0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GC5322IZND

GC5322IZND

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LBGA352_EP

  • 描述:

    IC WB DGTL TX PROCESSOR 352BGA

  • 数据手册
  • 价格&库存
GC5322IZND 数据手册
GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 GC5322 Wideband Digital Predistortion Transmit Processor Check for Samples: GC5322 FEATURES 1 • • 2 • • • • • Integrated DUC, CFR, and DPD Solutions 40-MHz (28-Mhz) Signal Bandwidth, Third (Fifth)-Order Expansion BW in DPD Section, Maximum Complex Rate 140 Mhz DUC: up to 12 CDMA2000 or TD-SCDMA, 4 W-CDMA, 3–10 MHz or 1–20 MHz OFDMA Carriers CFR: Typically Meets 3GPP TS 25.141 1. Output Formatter and DAC Interface (OFMT) The output format and DAC interface presents the GC5322 output in the proper format for the different DAC output interfaces. The output formatter supports a test pattern for testing the DAC5682Z interface. The output interfaces supported for the GC5322 are: • DAC5682 interleaved IQ 8 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com • SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 DAC5688 parallel IQ !!! GC532x DAC5682Z DPD Clock DAC Clock CLKIN, CLKINC ExtTerm (1) DataClock TX21, TX20 DCLK, DCLKC ExtPullup TX[] (See HW Data Sheet) (2) Differential Data D[15:0]P, D[15:0]N ExtPullup/ PullDown SYNCP, SYNCN B0371-01 (1) 100 Ω between P, N of series capacitor on DAC (2) 500-Ω pullup to 1.8 V only required when DAC data clock is > 337.5 MHz Figure 4. GC5322 to DAC5682Z Interface DAC5688 GC532x DPD Clock DAC Clock CLKIN, CLKINC ExtTerm (1) DataClock TX21, TX20 DCLK, DCLKC ExtTerm1 TX[] - DACI[] (See HW Data Sheet) Single-Ended 1.8-V CMOS DACA[15:0] ExtTerm1 TX[] - DACQ[] (See HW Data Sheet) (2) Single-Ended 1.8-V CMOS DACB[15:0] ExtTerm1 TX18 (2) (2) Single-Ended 1.8-V CMOS TXENABLE B0372-01 (1) 100 Ω between P, N of series capacitor on DAC (2) Tester uses 50 Ω to 0.9 V for data lines; TXENABLE 100 Ω to 1.8 V, 100 Ω to ground. Figure 5. GC5322 to DAC5688 (Parallel IQ) Interface Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 9 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com Feedback Path (FB) The feedback path has two LVDS input ports. The A port is preferred (it has better timing). The external ADC input is converted or processed to generate a complex signal. The feedback equalizer has eight complex taps as a receive equalizer. The feedback path has a mixer to translate the complex IF to the 0IF reference. The ADC feedback rate is at the same rate as the DPD clock (fS). The typical feedback is fS/4, fS3/4(m), or fS5/4 IF. The feedback equalizer can provide (m) inverted spectral output, if needed. The FB complex mixer translates the frequency of the complex input signal to 0IF. The feedback path has the capability for nonlinear correction with a lookup table. TI ADCs that connect to the feedback path are the SDR type ADS5444, DDR type ADS5445 (6149, 5517), DDR with reversed-data-phase ADSC217 and ADS5463. The ADC feedback path has modified connections for shared feedback path operation (see Figure 2). The GC5322 simplifies timing by providing a FIFO for each ADC port. NOTE There are eight LVDS data lanes and one LVDS clock lane. If the ADC has < 8 LVDS data lanes, the MSB of the ADC is connected to LVDS lane 7 (MSB) of the A feedback port. ADC GC532x MSB ALigned ADC DDR Data FB[17:2] (See HW Data Sheet) ADC[7P, 7N, 0P, 0N] DDR Clock FB[1:0] ADC_OutClkP, N B0373-01 Figure 6. LVDS DDR ADC to GC5322 FB Interface Microprocessor (MPU) Interface The MPU interface is designed to interface with external memory interface (EMIF) ports on TI DSPs operating in asynchronous mode. It consists of a 16-bit bidirectional data bus, a 10-bit address bus, and RDB, WRB, OEB, and CEB control signals. There are EMIF control signals which are not directly connected to the DSP: Table 1. EMIF to GC5322 Microprocessor Interface 6727 DSP EMIF GC5322 Notes EM_D[15.0] UPDATA[15.0] EM_A[8.0] UPADDR[9.1] EM_BA[1] UPADDR[0] EM_CS2 CEB DSP HD[22:20] are used for logic for multiple chip select, inverted output. EM_RWB OEB Invert RWB, send to OEB EM_WEB WRB EM_OEB RDB 10 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 HOST UHPI INTERFACE Note: One DSP Is Shared With GC532xs Multiplex Address Half Data UHPI DSP RST BOOTMODE EMIF Addr Cntl SDRAM EMIF Data SDRAM r e s TI6727 DSP UPDATA[] EMIF Addr Cntl GC532x DSP JTAG Inv RDB, CS2[] INTROUT To/From Other GC532x UPADDRESS[] and CNTL CS2-2 First GC532x INTROUT(2) UPDATA[] GPIO Ant SelCode CS2-1 INTROUT INTROUT UPADDRESS[] and CNTL B0374-01 Figure 7. '6727 DSP to GC5322 EMIF Interface Capture Buffers (CB) The GC5322 has two capture buffers of 4096 complex words. The capture buffers are normally used to capture the TX reference signal and the feedback output signal. Other signals can be captured: • The TX reference from the DPD after the circular hard limiter • The feedback output; this represents the waveform as seen by the PA. • The error output • Testbus(31:16) • QRD error output The second capture buffer can be used to provide: • The TX reference from the DPD after the circular hard limiter • The feedback output; this represents the waveform as seen by the PA. • The error output • Testbus(15:0) Standard capture mode – The capture buffers can be armed to collect the 4K complex samples after a programmable delay following a sync event. Smart capture mode (SCB) – There are two trigger conditions that combine the number of samples greater than a threshold; these are used to find a number of peak events while the transmit signal is above a threshold. In this case, the magnitude and magnitude squared of the signal are compared against a threshold and counted. If the capture buffer finds the trigger condition, the capture logic captures the programmed capture-buffer depth after the trigger. This is a combination of DSP software and the GC5322 hardware. NOTE Capture buffer A has a special mode to source data for diagnostic testing. The DSP host interface software has a function to select and get capture-buffer data. The complex data is passed from the GC5322 to the EMIF bus, to the DSP, and back to the host processor. The DSP host software has a signal power monitoring function. This uses the capture-buffer data to perform special monitoring, power measurement, and error measurements. A Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 11 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com NOTE There are special DSP software PA protection modes that use the capture buffer to determine the DPD correction applied to the signal, the error between the DPD reference input and the feedback signal. The capture buffers are also used in the initial bulk delay and fractional delay alignment. Input Syncs and Output Sync The GC5322 features multiple user-programmable input syncs. There are three syncs sampled with the BBClock, (A, B, C), and the sync D, DC as an LVDS sync is sampled by the DPD clock. Internally, the GC5322 can also generate timed and software-controlled syncs. The sync A input is required for the GC5322 hardware to initialize. It should ideally be the start of the frame or frame down link. The output sync is a test signal used for debugging. The input syncs can be used to trigger: • Power measurements • DUC channel delay, dither, and tuner alignment • Initializing/loading the DUC,, feedback, equalizer, LUTs, etc. • Feedback path tuner alignment • Capturing and sourcing of data through SCBs NOTE The Sync A external synchronization should match the customer TX frame (total TX period – i.e., 5 ms). See Figure 3; these synchronization signals must meet the timing of the BBClk. Sync A should be aligned with the BBFR signal. Power Meters and Peak I-or-Q Monitors There are three integrated I2 + Q2 power meters in the GC5322: • GPP – each baseband input channel • CFR – the CFR input or output, and which antenna stream (0, 1) • DPD – the input to the DPD nonlinear correction after the DPDL gain, and which antenna stream (0, 1) There are several peak I or Q monitors within the GC5322: • FRW – The resampled combined IQ interleaved input to the DPD • DPD – The input to the DPD nonlinear correction after the DPDL gain • DPD – After the nonlinear correction in DPD, and separately after the linear correction in DPD • FDBK – There is a peak monitor at the output of the feedback path. NOTE The DSP host software has a HW POWER meter setup and Get(Monitor) function to configure and get data from the integrated I2 + Q2 values. 12 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 PIN ASSIGNMENT AND DESCRIPTIONS ZND Package (Bottom View) 26 A 25 24 23 22 VSS1 VSS1 VSS1 VSS1 FB1 19 18 16 VDD SYNC FB31 FB35 VSSA2 BB15 BB11 BB7 SHV C BB3 BB0 VSS1 VSS1 VSS1 FB4 VDD SYNC FB30 FB34 VDDA2 FB8 FB10 FB14 FB16 FB20 FB24 FB26 BBFR BB12 BB8 SHV B BB4 BB1 VSS1 VSS1 VDD1 BB5 BB2 VSS1 VDD1 VSS1 FB11 FB15 FB17 FB21 FB25 FB27 11 8 6 3 FB9 12 9 5 FB5 14 10 7 20 17 15 13 21 4 2 1 B VDD1 VSS1 VSS1 VSS1 FB0 C VSS1 VDD1 VSS1 VSS1 MFIO FB3 0 FB7 VDD1 FB13 VDD SYNC ADC FB29 FB33 VDD1 FB19 FB23 VDD1 BBCLK BB13 BB9 SHV A IREF D VSS1 VSS1 VDD1 VSS1 MFIO FB2 1 FB6 VDD1 FB12 VDD SYNC ADC FB28 FB32 VSS1 FB18 FB22 VDD1 VDD1 BB14 BB10 BB6 VSS1 VDD1 VSS1 VSS1 SHV OUT VREF E VSS1 VSS1 VSS1 VDD1 VDD1 VSS1 VSS1 VSS1 F VSS1 VSS1 VSS1 VDD1 VDD1 VDD1 VSS1 VSS1 G VSS1 VSS1 VSS1 H MFIO MFIO VPP1 VDD1 3 2 VDD1 UP UP UP ADDR2 ADDR1 ADDR0 J VPP1 MFIO MFIO VDD1 5 4 VDD1 UP UP UP ADDR5 ADDR4 ADDR3 K MFIO MFIO VDD VDD1 SHV 6 7 VDD1 UP UP UP ADDR8 ADDR7 ADDR6 L MFIO MFIO MFIO VDD1 8 9 10 VDD1 UP VDD WRB SHV ADDR9 M MFIO MFIO MFIO VDD1 13 11 12 VDD1 OEB N MFIO MFIO VDD VDD1 SHV 15 14 UP UP UP VDD1 DATA2 DATA1 DATA0 P MFIO MFIO MFIO VDD1 16 18 17 VDD1 VDD VSS1 VSS1 SHV R MFIO MFIO MFIO VDD1 19 20 21 VDD1 UP UP UP DATA5 DATA4 DATA3 T MFIO MFIO MFIO VDD1 23 22 24 VDD1 UP VDD VPP2 SHV DATA6 U MFIO MFIO VDD VDD1 SHV 25 26 VDD1 UP UP VPP2 DATA8 DATA7 V MFIO MFIO MFIO VDD1 28 29 27 VDD1 UP UP UP DATA11 DATA10 DATA9 W MFIO MFIO MFIO VDD1 30 31 32 VDD1 UP UP UP DATA14 DATA13 DATA12 Y MFIO VSS1 VSS1 VDD1 33 UP VDD VSS1 VSS1 DATA15 SHV AA VSS1 VSS1 VSS1 VDD1 VDD1 VSS1 VSS1 VSS1 AB VSS1 VSS1 VSS1 VDD1 VDD1 VDD1 VSS1 VSS1 AC VSS1 VSS1 VDD1 AD VSS1 VDD1 VSS1 VSS1 DPD DPD VSS1 VDDA1 TX3 IREF CLKC AE VDD1 VSS1 VSS1 VSS1 DPD SYNC VDD SHV D VREF AF VSS1 VSS1 VSS1 VSS1 VSS1 VDD SHV VDD VSS1 VSS1 VSS1 SHV RESET VDD SHV B DPD VSS1 VDD1 TX2 CLK CEB RDB TX6 TX10 TX14 VDDS VSS1 DAC TX25 TX29 TX33 TX37 VSS1 VDD1 VDD2 VSS1 VDD1 VSS1 VSS1 REFP TX7 TX11 TX15 VDDS VSS1 VDD DAC VDD1 VSS2 VSS1 VSS1 VDD1 VSS1 TX24 TX28 TX32 TX36 SHV REFN TX12 TX16 VDDS TX19 TX21 TX23 TX27 TX31 TX35 TRSTB TDI TX0 TX4 TX8 SYNC VSSA1 TX1 DC TX5 TX9 TX13 TX17 VSS1 TX18 TX20 TX22 TX26 TX30 TX34 TMS TCK INTERVSS1 VSS1 VSS1 VDD1 RUPT TDO = Baseband Input = Transmit Output = Feedback Input = Microprocessor Interface = Miscellaneous = Multi-Function Input/Output = Power and Biasing = JTAG Interface TEST VSS1 VSS1 VSS1 MODE P0077-01 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 13 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com PIN FUNCTIONS PIN NAME I/O NO. DESCRIPTION MICROPROCESSOR INTERFACE OEB M3 I Output enable CEB M2 I Chip enable RDB M1 I Read WRB L2 I Write UPADDR[9:0] L1, K3, K2, K1, J3, J2, J1, H3, H2, H1 I Microprocessor address UPDATA[15:0] Y1, W3, W2, W1, V3, V2, V1, U2, U1, T1, R3, R2, R1, N3, N2, N1 I/O Microprocessor data INTERRUPT AE5 O Microprocessor interrupt POWER AND BIASING VDD1 B1, B26, C2, C10, C14, C19, C25, D3, D8, D14, D19, D24, E4, E23, F3, F4, F23, H4, H23, J4, J23, K4, K23, L4, L23, M4, M23, N4, N23, P4, P23, R4, R23, T4, T23, U4, U23, V4, V23, W4, W23, Y23, AA4, AA23, AB3, AB4, AB23, AC3, AC6, AC19, AC24, AD2, AD6, AD25, AE1, AE26 PWR 1.2-V supply VSS1 A1, A2, A3, A23, A24, A25, A26, B2, B3, B23, B24, B25, C1, C3, C23, C24, C26, D1, D2, D4, D10, D23, D25, D26, E1, E2, E3, E24, E25, E26, F1, F2, F24, F25, F26, G1, G2, G3, G24, G25, G26, P1, P2, Y2, Y3, Y24, Y25, AA1, AA2, AA3, AA24, AA25, AA26, AB1, AB2, AB24, AB25, AB26, AC1, AC2, AC4, AC7, AC13, AC20, AC25, AC26, AD1, AD3, AD4, AD13, AD20, AD23, AD24, AD26, AE2, AE3, AE4, AE23, AE24, AE25, AF1, AF2, AF3, AF14, AF22, AF23, AF24, AF25, AF26 PWR Ground VDD2 AC5 NC 1.2-V monitor, no connect VSS2 AD5 NC GND monitor, no connect VDDS AC14, AD14, AE14 PWR 1.8-V supply VDDSHV A13, B13, C13, D13, G4, G23, K24, L3, N24, P3, T3, U24, Y4, AC22, AD7, AE20 PWR 3.3-V supply VDDA1 AD19 PWR 1.2-V supply (requires filtering) VSSA1 AF20 PWR Ground (requires filtering) VDDA2 B10 PWR 1.2-V supply (requires filtering) VSSA2 A10 PWR Ground (requires filtering) VPP1 H24, J26 PWR 1.2-V supply VPP2 T2, U1 PWR 1.2-V supply DPDIREF AD22 PWR DPD bias, 1 kΩ to VSS DPDVREF AE22 PWR DPD bias to VDD1 DACREFP AC12 PWR DAC bias, 50 Ω to VSS DACREFN AD12 PWR DAC bias, 50 Ω to VDDS ADCIREF C17 PWR ADC bias, 1 kΩ to VSS ADCVREF D17 PWR ADC bias to VDD1 BASEBAND INPUT BB[15:0] A8, D7, C7, B7, A7, D6, C6, B6, A6, D5, C5, B5, A5, C4, B4, A4 I Baseband input signal BBCLK C8 I Baseband input clock BBFR B8 I Baseband frame for sample and channel timing MFIO[19:18] R26, P24 I LSBs for 18-bit baseband input signal [-2, -1] MISCELLANEOUS RESETB AC23 I Chip reset (active-low) SYNCA C9 I Programmable general-purpose sync 14 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 PIN FUNCTIONS (continued) PIN NAME I/O NO. DESCRIPTION SYNCB B9 I Programmable general-purpose sync SYNCC A9 I DPDl-purpose sync SYNCD AE21 I Programmable general-purpose sync SYNCDC AF21 I Complementary DPD-purpose sync SYNCOUT D9 O Programmable general-purpose output sync DPDCLK AC21 I Clock to DPD DPDCLKC AD21 I Complementary clock to DPD TESTMODE AF4 I Tie to ground I JTAG clock JTAG INTERFACE TCK AF6 TDI AE6 I JTAG data in TDO AF5 O JTAG data out TRSTB AE7 I JTAG reset (active-low); pull down if JTAG is not used. TMS AF7 I JTAG mode select TX[37:0] AC8, AD8, AE8, AF8, AC9, AD9, AE9, AF9, AC10, AD10, AE10, AF10, AC11, AD11, AE11, AF11, AE12, AF12, AE13, AF13, AF15, AE15, AD15, AC15, AF16, AE16, AD16, AC16, AF17, AE17, AD17, AC17, AF18, AE18, AD18, AC18, AF19, AE19 O Transmit to DAC(s) FB[35:0] A11, A15, A18, A21, I Feedback from ADC(s) MFIO[33:0] Y26, W24, W25, W26, V24, V25, V26, U25, U26, T24, T25, T26, R24, R25, R26, P24, P25, P26, N25, N26, M24, M25, M26, L24, L25, L26, K25, K26, J24, J25, H25, H26, D22, C22 SIGNALS (See mode selection guide for pin assignment) B11, B15, B18, B21, C11, C15, C18, C21, D11, D15, D18, D21, A12, A16, A19, A22, B12, C12, D12, A14, B14, B16, C16, D16, A17, B17, B19, A20, B20, C20, D20, B22 I/O MFIO Special Power Supply Requirements for VDDA1, VSSA1, VDDA2, VSSA2 The two PLLs require a filtered supply. Each pair (VDDA1,VSSA1), (VDDA2,VSSA2) requires a separate filter. These can be generated by filtering the core digital supply (VDD1). A representative filter is shown in Figure 8. The filters should be located as close as reasonable to their respective pins (especially the bypass capacitors). The ferrite beads should be series 50R (similar to Murata P/N: BLM31P500SPT; Description: IND FB BLM31P500SPT 50R 1206). In particular, supply VDDA1 must be less than or equal to VDD1 when VDD1 is at the low end of the required range. The series resistor assures this condition is met. 10 W VDD1 VDDA1 or VDDA2 0.01 mF 1 mF 10 W VSS1 VSSA1 or VSSA2 S0315-01 Figure 8. Recommended Filter for VDDA1, VDDA2 Power Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 15 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com TX Output to DAC5682Z and DAC5688 Figure 4 and Figure 5 show the GC5322-to-DAC data, sync, and clock signals. Table 2 and Table 4 list the specific GC5322-to-DAC TX connections. Table 2. GC5322 TX Interface Options PIN FUNCTION PIN NAME I/O DESCRIPTION GC5322 TX (Single-Channel Single-Ended HSTL – DAC5688 – 1.8-V CMOS) DACI[15:0] TX15, TX14, TX11, TX10, TX7, TX6, TX3, TX2, TX1, TX0, TX4, TX5, TX8, TX9, TX12, TX13 O DAC-I output DACQ[15:0] TX24, TX25, TX28, TX29, TX32, TX33, TX36, TX37, TX35, TX34, TX31, TX30, TX27, TX26, TX23, TX22 O DAC-Q output DACCLK TX21 O Clock to DAC DACCLKC TX20 O Complementary clock to DAC DACSYNC TX18 O Output data sync (TX enable) Table 3. GC5322 TX (Single-Channel Differential HSTL – DAC5682Z) PIN FUNCTION PIN NAME I/O DESCRIPTION GC5322 TX (Differential HSTL) – DAC 5682Z – 1.2-V LVDS DACI[15:0]P TX10, TX6, TX2, TX0, TX4, TX8, TX12, TX16, TX23, TX27, TX31, TX35, TX32, TX36, TX29, TX25 O DAC positive output DACQ[15:0]N TX11, TX7, TX3, TX1, TX5, TX9, TX13, TX17, TX22, TX26, TX30, TX34, TX33, TX37, TX28, TX24 O DAC negative output DACCLK TX21 O Clock to DAC DACCLKC TX20 O Complementary clock to DAC DACSYNCP TX14 O Positive output data sync DACSYNCN TX15 O Negative output data sync FB Input From LVDS ADC There are several different ADC formats; these are formed from the possible combinations of DDR and SDR clocking modes with positive-clock-edge even bits and positive-clock-edge odd bits. Figure 6 shows the DDR-ADC data, and clock signals to the GC5322. Table 4 and Table 5 list the specific ADC to GC5322 FB connections. There are two feedback (FB) ports, A and B. Port A has faster timing and is preferred. There are several ADC styles: • LVDS DDR – ADS5545 (ADS61x9, ADS5517); ADS5463 (1) • LVDS DDR – ADS62C17 – reversed data alignment (same connections as ADS5545) • LVDS SDR – ADS5544 (1) Clock aligns with data. ADCs are typically connected to the GC5322 so the MSB of the ADC is connected to FB Port A MSB. The lower bit numbers follow until the ADC bits are all connected. Any remaining lower-order bits on the FB port should be terminated with a P connection to a series resistor to GND, N connection to a series resistor to 1.8 V as a logic 0. See the GC5325SEK schematic (reference 2 in the References section) for an example. NOTE There are special connections for shared-feedback ADCs between GC5322s. The ADS6149 to GC5325 or GC5322 Shared Feedback Interface application guide, available as a PDF file from a TI field application engineer, describes the special connections and routing. Table 4. Single LVDS SDR ADC to FB Ports A and B PIN FUNCTION PIN NAME I/O DESCRIPTION Feedback (Single-Channel SDR LVDS or DDR LVDS) 16 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 Table 4. Single LVDS SDR ADC to FB Ports A and B (continued) PIN FUNCTION I/O DESCRIPTION ADC[15:0]P FB2, FB4, FB6, FB8, FB10, FB12, FB14, FB16, FB20, FB22, FB24, FB26, FB28, FB30, FB32, FB34 PIN NAME I ADC positive feedback from PA output ADC[15:0]N FB3, FB5, FB7, FB9, FB11, FB13, FB15, FB17, FB21, FB23, FB25, FB27, FB29, FB31, FB33, FB35 I ADC negative feedback from PA output ADCCLK FB0 I Clock from ADC ADCLKC FB1 I Complementary clock from ADC Table 5. Single LVDS DDR ADC PIN FUNCTION PIN NAME I/O DESCRIPTION To FB Port A (Preferred) ADCA[7:0]P FB2, FB4, FB6, FB8, FB10, FB12, FB14, FB16 I ADC-A positive feedback from PA output ADCA[7:0]N FB3, FB5, FB7, FB9, FB11, FB13, FB15, FB17 I ADC-A negative feedback from PA output ADCACLK FB0 I Clock from ADC-A ADCACLKC FB1 I Complementary clock from ADC-A ADCB[7:0]P FB20, FB22, FB24, FB26, FB28, FB30, FB32, FB34 I ADC-B positive feedback from PA output ADCB[7:0]N FB21, FB23, FB25, FB27, FB29, FB31, FB33, FB35 I ADC-B negative feedback from PA output ADCBCLK FB18 I Clock from ADC-B ADCBCLKC FB19 I Complementary clock from ADC-B To FB Port B Envelope Output The GC5322 has a magnitude output and magnitude clock that can be delayed to align with the TX output after DPD. The envelope output is transmitted at the DPD clock rate / 2. Table 6. Envelope Output PIN FUNCTION PIN NAME I/O DESCRIPTION Envelope (Single-Ended 3.3-V CMOS) ENV[14:0] MFIO33, MFIO32, MFIO28, MFIO27, MFIO26, MFIO25, MFIO17, MFIO16, MFIO15, MFIO14, MFIO9, MFIO8, MFIO7, MFIO6, MFIO3 O Magnitude of the CFR output signal ENVCLK MFIO1 O Clock to envelope modulator MPU Interface Guidelines This section describes the hardware interface between the recommended microprocessor and the GC5322. Users may select a microprocessor that meets their specific system requirements. Although the hardware can support multiple options, the recommended TMS320C6727 DSP is also fully supported with host control and adaptation software. Figure 7 and Figure 9 illustrate the hardware interface from the DSP to GC5322 and SDRAM. The external memory is required to accommodate the computational efforts of the adaptation algorithm. Reference to the SDRAM used is a 64-Mb/PC133; there are two memory devices for 32-bit SDRAM memory. The DSP timing is adjusted for the SDRAM; an example is Samsung K4S641632H-TC(L)75. The use of an external inverter, with minimal propagation delay, is required for OEB of the GC5322; this device is necessary when using a TMS320C6727 DSP. Additional documentation for the hardware interface is available in the Hardware Designer’s Resource Guide application report (SPRAA87) and TMS320C672x DSP External Memory Interface (EMIF) user's guide (SPRU711). Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 17 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com TMS320C6727 GC532x DATA BUS EM_D[15.0] UPDATA[15.0] ADDR.BUS EM_A[8.0] UPADDR[9.1] EM_BA[1] UPADDR[0] CNTL.BUS HD[22.20] EM_CS2 Multi-Device Select Logic EM_RWB Invert To Other GC532x CEB OEB EM_OEB EM_WEB RDB WRB Customer Logic Power Supply OK RESETB B0377-01 Figure 9. DSP to GC5322/SDRAM Interface Specifications In a typical implementation, the system configuration software resides locally (in nonvolatile memory) to ensure proper operation at power up. The size of the software required to support the GC5322 and 'C6727 should be no more than 128 Mb (16 MB); however, this allocation is subject to change pending algorithm improvements. The suggested host-to-DSP interface is through the UHPI port. See reference 4 in the References section. The SDRAM used is a 64-Mb / PC133 SDRAM. There are two SDRAM devices for a 32-bit memory. The port can be configured into multiple modes of data transfer; the Multiplexed Host Address/Data Dual Halfword Mode is suggested for this application. Additional specifications and documents for the TMS320C6727 DSP are available from Texas Instruments at: http://focus.ti.com/docs/prod/folders/print/tms320c6727b.html. GENERAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS VDD, VDDA Core supply voltage VDDS Digital supply voltage for TX VDDSHV Digital supply voltage VIN Input voltage (under/overshoot) Tstg VALUE UNIT –0.3 to 1.32 V –0.3 to 2 V –0.3 to 3.6 V –0.5 to VDDSHV+ 0.5 V Clamp current for an input/output –20 to 20 mA Storage temperature –65 to 150 °C 1 week ±100 mA ESD classification Class 2 (Required 2-kV HBM, 500-V CDM) (Passed 2.5-kV HBM, 500-V CDM, 200-V MM) Moisture sensitivity Class 3 (floor life at 30°C/60% H) Latchup 18 JEDEC Level 2 per JEDEC 78 standard (at 90°C and 1.5 × Vmax) Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range (unless otherwise noted) MIN TYP MAX UNIT 1.14 1.2 1.26 V VDD, VDDA2, VPP Core supply voltages. Note VDDA2 ≤ VDD VDDA1 Analog supply for DPD PLL 1 1.1 VDD V VDDS Digital supply voltage for TX 1.71 1.8 1.89 V VDDSHV Digital supply voltage 3.15 3.3 3.45 V 3 A 0.25 A See (1) IDD, IDDA1, IDDA2, Combined supply current for Vdd, Vdda1, IPP Vdda2, and VPP IDDS Digital supply current for TX IDDSHV Digital supply current TC Case temperature See (2) TJ Junction temperature See (3) (1) (2) (3) –40 30 0.3 A 85 °C 105 °C VDDA1 must be less than VDD1 when VDD is low. See recommended filtering circuit in Figure 8. Maximum observed current on VDDA1 is 8 mA. Chip specifications are production tested to 90°C case temperature. QA tests are performed at 85°C. Thermal management may be required for full-rate operation. Sustained operation at elevated temperatures reduces long-term reliability. Lifetime calculations are based on a maximum junction temperature of 105°C. THERMAL INFORMATION GC5322 THERMAL METRIC (1) ZND UNIT 352 PINS Junction-to-ambient thermal resistance (2) qJA (3) qJCtop Junction-to-case (top) thermal resistance qJB Junction-to-board thermal resistance (4) yJT Junction-to-top characterization parameter (5) yJB Junction-to-board characterization parameter (6) qJCbot (1) (2) (3) (4) (5) (6) (7) Junction-to-case (bottom) thermal resistance (7) 19 °C/W 0.8 °C/W 9 °C/W 0.5 °C/W 8 °C/W N/A °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. The junction-to-top characterization parameter, yJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining qJA, using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-board characterization parameter, yJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining qJA , using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 19 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com GENERAL ELECTRICAL CHARACTERISTICS Describes the electrical characteristics for the baseband interface, multifunction I/O (MFIO), DPD clock and fast sync, MPU and JTAG interfaces over recommended operating conditions. Device is production tested at 90°C for the given specification and characterized at –40°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT CMOS INTERFACE VIL CMOS voltage input, low VIH CMOS voltage input, high 0.8 V 2 VDDSHV V VOL CMOS voltage output, low IOL = 2 mA VOH CMOS voltage output, high 0.5 V IOH = –2 mA 2.4 VDDSHV |IPU| V Pullup current VIN = 0 V 40 200 mA |IIN| Leakage current VIN = 0 or VIN = VDDSHV 5 mA 100 DAC INTERFACE (DACP/N[15:0]) Vo(diff) Output differential swing | VOD | = | VOH – VOL | (1) Vcomm Common mode (VOH + VOL) / 2 (1) 250 mV 1000 mV LVDS INTERFACE (FB[35:0], DPDCLK/C, SYNCD/C) VI Input voltage range VI(diff) Input differential voltage, |Vpos – Vneg| RIN Input differential impedance 0 0 < Vi < 2000 mV 1000 mV < VI < 1400 mV, FB[35:0] only 2000 250 mV 90 80 mV 120 Ω 2.2 A POWER SUPPLY Idyn (1) (2) 20 Core current See (2) HSTL output levels measured at 675 Mb/s delay and with 100-Ω load from P to N. Drive strength set to 0x360. Contact TI for operations above 675 Mb/s. Operating at 280 MHz core, TX 840 MHz, maximum filtering, nominal supplies Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 GENERAL SWITCHING CHARACTERISTICS Describes the electrical characteristics for the baseband interface, MFIO[19:18], Sync A, B, C, and BB clock over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX GPP is ACTIVE. 25 93.3 GPP is BYPASSED. 25 140 UNIT BASEBAND INTERFACE fCLK(BB) Baseband input clock frequency tsu(BB) Input data setup time before BBCLK↑ BB[15:0], BBFR, SYNCA, SYNCB, and SYNCC; MFIO18/19 1.3 ns th(BB) Input data hold time after BBCLK↑ BB[15:0], BBFR, MFIO18/19 1.5 ns th(SYNCA, -B, -C) Input data hold time after BBCLK↑ SYNCA, SYNCB, and SYNCC DutyCLK(BB) Duty cycle 2 30% MHz ns 70% 1/fCLK(BB) BBCLK BB[15:0] tsu(BB) I(ch = 1, t = 1) Q(ch = 1, t = 1) Q(ch = N, t = 1) I(ch = 1, t = 2) th(BB) BBFR T0284-01 Figure 10. Baseband Timing Specifications (ex. Four Interleaved I/Q Channels) Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 21 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com DPD CLOCK AND FAST SYNC SWITCHING CHARACTERISTICS MIN MAX UNIT fCLK(DPD) DPD input clock frequency PARAMETER TEST CONDITIONS 100 280 MHz DutyCLK(DPD) DPD input clock duty cycle 30% 70% th(SYNCD) Input hold time after DPDCLK↑ 0.2 ns tsu(SYNCD) Input setup time after DPDCLK↑ 0.4 ns th(SYNCA, -B, -C) Input hold time after DPDCLK↑ 2 ns tsu(SYNCA, -B, -C) Input setup time after DPDCLK↑ 0.4 ns tjCLK(DPD) DPD output clock cycle-to-cycle jitter –2.5% 2.5% DPDCLK DPDCLKC SYNCDC SYNCD tsu(SYNCD) th(SYNCD) SYNCA SYNCB SYNCC tsu(SYNCA, -B, -C) th(SYNCA, -B, -C) T0286-01 Figure 11. DPD Clock and Fast Sync Timing Specifications 22 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 MPU SWITCHING CHARACTERISTICS (READ) PARAMETER TEST CONDITIONS MIN MAX UNIT tsu(AD) ADDR setup time to RDB↓ WRB is HIGH. 5 ns tsu(CEB) CEB setup time to RDB↓ WRB is HIGH. 7 ns tsu(OEB) OEB setup time to RDB↓ WRB is HIGH. 2 ns td(RD) DATA valid time after RDB↓ WRB is HIGH. th(RD) ADDR hold time to RDB↑ WRB is HIGH. OEB, CEB hold time to RDB↑ tHIGH(RD) Time RDB must remain HIGH between READs. WRB is HIGH (1). tZ(RD) DATA goes high-impedance after OEB↑ or RDB↑. WRB is HIGH (1). (1) 14 2 ns ns 0 7 ns 7 ns These values are obtained from testing during characterization. RDB tHIGH(RD) WRB th(OEB) tsu(OEB) OEB tsu(CEB) CEB tsu(AD) ADDR DATA 3-State td(RD) tZ(RD) th(RD) T0287-01 Figure 12. MPU READ Timing Specifications Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 23 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com MPU SWITCHING CHARACTERISTICS (WRITE) PARAMETER TEST CONDITIONS DATA and ADDR setup time to WRB↓ tsu(WR) MAX UNIT 5 CEB setup time to WRB↓ OEB and RDB are HIGH. OEB setup time to WRB↓ 7 ns 2 DATA and ADDR hold time after WRB↑ th(WR) MIN OEB and RDB are HIGH. OEB and CEB hold time after WRB↑ 2 ns 0 tlow(WR) Time WRB and CEB must remain simultaneously LOW OEB and RDB are HIGH. 15 ns thigh(WR) Time CEB or WRB must remain HIGH between WRITEs. OEB and RDB are HIGH. 10 ns RDB tlow(WR) thigh(WR) WRB OEB th(WR) tsu(WR) CEB ADDR DATA T0288-01 Figure 13. MPU WRITE Timing Specifications 24 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 JTAG SWITCHING CHARACTERISTICS PARAMETER TEST CONDITIONS MIN MAX UNIT 50 MHz fTCK JTAG clock frequency tp(TCKL) JTAG clock low period 10 ns tp(TCKH) JTAG clock high period 10 ns tsu(TDI) Input data setup time before TCK↑ Valid for TDI and TMS 1 ns th(TDI) Input data hold time after TCK↑ Valid for TDI and TMS 6 td(TDO) Output data delay from TCK↓ ns 8 ns 1/fTCK TCK tp(TCKH) tp(TCKL) TDI tsu(TDI) th(TDI) TDO td(TDO) T0289-01 Figure 14. JTAG Timing Specifications DIFFERENTIAL HSTL SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 420 MHz TBD ps HSTL MODE – DDR ex. DAC5682 fCLK(DAC) DAC output clock frequency RL= 100 Ω (1) tSKW(DAC) DACCLK to DACData RL= 100 Ω (1) DDR interface; DAC clock is 1/2 DAC data rate. 1/fCLK(DAC) DACCLKC DACCLK DAC[15:0]P I Q I DAC[15:0]N tSKW(DAC) T0290-01 Figure 15. TX Timing Specifications (HSTL – DDR) Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 25 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com SINGLE-ENDED HSTL SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT HSTL MODE – SDR ex. DAC5688 fCLK(DAC) DAC output clock frequency 2-mA load (1) 200 MHz td DACCLK-to-DACData delay time 2-mA load (2) 1.5 ns tho DACCLK-to-DACData hold time 2-mA load (2) (1) (2) 1.5 ns Because the output clock is SDR, the positive edge of the clock is used to register the data at the DAC receiver. The clock rate is limited to 200 MHz. td and tho clock-to-data is measured during characterization. DACCLKC DACCLK DAC[15:0] I or Q tho td T0448-01 Figure 16. TX Timing Specifications (HSTL – SDR) ENVELOPE SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT MFIO CMOS – SDR to Envelope Modulator fCLK(ENV) ENVELOPE data output clock frequency 2-mA load (1) 140 MHz td ENVCLK-to-ENVData delay time 2-mA load (2) 1.5 ns tho ENVCLK-to-ENVData hold time 2-mA load (2) (1) (2) 1.5 ns Envelope output is magnitude; this is a real output at a DPDClk/2 (140-MHz) rate. td and tho clock-to-data is measured during characterization. ENVCLK ENVDATA[15:0] tho td T0449-01 Figure 17. Envelope Timing (MFIO-CMOS 3.3 V) 26 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 LVDS SWITCHING CHARACTERISTICS Over recommended operating conditions (unless otherwise noted). The following table uses a shorthand nomenclature, NxM. N means the number of differential pairs used to transmit data from one ADC and M means the number of bits sent serially down each LVDS pair. Thus, 8x2 means 8 LVDS pairs each containing 2 bits of information sent serially. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 280 MHz 16 × 1 SDR LVDS MODE ex. ADS5444 fCLK(ADC) ADC interface clock frequency See (1) tsu(ADC[#]P) Input data setup time before CLK↑ See (1) (2) 300 ps (1) (2) 600 ps th(ADC[#]P) Input data hold time after CLK↑ See 16 × 1 DDR LVDS MODE ex. ADS5463 fCLK(ADC) See (1) ADC interface clock frequency 140 MHz (1) (2) 100 ps 1200 ps tsu(ADC[#]P) Input data setup time before CLK↑↓ See th(ADC[#]P) Input data hold time after CLK↑↓ See (1) (2) 8 × 2 DDR LVDS MODE ex. ADS5545, ADS6149 fCLK(ADCA) See (1) ADCA interface clock frequency 280 (1) (3) MHz tsu(ADCA[#/2]P) Input data setup time before CLK↑↓ See . For port A 430 th(ADCA[#/2]P) Input data hold time after CLK↑↓ See (1) (3). For port A 260 fCLK(ADCB) ADCB interface clock frequency See (1) tsu(ADCB[#/2]P) Input data setup time before CLK↑↓ See (1) (4). For port B 800 ps th(ADCB[#/2]P) Input data hold time after CLK↑↓ See (1) (4). For port B 400 ps (1) (2) (3) (4) ps ps 280 MHz Specifications are limited by GC5322 performance and may exceed the example ADC capabilities for the given interface. Setup and hold measured for ADC[15:0]P, ADC[15:0]N valid for (VOD > 250 mV) to/from ADCCLK and ADCCLKC clock crossing (VOD = 0). Setup and hold measured for ADCA[7:0]P, ADCA[7:0]N valid for (VOD > 250 mV) to/from ADCACLK and ADCACLKC clock crossing (VOD = 0). Setup and hold measured for ADCB[7:0]P, ADCB[7:0]N valid for (VOD > 250 mV) to/from ADCBCLK and ADCBCLKC clock crossing (VOD = 0). 1/fCLK(ADC) CLK CLKC ADC[15:0]P ADC[15:0]N tsu(ADC[#]P) th(ADC[#]P) T0291-01 Figure 18. LVDS Timing Specifications (16 × 1 SDR LVDS) 1/fCLK(ADC) CLK CLKC tsu(ADC[#]P) ADC[15:0]P ADC[15:0]N th(ADC[#]P) T0292-01 Figure 19. LVDS Timing Specifications (16 × 1 DDR LVDS) Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 27 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com 1/fCLK(ADCx) CLK CLKC ADC[# bits/2]P Even Bits Odd Bits Even Bits Odd Bits ADC[# bits/2]N tsu(ADCx[#/2]P) th(ADCx[#/2]P) t=N t=N+1 T0293-01 Figure 20. LVDS Timing Specifications (8 × 2 DDR LVDS) GLOSSARY OF TERMS 3G Third generation (refers to next-generation wideband cellular systems that use CDMA) 3GPP Third generation partnership project (W-CDMA specification,www.3gpp.org) 3GPP2 Third generation partnership project 2 (cdma2000 specification,www.3gpp2.org) ACLR Adjacent channel leakage ratio (measure of out-of-band energy from one CDMA carrier) ACPR Adjacent channel power ratio ADC Analog-to-digital converter BW Bandwidth CCDF Complementary cumulative distribution function CDMA Code division multiple access (spread spectrum) CEVM Composite error vector magnitude CFR Crest factor reduction CMOS Complementary metal oxide semiconductor DAC Digital-to-analog converter dB Decibels dBm Decibels relative to 1 mW (30 dBm = 1 W) DDR Dual data rate (ADC output format) DSP Digital signal processing or digital signal processor DUC Digital upconverter (usually provides the GC5322 input) EVM Error vector magnitude FIR Finite impulse response (type of digital filter) I/Q In-phase and quadrature (signal representation) IF Intermediate frequency IIR Infinite impulse response (type of digital filter) JTAG Joint Test Action Group (chip debug and test standard 1149.1) LO Local oscillator LSB Least-significant bit Mb Megabits (divide by 8 for megabytes MB) 28 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 MSB Most-significant bit MSPS Megasamples per second (1×106 samples/s) PA Power amplifier PAR Peak-to-average ratio PCDE Peak code domain error PDC Peak detection and cancellation (stage) PDF Probability density function RF Radio frequency RMS Root mean square (method to quantify error) SDR Single data rate (ADC output format) SEM Spectrum emission mask SNR Signal-to-noise ratio (usually measured in dB or dBm) UMTS Universal mobile telephone service W-CDMA Wideband code division multiple access (synonymous with 3GPP) WiBro Wireless broadband (Korean initiative IEEE 802.16e) WiMAX Worldwide Interoperability of Microwave Access (IEEE 802.16e) Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 29 GC5322 SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 www.ti.com REVISION HISTORY Changes from Original (February 2008) to Revision A • Page Updated the LVDS INTERFACE section of the General Electrical Characteristics ........................................................... 20 Changes from Revision A (August 2008) to Revision B Page • Changed Changed ADS5444 18-bit to ADS6149 14-bit ....................................................................................................... 4 • Deleted Deleted Related Material and Documents section ................................................................................................ 12 • Deleted Deleted paragraph "For systems that......implementation". Also deleted Figure 3. DSP to ....Interface ............... 18 • Changed Changed from HSTL interface (TX[37:0] ) to DAC interface (DACP/N [15:0]) ................................................... 20 • Changed changed the first 2 rows and deleted 5 rows from this subsection in the table .................................................. 20 • Changed Deleted note 1 and changed note 2, original 3 notes ......................................................................................... 20 • Deleted Deleted last row of the TX Switching table and added note 2 .............................................................................. 25 • Changed Changed from 800 to 430 ................................................................................................................................... 27 • Changed Changed from 400 to 260 ................................................................................................................................... 27 Changes from Revision B (December 2008) to Revision C Page Changes from Revision C (February 2009) to Revision D Page • Changed the FEATURES list ................................................................................................................................................ 1 • Changed the APPLICATIONS list ......................................................................................................................................... 1 • Revised the system block diagram ....................................................................................................................................... 1 • Rewrote DESCRIPTION section .......................................................................................................................................... 1 • Added Created Description (Continued), so description paragraphs would fall below the ESDS statement on second page ...................................................................................................................................................................................... 2 • Revised the functional block diagram ................................................................................................................................... 3 • Added the REFERENCES section ....................................................................................................................................... 3 • Deleted "to 30 dB" ................................................................................................................................................................ 4 • Added an 800-MSPS DAC ................................................................................................................................................... 4 • Added a CDCE72010 clock generator .................................................................................................................................. 4 • Added "ADC" ........................................................................................................................................................................ 4 • Changed second sentence of System Arhitecture section ................................................................................................... 5 • Deleted last row of System Architecture table ...................................................................................................................... 5 • Deleted the Dual Antenna, GC5322, Shared Feedback figure ............................................................................................ 6 • Revised text in Baseband Interface paragraph; added Figure 3 .......................................................................................... 6 • Inserted new BB Clock Input section .................................................................................................................................... 7 • Revised text in Gain/Pilot Insertion/AntCal Insertion/Power Meter paragraph ..................................................................... 7 • Revised the Digital Upconverters (DUCs) section ................................................................................................................ 7 • Revised the Crest Factor Reduction (CFR) section ............................................................................................................. 8 • Replaced text of Fractional Farrow Resampler (FR) section ................................................................................................ 8 • Revised the Digital Predistortion (DPD) section ................................................................................................................... 8 • Inserted new DPD Clock Input section ................................................................................................................................. 8 • Inserted new SyncD – DPD Clocked Sync Input section ..................................................................................................... 8 • Revised text paragraph of Bulk Upconverter (BUC) section ................................................................................................ 8 • Deleted "DPD clock /2 the" ................................................................................................................................................... 8 30 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 GC5322 www.ti.com SLWS206D – FEBRUARY 2008 – REVISED NOVEMBER 2010 • Inserted new Output Formatter and DAC Interface (OFMT) section .................................................................................... 8 • Removed last bullet from OFMT list ..................................................................................................................................... 9 • Deleted GC5322 to Dual DAC5688 (Interleaved IQ) Interface illustration ........................................................................... 9 • Replaced all text of Feedback Path (FB) section and added an illustration ....................................................................... 10 • Changed section title from Smart Capture Buffers (SCB) section to Capture Buffers (CB) ............................................... 11 • Deleted existing paragraph; inserted two new paragraphs and four notes ........................................................................ 11 • Revised title and first paragraph of the Input Syncs and Output Sync section; deleted a bullet from the list, and added a note ....................................................................................................................................................................... 12 • Changed title and replaced all text of Power Meters and Peak I-or-Q Monitors section .................................................... 12 • Changed names of some pins in the pinout diagram ......................................................................................................... 13 • Changed package from GND to ZND on pinout drawing ................................................................................................... 13 • Made changes to Terminal Functions table in the areas of UPDATA, VSS1, VDD2, VSS2, RESETB, SYNCD, SYNCDC, SYNCOUT, and MFIO ....................................................................................................................................... 14 • Made changes to Terminal Functions table in the areas of UPDATA, VSS1, VDD2, VSS2, RESETB, SYNCD, SYNCDC, SYNCOUT, and MFIO ....................................................................................................................................... 15 • Added title for Special Power Supply Requirements for VDDA1, VSSA1, VDDA2, VSSA2 section .................................. 15 • Inserted one sentence in this paragraph and revised another ........................................................................................... 15 • Changed analog supply to filtered supply ........................................................................................................................... 15 • Changed caption of Figure 8 and moved figure to the end of the section ......................................................................... 15 • Added title and introductory paragraph to TX Output to DAC5682Z and DAC5688 section; major overhaul of Table 2 and Table 4 ......................................................................................................................................................................... 16 • Changed to new figure reference as a result of deleted illustration ................................................................................... 16 • Deleted Single- or Dual-Channel DDR LVDS section of table ........................................................................................... 16 • Added new FB Input From LVDS ADC section .................................................................................................................. 16 • Added new Envelope Output section .................................................................................................................................. 17 • Revised the MPU Interface Guidelines section .................................................................................................................. 17 • Replaced Figure 9 graphic .................................................................................................................................................. 18 • Deleted sentence: "The adaptation algorithm..." ................................................................................................................ 18 • Deleted Typical Baseband Interface section ...................................................................................................................... 18 • Changed fCLK(ENV) MAX value to 140 MHz .......................................................................................................................... 26 • Changed the LVDS 16 × 1 DDR timing digram .................................................................................................................. 27 Submit Documentation Feedback Copyright © 2008–2010, Texas Instruments Incorporated Product Folder Link(s): GC5322 31 PACKAGE OPTION ADDENDUM www.ti.com 9-Jun-2017 PACKAGING INFORMATION Orderable Device Status (1) GC5322IZND LIFEBUY Package Type Package Pins Package Drawing Qty BGA ZND 352 40 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Pb-Free (RoHS) SNAGCU Level-3-260C-168 HR Op Temp (°C) Device Marking (4/5) -40 to 85 GC5322IZND (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
GC5322IZND 价格&库存

很抱歉,暂时无法提供与“GC5322IZND”相匹配的价格&库存,您可以联系我们找货

免费人工找货