0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN75LVDS83BDGG

SN75LVDS83BDGG

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP56

  • 描述:

    IC DRIVER 5/0 56TSSOP

  • 数据手册
  • 价格&库存
SN75LVDS83BDGG 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 SN75LVDS83B FlatLink™ Transmitter 1 Features 2 Applications • • • • 1 • • • • • • • • • • • LVDS Display Series Interfaces Directly to LCD Display Panels With Integrated LVDS Package Options: 4.5-mm x 7-mm BGA, and 8.1mm x 14-mm TSSOP 1.8-V Up to 3.3-V Tolerant Data Inputs to Connect Directly to Low-Power, Low-Voltage Application and Graphic Processors Transfer Rate up to 135 Mpps (Mega Pixel Per Second); Pixel Clock Frequency Range 10 MHz to 135 MHz Suited for Display Resolutions Ranging From HVGA up to HD With Low EMI Operates From a Single 3.3-V Supply and 170 mW (Typ.) at 75 MHz 28 Data Channels Plus Clock in Low-Voltage TTL to 4 Data Channels Plus Clock Out Low-Voltage Differential Consumes Less Than 1 mW When Disabled Selectable Rising or Falling Clock Edge Triggered Inputs ESD: 5-kV HBM Support Spread Spectrum Clocking (SSC) Compatible with all OMAP™ 2x, OMAP™ 3x, and DaVinci™ Application Processors LCD Display Panel Driver UMPC and Netbook PC Digital Picture Frame 3 Description The SN75LVDS83B FlatLink™ transmitter contains four 7-bit parallel-load serial-out shift registers, a 7X clock synthesizer, and five Low-Voltage Differential Signaling (LVDS) line drivers in a single integrated circuit. These functions allow 28 bits of single-ended LVTTL data to be synchronously transmitted over five balanced-pair conductors for receipt by a compatible receiver, such as the SN75LVDS82 and LCD panels with integrated LVDS receiver. When transmitting, data bits D0 through D27 are each loaded into registers upon the edge of the input clock signal (CLKIN). The rising or falling edge of the clock can be selected via the clock select (CLKSEL) pin. The frequency of CLKIN is multiplied seven times, and then used to unload the data registers in 7-bit slices and serially. The four serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers. The frequency of CLKOUT is the same as the input clock, CLKIN. Device Information(1) PART NUMBER SN75LVDS83B PACKAGE BODY SIZE (NOM) TSSOP (56) 14.00 mm x 5.10 mm BGA MICROSTAR JUNIOR (56) 7.00 mm x 4.50 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. swiv Application processor TM (e.g. OMAP ) el SN75LVDS83B TM FlatLink Transmitter Package Options TSSOP: 8 x 14mm DGG BGA: 4.5 x 7mm 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Description (Continued) ........................................ Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 1 1 1 2 3 3 6 Absolute Maximum Ratings ...................................... 6 Handling Ratings....................................................... 6 Recommended Operating Conditions....................... 6 Thermal Information .................................................. 7 Dissipation Ratings ................................................... 7 Electrical Characteristics........................................... 7 Timing Requirements ................................................ 8 Switching Characteristics ........................................ 10 Typical Characteristics ............................................ 11 Parameter Measurement Information ................ 12 9 Detailed Description ............................................ 15 9.1 9.2 9.3 9.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 15 16 16 18 10 Application and Implementation........................ 19 10.1 Application Information.......................................... 19 10.2 Typical Application ................................................ 19 11 Power Supply Recommendations ..................... 28 12 Layout................................................................... 28 12.1 Layout Guidelines ................................................. 28 12.2 Layout Example .................................................... 30 13 Device and Documentation Support ................. 32 13.1 Trademarks ........................................................... 32 13.2 Electrostatic Discharge Caution ............................ 32 13.3 Glossary ................................................................ 32 14 Mechanical, Packaging, and Orderable Information ........................................................... 32 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision B (September 2011) to Revision C • Page Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ................................................................................................................................................................................... 1 Changes from Revision A (October 2009) to Revision B Page • Added Storage temperature, Ts to ABSOLUTE MAXIMUM RATINGS .................................................................................. 6 • Added Note 3 to DISSIPATION RATINGS............................................................................................................................. 7 • Deleted max values for Supply current (average) .................................................................................................................. 8 • Changed Enable time units from ns to µs ............................................................................................................................ 10 • Added Thermal Characteristics table ................................................................................................................................... 10 • Changed G7(LSB) to G7(MSB) in Figure 15........................................................................................................................ 21 • Added Note C to Figure 15................................................................................................................................................... 21 • Added Note D to Figure 15................................................................................................................................................... 21 • Added connection between GND and D23 to Figure 19 ...................................................................................................... 25 Changes from Original (May 2009) to Revision A Page • Changed text and replaced TBDs in Note A and Note B of Figure 15................................................................................. 21 • Changed Note B of Figure 16 - Replaced TBDs. ................................................................................................................. 22 • Changed Note B of Figure 17 - Replaced TBDs. ................................................................................................................. 23 • Changed Note C of Figure 18 - Replaced TBDs.................................................................................................................. 24 • Changed Figure 19 - removed 3 GND pin locations. ........................................................................................................... 25 • Changed Figure 20 - removed 3 GND pin locations. ........................................................................................................... 26 2 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 5 Description (Continued) The SN75LVDS83B requires no external components and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with the data transmission transparent to the user(s). The only user intervention is selecting a clock rising edge by inputting a high level to CLKSEL or a falling edge with a low-level input, and the possible use of the Shutdown/Clear (SHTDN). SHTDN is an active-low input to inhibit the clock, and shut off the LVDS output drivers for lower power consumption. A low-level on this signal clears all internal registers to a low-level. The SN75LVDS83B is characterized for operation over ambient air temperatures of –10°C to 70°C. Alternative device option: The SN75LVDS83A (SLLS980) is an alternative to the SN75LVDS83B for clock frequency range of 10MHz-100MHz only. The SN75LVDS83A is available in the TSSOP package option only. 6 Pin Configuration and Functions 56-PIN DGG PACKAGE (TOP VIEW) IOVCC 1 56 D5 2 3 55 54 D7 GND D8 4 53 5 52 GND D1 6 51 D0 D9 D10 7 50 8 49 D27 GND VCC D11 9 10 48 47 D12 11 46 D13 12 45 Y1P GND D14 13 44 14 15 43 42 LVDSVCC GND Y2M 16 41 17 18 40 39 19 38 D19 GND 20 37 CLKOUTP Y3M Y3P 21 36 GND D20 35 34 GND D21 22 23 D22 24 33 D23 25 32 IOVCC D24 D25 26 31 27 30 28 29 D6 D15 D16 CLKSEL D17 D18 D4 D3 D2 Y0M Y0P Y1M Y2P CLKOUTM PLLVCC GND SHTDN CLKIN D26 GND DGG Pin List PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL 1 IOVCC 15 D15 29 GND 43 GND 2 D5 16 D16 30 D26 44 LVDSVCC 3 D6 17 CLKSEL 31 CLKIN 45 Y1P 4 D7 18 D17 32 SHTDN 46 Y1M 5 GND 19 D18 33 GND 47 Y0P Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 3 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com DGG Pin List (continued) PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL 6 D8 20 D19 34 PLLVCC 48 Y0M 7 D9 21 GND 35 GND 49 GND 8 D10 22 D20 36 GND 50 D27 9 VCC 23 D21 37 Y3P 51 D0 10 D11 24 D22 38 Y3M 52 D1 11 D12 25 D23 39 CLKOUTP 53 GND 12 D13 26 IOVCC 40 CLKOUTM 54 D2 13 GND 27 D24 41 Y2P 55 D3 14 D14 28 D25 42 Y2M 56 D4 56-PIN ZQL PACKAGE (TOP VIEW) 6 5 4 3 2 1 D8 D7 D5 D4 D2 D1 D9 GND D6 D3 D0 D27 D11 VCC D10 GND Y0P Y0M D13 D12 IOVCC GND Y1P Y1M D14 GND GND D16 D15 Y2P Y2M D17 D18 CLKSEL GND CLKP CLKM D19 GND IOVCC GND Y3P Y3M D20 D21 D25 SHTDN PLLVCC GND D22 D23 D24 D26 CLKIN GND K J H G F LVDSVCC E D C B A ZQL Pin List 4 BALL SIGNAL BALL SIGNAL BALL SIGNAL A1 GND A2 CLKIN A3 D26 A4 D24 A5 D23 A6 D22 B1 GND B2 PLLVCC B3 SHTDN B4 D25 B5 D21 B6 D20 C1 Y3M C2 Y3P C3 GND C4 IOVCC C5 GND C6 D19 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 ZQL Pin List (continued) BALL SIGNAL BALL SIGNAL BALL SIGNAL D1 CLKM D2 CLKP D3 GND D4 CLKSEL D5 D18 D6 D17 E1 Y2M E2 Y2P E3 ball not populated E4 ball not populated E5 D15 E6 D16 F1 LVDSVCC F2 GND F3 ball not populated F4 ball not populated F5 GND F6 D14 G1 Y1M G2 Y1P G3 GND G4 IOVCC G5 D12 G6 D13 H1 Y0M H2 Y0P H3 GND H4 D10 H5 VCC H6 D11 J1 D27 J2 D0 J3 D3 J4 D6 J5 GND J6 D9 K1 D1 K2 D2 K3 D4 K4 D5 K5 D7 K6 D8 Pin Functions PIN I/O Y0P, Y0M, Y1P, Y1M, Y2P, Y2M Y3P, Y3M DESCRIPTION Differential LVDS data outputs. Outputs are high-impedance when SHTDN is pulled low (de-asserted) LVDS Out Differential LVDS Data outputs. Output is high-impedance when SHTDN is pulled low (de-asserted). Note: if the application only requires 18-bit color, this output can be left open. CLKP, CLKM Differential LVDS pixel clock output. Output is high-impedance when SHTDN is pulled low (de-asserted). D0 – D27 Data inputs; supports 1.8 V to 3.3 V input voltage selectable by VDD supply. To connect a graphic source successfully to a display, the bit assignment of D[27:0] is critical (and not necessarily intuitive). For input bit assignment see Figure 15 to Figure 18 for details. Note: if application only requires 18-bit color, connect unused inputs D5, D10, D11, D16, D17, D23, and D27 to GND. CLKIN CMOS IN with pulldn Input pixel clock; rising or falling clock polarity is selectable by Control input CLKSEL. SHTDN Device shut down; pull low (de-assert) to shut down the device (low power, resets all registers) and high (assert) for normal operation. CLKSEL Selects between rising edge input clock trigger (CLKSEL = VIH) and falling edge input clock trigger (CLKSEL = VIL). VCC 3.3 V digital supply voltage IOVCC PLLVCC I/O supply reference voltage (1.8 V up to 3.3 V matching the GPU data output signal swing) Power Supply (1) 3.3 V PLL analog supply LVDSVCC 3.3 V LVDS output analog supply GND Supply ground for VCC, IOVCC, LVDSVCC, and PLLVCC. (1) For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals directly to this plane. Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 5 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings (1) MIN MAX UNIT Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC (2) –0.5 4 V Voltage range at any output terminal –0.5 VCC + 0.5 V Voltage range at any input terminal –0.5 IOVCC + 0.5 V Continuous power dissipation (1) (2) See Dissipation Ratings Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. All voltages are with respect to the GND terminals. 7.2 Handling Ratings Tstg Storage temperature range MIN MAX –65 150 °C 5 kV Human Body Model (HBM) (1) all pins V(ESD) (1) (2) (3) Electrostatic discharge Charged Device Model (CDM) (2) all pins 500 Machine Model (MM) (3) all pins 150 UNIT V In accordance with JEDEC Standard 22, Test Method A114-A. In accordance with JEDEC Standard 22, Test Method C101. In accordance with JEDEC Standard 22, Test Method A115-A. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX Supply voltage, VCC PARAMETER 3 3.3 3.6 LVDS output Supply voltage, LVDSVCC 3 3.3 3.6 PLL analog supply voltage, PLLVCC 3 3.3 3.6 1.62 1.8 / 2.5 / 3.3 3.6 IO input reference supply voltage, IOVCC Power supply noise on any VCC terminal High-level input voltage, VIH Low-level input voltage, VIL Differential load impedance, ZL Operating free-air temperature, TA 6 UNIT V 0.1 IOVCC = 1.8 V IOVCC/2 + 0.3 V IOVCC = 2.5 V IOVCC/2 + 0.4 V IOVCC = 3.3 V IOVCC/2 + 0.5 V V IOVCC = 1.8 V IOVCC/2 - 0.3 V IOVCC = 2.5 V IOVCC/2 - 0.4 V IOVCC = 3.3 V IOVCC/2 - 0.5 V V 90 132 Ω –10 70 C Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 7.4 Thermal Information over operating free-air temperature range (unless otherwise noted) PARAMETER ZQL TEST CONDITIONS MIN TYP DGG MAX MIN TYP MAX UNIT Low-K JEDEC test board, 1s (single signal layer), no air flow 85 High-K JEDEC test board, 2s2p (double signal layer, double buried power plane), no air flow 67.1 63.4 Junction-to-case thermal resistance Cu cold plate measurement process 25.2 15.9 °C/W θJB Junction-to-board thermal resistance EIA/JESD 51-8 31.0 32.5 °C/W ψJT Junction-to-top of package EIA/JESD 51-2 0.8 0.4 °C/W ψJB Junction-to-board EIA/JESD 51-6 30.3 32.2 °C/W θJA Junction-to-free-air thermal resistance θJC TA Operating ambient temperature range TJ Virtual junction temperature °C/W –10 70 –10 70 °C 0 105 0 105 °C 7.5 Dissipation Ratings PACKAGE CIRCUIT BOARD MODEL (1) DGG Low-K ZQL DGG (3) High-K ZQL (1) (2) (3) TJA ≤ 25°C DERATING FACTOR (2) ABOVE TJA = 25°C TJA = 70°C POWER RATING 1111 mW 12.3 mW/°C 555 mW 1034 mW 11.5 mW/°C 517 mW 1730 mW 19 mW/°C 865 mW 2000 mW 22 mW/°C 1000 mW In accordance with the High-K and Low-K thermal metric definitions of EIA/JESD51-2. This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow. DGG junction to case thermal resistance (θJC) is 15.4°C/W. 7.6 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VT Input voltage threshold |VOD| Differential steady-state output voltage magnitude TEST CONDITIONS MIN TYP (1) MAX IOVCC/2 250 UNIT V 450 mV RL = 100Ω, See Figure 7 Δ|VOD| Change in the steady-state differential output voltage magnitude between opposite binary states VOC(SS) Steady-state common-mode output voltage VOC(PP) Peak-to-peak common-mode output voltage IIH High-level input current VIH = IOVCC IIL Low-level input current VIL = 0 V ±10 μA VOY = 0 V ±24 mA 1 See Figure 7 tR/F (Dx, CLKin) = 1ns 1.125 35 1.375 mV V 35 mV 25 μA IOS Short-circuit output current VOD = 0 V ±12 mA IOZ High-impedance state output current VO = 0 V to VCC ±20 μA Rpdn Input pull-down integrated resistor on all inputs (Dx, CLKSEL, SHTDN, CLKIN) IOVCC = 1.8 V 200 IOVCC = 3.3 V 100 IQ Quiescent current (average) (1) disabled, all inputs at GND; SHTDN = VIL 2 kΩ 100 μA All typical values are at VCC = 3.3 V, TA = 25°C. Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 7 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT SHTDN = VIH, RL = 100Ω (5 places), grayscale pattern (Figure 8) VCC = 3.3 V, fCLK = 75 MHz I(VCC) + I(PLLVCC) + I(LVDSVCC) 51.9 I(IOVCC) with IOVCC = 3.3 V 0.4 I(IOVCC) with IOVCC = 1.8 V 0.1 mA SHTDN = VIH, RL = 100Ω (5 places), 50% transition density pattern (Figure 8), VCC = 3.3 V, fCLK = 75 MHz I(VCC) + I(PLLVCC) + I(LVDSVCC) 53.3 I(IOVCC) with IOVCC = 3.3 V 0.6 I(IOVCC) with IOVCC = 1.8 V 0.2 mA SHTDN = VIH, RL = 100Ω (5 places), worstcase pattern (Figure 9), VCC = 3.6 V, fCLK = 75 MHz ICC Supply current (average) I(VCC) + I(PLLVCC) + I(LVDSVCC) 63.7 I(IOVCC) with IOVCC = 3.3 V 1.3 I(IOVCC) with IOVCC = 1.8 V 0.5 mA SHTDN = VIH, RL = 100Ω (5 places), worstcase pattern (Figure 9), fCLK = 100 MHz I(VCC) + I(PLLVCC) + I(LVDSVCC) 81.6 I(IOVCC) with IOVCC = 3.6 V 1.6 I(IOVCC) with IOVCC = 1.8 V 0.6 mA SHTDN = VIH, RL = 100Ω (5 places), worstcase pattern (Figure 9), fCLK = 135 MHz CI I(VCC) + I(PLLVCC) + I(LVDSVCC) 102.2 I(IOVCC) with IOVCC = 3.6 V 2.1 I(IOVCC) with IOVCC = 1.8 V 0.8 Input capacitance mA 2 pF 7.7 Timing Requirements PARAMETER Input clock period, tc Input clock modulation MIN MAX UNIT 7.4 100 ns with modulation frequency 30 kHz 8% with modulation frequency 50 kHz High-level input clock pulse width duration, tw 6% 0.4 tc Input signal transition time, tt Data set up time, D0 through D27 before CLKIN (See Figure 6) Data hold time, D0 through D27 after CLKIN 8 Submit Documentation Feedback 0.6 tc ns 3 ns 2 ns 0.8 ns Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 Dn CLKIN or CLKIN CLKOUT Previous cycle Next Current cycle Y0 D0-1 D7 D6 D4 D3 D2 D1 D0 D7+1 Y1 D8-1 D18 D15 D14 D13 D12 D9 D8 D18+1 Y2 D19-1 D26 D25 D24 D22 D21 D20 D19 D26+1 Y3 D27-1 D23 D17 D16 D11 D10 D5 D27 D23+1 Figure 1. Typical SN75LVDS83B Load and Shift Sequences LVDSVCC IOVCC 5W D or SHTDN 50W 7V YnP or YnM 10kW 300kW 7V Figure 2. Equivalent Input and Output Schematic Diagrams Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 9 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 7.8 Switching Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX -0.1 0 0.1 ns UNIT t0 Delay time, CLKOUT↑ after Yn valid (serial bit position 0, equal D1, D9, D20, D5) t1 Delay time, CLKOUT↑ after Yn valid (serial bit position 1, equal D0, D8, D19, D27) 1 /7 tc - 0.1 1 /7 tc + 0.1 ns t2 Delay time, CLKOUT↑ after Yn valid (serial bit position 2, equal D7, D18, D26. D23) 2 /7 tc - 0.1 2 /7 tc + 0.1 ns t3 Delay time, CLKOUT↑ after Yn valid (serial bit position 3; equal D6, D15, D25, D17) 3 /7 tc - 0.1 3 /7 tc + 0.1 ns t4 Delay time, CLKOUT↑ after Yn valid (serial bit position 4, equal D4, D14, D24, D16) 4 /7 tc - 0.1 4 /7 tc + 0.1 ns t5 Delay time, CLKOUT↑ after Yn valid (serial bit position 5, equal D3, D13, D22, D11) 5 /7 tc - 0.1 5 /7 tc + 0.1 ns t6 Delay time, CLKOUT↑ after Yn valid (serial bit position 6, equal D2, D12, D21, D10) 6 /7 tc - 0.1 6 /7 tc + 0.1 ns tc(o) Output clock period Δtc(o) Output clock cycle-to-cycle jitter See Figure 10, tC = 10ns, |Input clock jitter| < 25ps (2) tc (3) tC = 10ns; clean reference clock, see Figure 11 ±26 tC = 10ns with 0.05UI added noise modulated at 3MHz, see Figure 11 ±44 tC = 7.4ns; clean reference clock, see Figure 11 ±35 tC = 7.4ns with 0.05UI added noise modulated at 3MHz, see Figure 11 ±42 ns ps tw High-level output clock pulse duration tr/f Differential output voltage transition time (tr or tf) See Figure 7 ten Enable time, SHTDN↑ to phase lock (Yn valid) f(clk) = 135 MHz, See Figure 12 6 µs tdis Disable time, SHTDN↓ to off-state (CLKOUT high-impedance) f(clk) = 135 MHz, See Figure 13 7 ns (1) (2) (3) 10 4 /7 tc 225 ns 500 ps All typical values are at VCC = 3.3 V, TA = 25°C. |Input clock jitter| is the magnitude of the change in the input clock period. The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value. Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 7.9 Typical Characteristics 800 Total Device Current (Using Grayscale pattern) Over Pixel Clock Frequency Output Jitter 90 700 80 600 Period Clock Jitter - ps-pp ICC - Average Supply Current - mA 100 VCC = 3.6V 70 60 50 VCC = 3.3V 40 20 50 300 200 100 30 30 400 CLK Frequency During Test = 100MHz VCC = 3V 10 Input Jitter 500 70 90 110 130 0 0.01 0.10 1 10 f(mod) - Input Modular Frequency - MHz fclk - Clock Frequency - MHz Figure 3. Average Grayscale ICC vs Clock Frequency PRBS Data Signal V - Voltage - 80mV/div CLKL Signal Figure 4. Output Clock Jitter vs Input Clock Jitter Clock Signal: 135MHz tk - Time - 1ns/div Figure 5. Typical PRBS Output Signal Over One Clock Period Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 11 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 8 Parameter Measurement Information tsu thold Dn CLKIN All input timing is defined at IOVDD / 2 on an input signal with a 10% to 90% rise or fall time of less than 3 ns. CLKSEL = 0 V. Figure 6. Set Up and Hold Time Definition 49.9W ± 1% (2 PLCS) YP VOD VOC YM 100% 80% VOD(H) 0V VOD(L) 20% 0% tf tr VOC(PP) VOC(SS) VOC(SS) 0V Figure 7. Test Load and Voltage Definitions for LVDS Outputs 12 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 Parameter Measurement Information (continued) CLKIN D0,8,16 D1,9,17 D2,10,18 D3,11,19 D4-7,12-15,20-23 D24-27 The 16 grayscale test pattern test device power consumption for a typical display pattern. Figure 8. 16 Grayscale Test Pattern T CLKIN EVEN Dn ODD Dn The worst-case test pattern produces nearly the maximum switching frequency for all of the LVDS outputs. Figure 9. Worst-Case Power Test Pattern t7 CLKIN CLKOUT t6 t5 t4 t3 t2 t0 Yn t1 VOD(H) ~2.5V CLKOUT or Yn 1.40V CLKIN 0.00V ~0.5V VOD(L) t7 t0-6 CLKOUT is shown with CLKSEL at high-level. CLKIN polarity depends on CLKSEL input level. Figure 10. SN75LVDS83B Timing Definitions Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 13 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com Parameter Measurement Information (continued) Reference + Device Under Test VCO + Modulation v(t) = A sin(2 pfmodt) HP8656B Signal Generator, 0.1 MHz-990 MHz RF Output HP8665A Synthesized Signal Generator, 0.1 MHz-4200 MHz Device Under Test RF Output Modulation Input CLKIN CLKOUT DTS2070C Digital TimeScope Input Figure 11. Output Clock Jitter Test Set Up CLKIN Dn ten SHTDN Invalid Yn Valid Figure 12. Enable Time Waveforms CLKIN tdis SHTDN CLKOUT Figure 13. Disable Time Waveforms 14 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 9 Detailed Description 9.1 Overview FlatLink™ is an LVDS SerDes data transmission system. The SN75LVDS83B takes in three (or four) data words each containing seven single-ended data bits and converts this to an LVDS serial output. Each serial output runs at seven times that of the parallel data rate. The deserializer (receiver) device operates in the reverse manner. The three (or four) LVDS serial inputs are transformed back to the original seven-bit parallel single-ended data. FlatLink™ devices are available in 21:3 or 28:4 SerDes ratios. • The 21-bit devices are designed for 6-bit RGB video for a total of 18 bits in addition to three extra bits for horizontal synchronization, vertical synchronization, and data enable. • The 28-bit devices are intended for 8-bit RGB video applications. Again, the extra four bits are for horizontal synchronization, vertical synchronization, data enable, and the remaining is the reserved bit. These 28-bit devices can also be used in 6-bit and 4-bit RGB applications as shown in the subsequent system diagrams. Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 15 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 9.2 Functional Block Diagram Parallel-Load 7-bit Shift Register D0, D1, D2, D3, D4, D6, D7 7 Y0P A,B,...G SHIFT/LOAD >CLK Y0M Parallel-Load 7-bit Shift Register D8, D9, D12, D13, D14, D15, D18 7 Y1P A,B,...G SHIFT/LOAD >CLK Y1M Parallel-Load 7-bit Shift Register D19, D20, D21, D22, D24, D25, D26 7 Y2P A,B,...G SHIFT/LOAD >CLK Y2M Parallel-Load 7-bit Shift Register D27, D5, D10, D11, D16, D17, D23 7 Y3P Y3M A,B,...G SHIFT/LOAD >CLK Control Logic SHTDN 7X Clock/PLL 7XCLK CLKIN CLKOUTP CLKOUTM >CLK CLKINH CLKSEL RISING/FALLING EDGE 9.3 Feature Description 9.3.1 TTL Input Data The data inputs to the transmitter come from the graphics processor and consist of up to 24 bits of video information, a horizontal synchronization bit, a vertical synchronization bit, an enable bit, and a spare bit. The data can be loaded into the registers upon either the rising or falling edge of the input clock selectable by the CLKSEL pin. Data inputs are 1.8 V to 3.3 V tolerant for the SN75LVDS83B and can connect directly to lowpower, low-voltage application and graphic processors. The bit mapping is listed in Table 1. 16 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 Feature Description (continued) Table 1. Pixel Bit Ordering RED GREEN BLUE R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 G5 B5 R6 G6 B6 R7 G7 B7 LSB 4-bit MSB 6-bit MSB 8-bit MSB 9.3.2 LVDS Output Data The pixel data assignment is listed in Table 2 for 24-bit, 18-bit, and 12-bit color hosts. Table 2. Pixel Data Assignment SERIAL CHANNEL Y0 Y1 Y2 Y3 CLKOUT 8-BIT DATA BITS 6-BIT 4-BIT NON-LINEAR STEP LINEAR STEP SIZE SIZE FORMAT-1 FORMAT-2 FORMAT-3 D0 R0D27 R2 R2 R0 R2 VCC D1 R1 R3 R3 R1 R3 GND D2 R2 R4 R4 R2 R0 R0 D3 R3 R5 R5 R3 R1 R1 D4 R4 R6 R6 R4 R2 R2 D6 R5 R7 R7 R5 R3 R3 D7 G0 G2 G2 G0 G2 VCC D8 G1 G3 G3 G1 G3 GND D9 G2 G4 G4 G2 G0 G0 D12 G3 G5 G5 G3 G1 G1 D13 G4 G6 G6 G4 G2 G2 D14 G5 G7 G7 G5 G3 G3 D15 B0 B2 B2 B0 B2 VCC D18 B1 B3 B3 B1 B3 GND D19 B2 B4 B4 B2 B0 B0 D20 B3 B5 B5 B3 B1 B1 D21 B4 B6 B6 B4 B2 B2 D22 B5 B7 B7 B5 B3 B3 D24 HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC D25 VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC D26 ENABLE ENABLE ENABLE ENABLE ENABLE ENABLE D27 R6 R0 GND GND GND GND D5 R7 R1 GND GND GND GND D10 G6 G0 GND GND GND GND D11 G7 G1 GND GND GND GND D16 B6 B0 GND GND GND GND D17 B7 B1 GND GND GND GND D23 RSVD RSVD GND GND GND GND CLKIN CLK CLK CLK CLK CLK CLK Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 17 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 9.4 Device Functional Modes 9.4.1 Input Clock Edge The transmission of data bits D0 through D27 occurs as each are loaded into registers upon the edge of the CLKIN signal, where the rising or falling edge of the clock may be selected via CLKSEL. The selection of a clock rising edge occurs by inputting a high level to CLKSEL, which is achieved by populating pull-up resistor to pull CLKSEL=high. Inputting a low level to select a clock falling edge is achieved by directly connecting CLKSEL to GND. 9.4.2 Low Power Mode The SN75LVDS83B can be put in low-power consumption mode by active-low input SHTDN#. Connecting pin SHTDN# to GND will inhibit the clock and shut off the LVDS output drivers for lower power consumption. A lowlevel on this signal clears all internal registers to a low-level. Populate a pull-up to VCC on SHTDN# to enable the device for normal operation. 18 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 10 Application and Implementation 10.1 Application Information This section describes the power up sequence, provides information on device connectivity to various GPU and LCD display panels, and offers a PCB routing example. 10.2 Typical Application J1 U1H GND1 GND2 GND3 GND4 GND5 GND6 GND7 PLLGND LVDSGND1 LVDSGND2 J3 CLKM CLKP Y0P Y0M Y1P Y1M Y2P Y2M IOVCC R4 4.7k R5 4.7k R6 4.7k R7 4.7k R8 4.7k R9 4.7k Y3P Y3M R10 4.7k JMP1 U1B J2 K1 K2 J3 K3 J4 K5 D0 D1 D2 D3 D4 D6 D7 D1 D2 G2 G1 J5 E1 E2 sma_surface J6 sma_surface C2 C1 J7 sma_surface SN65LVDS83BZQL J8 sma_surface J9 sma_surface 14 Header 7x2 J10 sma_surface IOVCC R11 4.7k R12 4.7k R13 4.7k R14 4.7k R15 4.7k R16 4.7k R17 4.7k sma_surface JMP2 U1C K6 J6 G5 G6 F6 E5 D5 J4 sma_surface H2 H1 1 2 SN65LVDS83BZQL D8 D9 D12 D13 D14 D15 D18 sma_surface U1A SN65LVDS83BZQL D0 D1 D2 D3 D4 D6 D7 J2 sma_surface C3 C5 D3 F5 G3 H3 J5 A1 B1 F2 D8 D9 D12 D13 D14 D15 D18 1 2 IOVCC IOVCC 14 R1 4.7k Header 7x2 SN65LVDS83BZQL R2 IOVCC R18 4.7k R19 4.7k R20 4.7k R21 4.7k R22 4.7k R23 4.7k R24 4.7k JMP6 U1G JMP3 U1D D19 D20 D21 D22 D24 D25 D 26 C6 B6 B5 A6 A4 B4 A3 D19 D20 D21 D22 D24 D25 D26 SHTDN CLKSEL 1 2 B3 D4 SHTDN CLKSEL 1 2 3 4 Header 2x2 SN65LVDS83BZQL 14 U1J NC1 NC2 NC3 NC4 Header 7x2 SN65LVDS83BZQL IOVCC R25 4.7k R26 4.7k R27 4.7k R28 4.7k R29 4.7k R30 4.7k E3 E4 F3 F4 SN65LVDS83BZQL R31 4.7k JMP4 U1E D5 D10 D11 D16 D17 D23 D27 K4 H4 H6 E6 D6 A5 J1 D5 D10 D11 D16 D17 D23 D27 VCC 1 2 IOVCC U1I VCC PLLVCC LVDSVCC 14 IOVCC1 IOVCC2 Header 7x2 SN65LVDS83BZQL G4 B2 F1 H5 C4 SN65LVDS83BZQL VCC VCC C31 1uF C32 0.1uF C33 0.01uF VCC C34 1uF C35 0.1uF C36 0.01uF IOVCC C40 1uF C41 0.1uF C42 0.01uF C37 1uF C38 0.1uF C39 0.01uF PLACE UNDER LVDS83B (bottom pcb side) Figure 14. Schematic Example (SN75LVDS83B Evaluation Board) Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 19 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com Typical Application (continued) 10.2.1 Design Requirements DESIGN PARAMETER EXAMPLE VALUE VCC 3.3 V VCCIO 1.8 V CLKIN Falling edge SHTDN# High Format 18-bit GPU to 24-bit LCD 10.2.2 Detailed Design Procedure 10.2.2.1 Power Up Sequence The SN75LVDS83B does not require a specific power up sequence. It is permitted to power up IOVCC while VCC, VCCPLL, and VCCLVDS remain powered down and connected to GND. The input level of the SHTDN during this time does not matter as only the input stage is powered up while all other device blocks are still powered down. It is also permitted to power up all 3.3V power domains while IOVCC is still powered down to GND. The device will not suffer damage. However, in this case, all the I/Os are detected as logic HIGH, regardless of their true input voltage level. Hence, connecting SHTDN to GND will still be interpreted as a logic HIGH; the LVDS output stage will turn on. The power consumption in this condition is significantly higher than standby mode, but still lower than normal mode. The user experience can be impacted by the way a system powers up and powers down an LCD screen. The following sequence is recommended: Power up sequence (SN75LVDS83B SHTDN input initially low): 1. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off. 2. Wait for additional 0-200ms to ensure display noise won’t occur. 3. Enable video source output; start sending black video data. 4. Toggle LVDS83B shutdown to SHTDN = VIH. 5. Send >1ms of black video data; this allows the LVDS83B to be phase locked, and the display to show black data first. 6. Start sending true image data. 7. Enable backlight. Power Down sequence (SN75LVDS83B SHTDN input initially high): 1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low. 2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive this for >2 frame times. 3. Set SN75LVDS83B input SHTDN = GND; wait for 250ns. 4. Disable the video output of the video source. 5. Remove power from the LCD panel for lowest system power. 10.2.2.2 Signal Connectivity While there is no formal industry standardized specification for the input interface of LVDS LCD panels, the industry has aligned over the years on a certain data format (bit order). Figure 15 through Figure 18 show how each signal should be connected from the graphic source through the SN75LVDS83B input, output and LVDS LCD panel input. Detailed notes are provided with each figure. 20 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 SN75LVDS83B 4.8k 1.8V or 2.5V or 3.3V C1 Rpullup Rpulldown Y0M Y0P Y2M Y2P Y3M Y3P 100 to column driver 100 FPC Cable Panel connector Y1M Y1P CLKOUTM CLKOUTP LVDS timing Controller (8bpc, 24bpp) 100 100 to row driver 100 VCC PLLVCC LVDSVCC 24-bpp LCD Display GND SHTDN D27 D5 D0 D1 D2 D3 D4 D6 D10 D11 D7 D8 D9 D12 D13 D14 D16 D17 D15 D18 D19 D20 D21 D22 D24 D25 D26 D23 CLKIN CLKSEL FORMAT2 (See Note A) D0 D1 D2 D3 D4 D6 D27 D5 D7 D8 D9 D12 D13 D14 D10 D11 D15 D18 D19 D20 D21 D22 D16 D17 D24 D25 D26 D23 CLKIN IOVCC VDDGPUIO GND R0(LSB) R1 R2 R3 R4 R5 R6 R7(MSB) G0(LSB) G1 G2 G3 G4 G5 G6 G7(MSB) B0(LSB) B1 B2 B3 B4 B5 B6 B7(MSB) HSYNC VSYNC ENABLE RSVD (Note C) CLK FORMAT1 Main board connector 24-bpc GPU 3.3V C2 3.3V C3 (See Note B) Main Board Note A. FORMAT: The majority of 24-bit LCD display panels require the two most significant bits (2 MSB ) of each color to be transferred over the 4th serial data output Y3. A few 24-bit LCD display panels require the two LSBs of each color to be transmitted over the Y3 output. The system designer needs to verify which format is expected by checking the LCD display data sheet. • Format 1: use with displays expecting the 2 MSB to be transmitted over the 4th data channel Y3. This is the dominate data format for LCD panels. • Format 2: use with displays expecting the 2 LSB to be transmitted over the 4th data channel. Note B. Rpullup: install only to use rising edge triggered clocking. Rpulldown: install only to use falling edge triggered clocking. • C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF. • C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF. • C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF. Note C. If RSVD is not driven to a valid logic level, then an external connection to GND is recommended. Note D. RSVD must be driven to a valid logic level. All unused SN75LVDS83B inputs must be tied to a valid logic level. Figure 15. 24-Bit Color Host to 24-Bit LCD Panel Application Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 21 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 SN75LVDS83B B0(LSB) B1 B2 B3 B4 B5(MSB) C1 100 FPC Cable Panel connector to column driver CLKOUTM CLKOUTP LVDS timing Controller (6-bpc, 18-bpp) 100 100 to row driver 18-bpp LCD Display Y3M Y3P 4.8k 1.8V or 2.5V or 3.3V Y1M Y1P Y2M Y2P IOVCC VDDGPUIO GND HSYNC VSYNC ENABLE RSVD CLK 100 Rpullup (See Note A) VCC PLLVCC LVDSVCC G0(LSB) G1 G2 G3 G4 G5(MSB) Y0M Y0P Main board connector D0 D1 D2 D3 D4 D6 D27 D5 D7 D8 D9 D12 D13 D14 D10 D11 D15 D18 D19 D20 D21 D22 D16 D17 D24 D25 D26 D23 CLKIN GND R0(LSB) R1 R2 R3 R4 R5(MSB) SHTDN CLKSEL 18-bpp GPU www.ti.com 3.3V C2 3.3V C3 Rpulldown (See Note B) Main Board Note A. Leave output Y3 NC. Note B.Rpullup: install only to use rising edge triggered clocking. Rpulldown: install only to use falling edge triggered clocking. • C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF. • C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF. • C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF. Figure 16. 18-Bit Color Host to 18-Bit Color LCD Panel Display Application 22 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 12-bpp GPU SN75LVDS83B (See Note B) D0 D1 D2 D3 D4 D6 D27 D5 D7 D8 D9 D12 D13 D14 D10 D11 D15 D18 D19 D20 D21 D22 D16 D17 D24 D25 D26 D23 CLKIN (See Note B) B2 or VCC B3 or GND B0 B1 B2 B3(MSB) C1 FPC Cable t Panell connector Main board connector CLKOUTM CLKOUTP LVDS timing Controller (6-bpc, 18-bpp) 100 100 to row driver 18-bpp LCD Display Y3M Y3P 4.8k 1.8V or 2.5V or 3.3V 100 Y2M Y2P IOVCC VDDGPUIO GND HSYNC VSYNC ENABLE RSVD CLK to column driver Rpullup (See Note A) VCC PLLVCC LVDSVCC G2 or VCC G3 or GND G0 G1 G2 G3(MSB) 100 Y1M Y1P SHTDN CLKSEL (See Note B) Y0M Y0P GND R2 or VCC R3 or GND R0 R1 R2 R3(MSB) 3.3V C2 3.3V C3 Rpulldown (See Note C) Main Board Note A. Leave output Y3 N.C. Note B. R3, G3, B3: this MSB of each color also connects to the 5th bit of each color for increased dynamic range of the entire color space at the expense of none-linear step sizes between each step. For linear steps with less dynamic range, connect D1, D8, and D18 to GND. R2, G2, B2: these outputs also connects to the LSB of each color for increased, dynamic range of the entire color space at the expense of none-linear step sizes between each step. For linear steps with less dynamic range, connect D0, D7, and D15 to VCC. Note C.Rpullup: install only to use rising edge triggered clocking. Rpulldown: install only to use falling edge triggered clocking. • C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF. • C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF. • C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF. Figure 17. 12-Bit Color Host to 18-Bit Color LCD Panel Display Application Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 23 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com SN75LVDS83B D0 D1 D2 D3 D4 D6 D27 D5 D7 D8 D9 D12 D13 D14 D10 D11 D15 D18 D19 D20 D21 D22 D16 D17 D24 D25 D26 D23 CLKIN G7(MSB) B0 and B1: NC (See Note B) B2 B3 B4 B5 B6 B7(MSB) B0 and B1: NC (See Note B) CLKOUTM CLKOUTP C1 FPC Cable LVDS timing Controller (6-bpc, 18-bpp) 100 100 to row driver 18-bpp LCD Display Y3M Y3P 4.8k 1.8V or 2.5V or 3.3V 100 Y2M Y2P IOVCC VDDGPUIO GND HSYNC VSYNC ENABLE RSVD CLK to column driver Y1M Y1P t Panell connector G2 G3 G4 G5 G6 100 Main board connector G0 and G1: NC (See Note B) Y0M Y0P SHTDN CLKSEL R7(MSB) Rpullup (See Note A) VCC PLLVCC LVDSVCC R2 R3 R4 R5 R6 GND 24-bpp GPU R0 and R1: NC (See Note B) 3.3V C2 3.3V C3 Rpulldown (See Note C) Main Board Note A. Leave output Y3 NC. Note B. R0, R1, G0, G1, B0, B1: For improved image quality, the GPU should dither the 24-bit output pixel down to18-bit per pixel. NoteC.Rpullup: install only to use rising edge triggered clocking. Rpulldown: install only to use falling edge triggered clocking. • C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF. • C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF. • C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF. Figure 18. 24-Bit Color Host to 18-Bit Color LCD Panel Display Application 24 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 10.2.2.3 PCB Routing Figure 19 and Figure 20 show a possible breakout of the data input and output signals from the BGA package. R1 R2 R3 R4 R5 R6 R7 R8 G0 G1 D8 D7 D5 D4 D2 D1 D9 GND D6 D3 D0 D27 D11 VCC D10 GND Y0P Y0M D13 D12 IOVCC GND Y1P Y1M D14 GND D16 D15 D17 D18 CLKSEL D19 GND IOVCC D20 D21 D25 D22 D23 D24 G2 G3 G4 G5 G6 G7 B0 B1 LVDS GND LVDS VCC Y2P Y2M GND CLKP CLKM GND Y3P Y3M B2 B3 B4 B5 B6 SHTDN PLLVCC LVDS GND +PLL GND D26 CLKIN PLL GND B7 HS VS EN CLK Figure 19. 24-Bit Color Routing (See Figure 15 for the Schematic) Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 25 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com G1 G0 D8 D7 R5 R4 R3 R2 D5 D4 D2 R1 R0 D1 To GND G2 G3 D9 GND D6 D3 D0 D27 D11 VCC D10 GND Y0P Y0M D13 D12 IOVCC GND Y1P Y1M D14 GND D16 D15 D17 D18 CLKSEL D19 GND IOVCC G4 G5 B0 LVDS GND LVDS VCC To GND B1 Y2P Y2M GND CLKP CLKM GND Y3P Y3M B2 remains unconnected B3 B4 D20 D21 D22 D23 D25 SHTDN PLLVCC LVDS GND +PLL GND CLKIN B5 D24 PLL GND D26 HS VS EN CLK Figure 20. 18-Bit Color Routing (See Figure 16, Figure 17, and Figure 18 for the Schematic) 26 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 10.2.3 Application Curve Figure 21. 18b GPU to 24b LCD Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 27 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 11 Power Supply Recommendations Power supply PLL, IO, and LVDS pins must be uncoupled from each. 12 Layout 12.1 Layout Guidelines 12.1.1 Board Stackup There is no fundamental information about how many layers should be used and how the board stackup should look. Again, the easiest way the get good results is to use the design from the EVMs of Texas Instruments. The magazine Elektronik Praxis has published an article with an analysis of different board stackups. These are listed in Table 3. Generally, the use of microstrip traces needs at least two layers, whereas one of them must be a GND plane. Better is the use of a four-layer PCB, with a GND and a VCC plane and two signal layers. If the circuit is complex and signals must be routed as stripline, because of propagation delay and/or characteristic impedance, a six-layer stackup should be used. Table 3. Possible Board Stackup on a Four-Layer PCB MODEL 1 MODEL 2 MODEL 3 MODEL 4 Layer 1 SIG SIG SIG GND Layer 2 SIG GND GND SIG Layer 3 VCC VCC SIG VCC Layer 4 GND SIG VCC SIG Decoupling Good Good Bad Bad Bad EMC Bad Bad Bad Signal Integrity Bad Bad Good Bad Self Disturbance Satisfaction Satisfaction Satisfaction High 12.1.2 Power and Ground Planes A complete ground plane in high-speed design is essential. Additionally, a complete power plane is recommended as well. In a complex system, several regulated voltages can be present. The best solution is for every voltage to have its own layer and its own ground plane. But this would result in a huge number of layers just for ground and supply voltages. What are the alternatives? Split the ground planes and the power planes? In a mixed-signal design, e.g., using data converters, the manufacturer often recommends splitting the analog ground and the digital ground to avoid noise coupling between the digital part and the sensitive analog part. Take care when using split ground planes because: • Split ground planes act as slot antennas and radiate. • A routed trace over a gap creates large loop areas, because the return current cannot flow beside the signal, and the signal can induce noise into the nonrelated reference plane (Figure 22). • With a proper signal routing, crosstalk also can arise in the return current path due to discontinuities in the ground plane. Always take care of the return current (Figure 23). For Figure 23, do not route a signal referenced to digital ground over analog ground and vice versa. The return current cannot take the direct way along the signal trace and so a loop area occurs. Furthermore, the signal induces noise, due to crosstalk (dotted red line) into the analog ground plane. 28 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 Figure 22. Loop Area and Crosstalk Due to Poor Signal Routing and Ground Splitting Figure 23. Crosstalk Induced by the Return Current Path 12.1.3 Traces, Vias, and Other PCB Components A right angle in a trace can cause more radiation. The capacitance increases in the region of the corner, and the characteristic impedance changes. This impedance change causes reflections. • Avoid right-angle bends in a trace and try to route them at least with two 45° corners. To minimize any impedance change, the best routing would be a round bend (see Figure 24). • Separate high-speed signals (e.g., clock signals) from low-speed signals and digital from analog signals; again, placement is important. • To minimize crosstalk not only between two signals on one layer but also between adjacent layers, route them with 90° to each other. Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 29 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com Figure 24. Poor and Good Right Angle Bends 12.2 Layout Example Figure 25. SN75LVDS83B EVM Top Layer – TSSOP Package 30 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B SN75LVDS83B www.ti.com SLLS846C – MAY 2009 – REVISED AUGUST 2014 Layout Example (continued) Figure 26. SN75LVDS83B EVM VCC Layer – TSSOP Package Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B 31 SN75LVDS83B SLLS846C – MAY 2009 – REVISED AUGUST 2014 www.ti.com 13 Device and Documentation Support 13.1 Trademarks OMAP, DaVinci, FlatLink are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 13.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 13.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 32 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Product Folder Links: SN75LVDS83B PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) SN75LVDS83BDGG ACTIVE TSSOP DGG 56 35 RoHS & Green NIPDAU Level-2-260C-1 YEAR -10 to 70 LVDS83B SN75LVDS83BDGGR ACTIVE TSSOP DGG 56 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -10 to 70 LVDS83B (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN75LVDS83BDGG 价格&库存

很抱歉,暂时无法提供与“SN75LVDS83BDGG”相匹配的价格&库存,您可以联系我们找货

免费人工找货