1 6 OUTA+ OUTA+ OUTA+ OUTA+ OUTLAB+ OUTLAB+ OUTSA+ OUTLAB+ OUTULABCD+ 7 MGND 8 MGND 9 OUTB+ OUTB+ OUTB+ OUTB+ OUTLAB+ OUTLAB+ OUTSB+ OUTLAB+ OUTULABCD+ 10 RSB2 RSB2 RSB2 RSB2 RSLAB2 RSLAB2 RSB2 RSLAB2 RSULABCD1 11 RSB1 RSB1 RSB1 RSB1 RSLAB1 RSLAB1 RSB1 RSLAB1 RSULABCD1 12 OUTB– OUTB– OUTB– OUTB– OUTLAB– OUTLAB– OUTSB– OUTLAB– OUTULABCD– 13 MGND 14 LGND 15 DCDC_MODE 16 FBC Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 39 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com Table 20. Different Motor Drive Configuration Pinouts (Selected By Setup Register Bits 0 to 3) (continued) SETUP 0 (0,0,0) 1 (0,0,1) 2 (0,1,0) 3 (0,1,1) 4 (1,0,0) 5 (1,0,1) 6 (1,1,0) 7 (1,1,1) STEPPER MTR ×2 STEPPER MTR AND DC (LARGE) STEPPER MTR AND DC (SMALL) ×2 DC (LARGE) AND DC (SMALL) ×2 DC (LARGE) ×2 DC (SMALL) ×4 LARGE STEPPER ULTRALARGE DC 17 OD_C 18 OD_C 19 OD_B 20 OD_B 21 FBB 22 VCP 23 OSCD_mon 24 CP2 25 CP1 26 VDIN 27 VDIN 28 VDIN 29 VM 30 VREF_AB 31 VREF_CD 32 FBA 33 ODA 34 ODA 35 LGND 36 MGND 37 OUTC– OUTC– OUTLCD– OUTSC– OUTSC– OUTLCD– OUTSC– OUTLCD– OUTULABCD– 38 RSC1 RSC1 RSLCD1 RSC1 RSC1 RSLCD1 RSC1 RSLCD1 RSULABCD1 39 RSC2 RSC2 RSLCD2 RSC2 RSC2 RSLCD2 RSC2 RSLCD2 RSULABCD1 40 OUTC+ OUTC+ OUTLCD+ OUTSC+ OUTSC+ OUTLCD+ OUTSC+ OUTLCD+ OUTLABCD+ 41 MGND 42 MGND 43 OUTD+ OUTD+ OUTLCD+ OUTSD+ OUTSD+ OUTLCD+ OUTSD+ OUTSD+ OUTULABCD+ 44 RSD2 RSD2 RSLCD2 RSD2 RSD2 RSLCD2 RSD2 RSD2 RSULABCD1 45 RSD1 RSD1 RSLCD1 RSD1 RSD1 RSLCD1 RSD1 RSD1 RSULABCD1 46 OUTD– OUTD– OUTLCD– OUTSD– OUTSD– OUTLCD– OUTSD– OUTSD– OUTULABCD– ENABLE_SD - ENABLE_SD - ENABLE_SC ENABLE_ LCD ENABLE_SC ENABLE_ LCD - - ENABLE_SB - ENABLE_LAB ENABLE_ LAB ENABLE_SA ENABLE_ LAB 47 MGND 48 GND 49 C_SELECT 50 51 STROBE_CD STROBE_CD ENABLE_LCD ENABLE_SD ENABLE_SC 52 TH_OUT 53 LOGIC OUT 54 55 STROBE AB STROBE AB STROBE AB STROBE AB 56 nORT 57 LGND 58 OSCM_mon 59 DATA_CD DATA_CD - PHASE SD PHASE SD - PHASE SD - 60 CLK_CD CLK_CD PHASE_LCD PHASE SC PHASE SC PHASE_LCD PHASE SC PHASE_LCD 61 DATA_AB DATA_AB DATA_AB DATA_AB - - PHASE SB - 62 CLK_AB CLK_AB CLK_AB CLK_AB PHASE_LAB PHASE_LAB PHASE SA PHASE_LAB 63 nSLEEP=L nSLEEP=H 64 40 ENABLE_ ABCD PHASE_ABCD In-Reset Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The DRV8809/DRV8810 provides an integrated motor driver solution. The chip has four H-bridges internally and is configurable to eight different modes of combination motor driver control. Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 41 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 8.2 Typical Application 0.1uF Cstrage DCDC_MODE 0.01uF Cbkt C_SELECT VM 100uF TH_OUT VCP CP1 CP2 VDIN VM 200 k Vout 1 Temperature Sens : Pre-TSD or Tsens (analog) 330uH OD_A 5.0v (12.0v) 0.1uF 220uF FBA 5.6k (9.1k) DC/DC convertor Ch-A Voltage charge pump To Highside gate drive To DC/DC To Hbridges OUTA+ Motor Drive Output Control A Thermal Shut down 1.48v 2.4k (1.3k) VM 0.2 ohm RSA OUTAMGND Vout 2 330uH OD_B OUTB+ 1.5v DC/DC convertor Ch-B 220uF 0.1uF Vout 3 FBB 1.50v 3.0k 330uH 0.1uF Regulator Internal supply Voltage Supervisory DC/DC convertor Ch-C 220uF 1.50v 0.2 ohm VM OUTC+ Motor Drive Output Control C 1.2k 1.0k Stepper Motor RSB OUTB- Pre-Drive, Latch Registers & control circuitry OD_C 3.3v Motor Drive Output Control B VM 0.2 ohm RSC DC Motor FBC OUTCFreq divider for DC/DC In-Reset MGND OSCD_Mon OUTD+ OSCi 6.4MHz OSCM_Mon Motor Drive Output Control D Freq divider Motor PWM LOGIC_OUT nORT 0.2 ohm RSD DC Motor OUTDVREF_AB nSLEEP Setup / ex-setup registers LGND ENABLE_SD (reserved) STROBE_AB 2.5v VREF_SCD Serial Interface A-B DATA_AB Serial Interface C-D CLK_AB ENABLE_SC PHASE_SD PHASE_SC Figure 36. Application Schematic 8.2.1 Design Requirements To 1. 2. 3. 4. begin the design process, determine the following: Output voltage for each DC-DC converters Output voltage start up sequence Motor configuration (DC motors or stepping motors) External Rsense-motor current setting for stepping motor For one stepper and two DC motor configuration: • DC-DC Ch-A = 5 V (12 V) 42 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 Typical Application (continued) • • DC-DC Ch-B = 1.5 V DC-DC Ch-C = 3.3 V If start-up from Ch-B (1.5 V) ≥ Ch-A (5 V), Ch-C 3.3 V should be turned on by the setup register (200 kΩ between C_SELECT pin and GND). 8.2.2 Detailed Design Procedure 8.2.2.1 Output Voltage for Each DC-DC Converter Output voltage is set by external feedback resistor network. For example, • 5.0 V Output : 5.6 KΩ and 2.4 KΩ • 1.5 V Output : 0 Ω and 3.0 KΩ • 3.3 V Output : 1.2 KΩ and 1.0 KΩ 8.2.2.2 Output Voltage Startup Sequence DC-DC converters start up sequence is determined by CSELECT pin and DCDC_MODE combination. Refer to the sections DCDC_MODE for Parallel-Mode Control and DCDC_MODE and C_SELECT Timing Delay and Start-Up Order for details. 8.2.2.3 Motor Configuration Motor configuration is set by SPI register setting. Ramp up device with nSLEEP = Low, then write Setup Register Bits 0 to 3 for motor configuration. Refer to Table 11 for details. I(max) = VREF * Gain / RSense (1) VREF input is typically 2.5V. For example, if Rsense = 5 ohm and Torque (Bit 0 to 1) = 100% I(max) = 2.5V * 100% / 5ohm (2) = 500mA 8.2.2.4 External Rsense-Motor Current Setting for Stepping Motor Stepping motor current level is determined by external Rsense value. 8.2.3 Application Curves Die temperature can be monitored at TH_OUT pin when register is set as Tsense(analog). This is used for evaluation purposes only. Typical characteristics are shown in Figure 37. 2.6 T sens output voltage (V) Unit Linear 2.4 2.2 2 1.8 1.6 0 30 60 90 120 Temperature (qC) 150 180 D003 Figure 37. Tsense (Analog Out) Voltage Plot Example Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 43 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 9 Power Supply Recommendations This device requires a single voltage supply only. Supply to VM and VDIN pins should be the same voltage. VDIN and VM should be connected externally. 10 Layout 10.1 Layout Guidelines • • • • • 44 VDIN and VM should be connected externally Recommended to have GND plane layer for better thermal performance. Thermal pad directly going down to GND layer just under the device is the best way. VM is an analog sensing pin, not a power supply. Monitor the voltage between VM and RSx pin. Distance between Odx to Inductance should be as close as possible. This line has switching from 0 V to VDIN. FBx pin and external feedback resistor should be as close as possible. This is the analog sensing pin for the DC-DC converter. Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 DRV8809, DRV8810 www.ti.com SLVS854E – JULY 2008 – REVISED DECEMBER 2014 To 3.3 V C_SELECT To MCU nc STROBE_CD TH_OUT nc LOGIC_OUT STROBE_AB To MCU To 3.3 V To MCU To 3.3 V To MCU nORT To MCU LGND DATA_CD OSCM_mon To MCU To MCU To MCU CLK_CD To MCU To 3.3 V TEST_LGN GND MGND MGND To Power GND OUTA- HighPowerRating RSA RSD OUTD+ MGND MGND MGND MGND OUTB- OUTC+ RSB To Motor terminal LGND To GND or NC To Motor terminal HighPowerRating RSD OUTA+ HighPowerRating Power GND OUTD- RSA To Motor terminal Power GND To Motor terminal V_Supply Layer DATA_AB To MCU V_Supply Layer nSLEEP InRESET Power GND To Motor terminal CLK_AB To 3.3 V 10.2 Layout Example HighPowerRating RSC RSB RSC OUTB+ OUTC- MGND MGND LGND LGND DCDC_MOD OD_A FBC OD_A V_Supply Layer To Motor terminal Power GND To Motor terminal V_Supply Layer To Motor terminal LGND Power GND FBA VREF_CD VREF_AB VM VDIN VDIN VDIN CP1 CP2 VCP OSCD_mon FBB OD_B DC_C DC_C + OD_B LGND DC/DC Ach Vout To 3.3 V To 3.3 V PowerGN D + V_Supply Layer + DC/DC Cch Vout LGND Power GND DC/DC Bch Vout + Figure 38. Layout Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 Submit Documentation Feedback 45 DRV8809, DRV8810 SLVS854E – JULY 2008 – REVISED DECEMBER 2014 www.ti.com 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. 11.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 21. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY DRV8809 Click here Click here Click here Click here Click here DRV8810 Click here Click here Click here Click here Click here 11.3 Trademarks PowerPAD is a trademark of Texas Instruments Inc. All other trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 46 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated Product Folder Links: DRV8809 DRV8810 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) DRV8809PAP ACTIVE HTQFP PAP 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -10 to 50 DRV8809 1 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
DRV8809PAP 价格&库存

很抱歉,暂时无法提供与“DRV8809PAP”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DRV8809PAP
  •  国内价格
  • 1+87.37470
  • 10+78.88590
  • 30+75.79980
  • 100+69.69240

库存:4