0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFS3004-7PPBF

IRFS3004-7PPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRFS3004-7PPBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRFS3004-7PPBF 数据手册
PD - 97378A IRFS3004-7PPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D 40V 0.90mΩ 1.25mΩ 400A 240A Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free c S S G S S S S D2Pak 7 Pin G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 400™ 280™ 240 1610 380 Max. Units A d W W/°C V V/ns °C f 2.5 ± 20 2.0 -55 to + 175 300 290 See Fig. 14, 15, 22a, 22b Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Ãd e Thermal Resistance Symbol RθJC RθJA d j mJ A mJ Junction-to-Case Junction-to-Ambient (PCB Mount) kl Parameter Typ. ––– ––– Max. 0.40 40 Units °C/W www.irf.com 1 04/22/2010 IRFS3004-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Min. Typ. Max. Units 40 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.038 ––– 0.90 1.25 ––– 4.0 ––– 20 ––– 250 ––– 100 ––– -100 2.0 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 195A V VDS = VGS, ID = 250µA µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω g d Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units 1300 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 160 42 65 95 23 240 91 160 9130 2020 990 2590 2650 ––– 240 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 195A ID = 180A VDS =20V VGS = 10V ID = 180A, VDS =0V, VGS = 10V VDD = 26V ID = 240A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 32V , See Fig. 11 VGS = 0V, VDS = 0V to 32V g ns pF g h ià i h Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Min. Typ. Max. Units ––– ––– ––– 400 ––– ™ Conditions MOSFET symbol showing the integral reverse G S D A A Ãd 1610 Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time ––– ––– 1.3 V ––– 49 ––– ns ––– 51 ––– ––– 37 ––– nC TJ = 125°C ––– 41 ––– ––– 3.2 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25°C, IS = 195A, VGS = 0V VR = 34V, TJ = 25°C IF = 240A TJ = 125°C di/dt = 100A/µs TJ = 25°C g g Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.01mH RG = 25 Ω, IAS = 240A, VGS =10V. Part not recommended for use above this value . „ ISD ≤ 240A, di/dt ≤ 740A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom ‰ Rθ is measured at TJ approximately 90°C. Š RθJC value shown is at time zero. Coss while VDS is rising from 0 to 80% VDSS. mended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRFS3004-7PPbF 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 10 100 1 4.5V 0.1 0.1 1 ≤60µs PULSE WIDTH Tj = 25°C 10 10 100 1000 0.1 4.5V 1 ≤60µs PULSE WIDTH Tj = 175°C 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 195A ID, Drain-to-Source Current (A) VGS = 10V 100 T J = 175°C 10 T J = 25°C 1.5 1.0 1 VDS = 25V ≤60µs PULSE WIDTH 3 4 5 6 7 8 0.1 0.5 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 14.0 ID= 180A VGS, Gate-to-Source Voltage (V) 12.0 10.0 8.0 6.0 4.0 2.0 0.0 C, Capacitance (pF) 10000 Ciss Coss Crss VDS= 32V VDS= 20V 1000 100 1 10 VDS, Drain-to-Source Voltage (V) 100 0 50 100 150 200 250 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFS3004-7PPbF 1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 10 T J = 25°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) T J = 175°C 100 1msec 10msec 1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) 10 Tc = 25°C Tj = 175°C Single Pulse 1 0 1 10 100 VDS, Drain-to-Source Voltage (V) DC V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 420 360 ID, Drain Current (A) Fig 8. Maximum Safe Operating Area 50 Id = 5mA 48 Limited By Package 300 240 180 120 60 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 46 44 42 40 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 3.5 3.0 2.5 EAS , Single Pulse Avalanche Energy (mJ) Fig 10. Drain-to-Source Breakdown Voltage 1200 1000 800 600 400 200 0 ID 44A 80A BOTTOM 240A TOP Energy (µJ) 2.0 1.5 1.0 0.5 0.0 -5 0 5 10 15 20 25 30 35 40 45 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent 4 www.irf.com IRFS3004-7PPbF 1 Thermal Response ( Z thJC ) °C/W D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 Ri (°C/W) 0.00757 0.06508 0.18313 0.14378 0.000006 0.000064 0.001511 0.009800 τi (sec) Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 1E-006 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 0.01 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01 Fig 14. Typical Avalanche Current vs.Pulsewidth 320 280 EAR , Avalanche Energy (mJ) 240 200 160 120 80 40 0 25 50 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 240A Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 75 100 125 150 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS3004-7PPbF 4.5 VGS(th), Gate threshold Voltage (V) 10 9 8 7 6 5 4 3 2 IF = 96A V R = 34V TJ = 25°C TJ = 125°C 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 250µA ID = 1.0mA ID = 1.0A IRRM (A) 100 200 300 diF /dt (A/µs) 400 500 Fig 16. Threshold Voltage vs. Temperature 12 11 10 9 IRRM (A) Fig. 17 - Typical Recovery Current vs. dif/dt 140 IF = 96A V R = 34V TJ = 25°C TJ = 125°C IF = 144A V R = 34V TJ = 25°C TJ = 125°C QRR (nC) 120 100 80 60 40 20 8 7 6 5 4 3 2 100 200 300 diF /dt (A/µs) 400 500 100 200 300 diF /dt (A/µs) 400 500 Fig. 18 - Typical Recovery Current vs. dif/dt 180 160 140 QRR (nC) Fig. 19 - Typical Stored Charge vs. dif/dt IF = 144A V R = 34V TJ = 25°C TJ = 125°C 120 100 80 60 40 20 100 200 300 diF /dt (A/µs) 400 500 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS3004-7PPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRFS3004-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFS3004-7PPbF D2Pak - 7 Pin Part Marking Information ÃIR D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2010 www.irf.com 9
IRFS3004-7PPBF 价格&库存

很抱歉,暂时无法提供与“IRFS3004-7PPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货