0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FDB2572

FDB2572

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    TO-263(D²Pak)

  • 描述:

    类型:N沟道;漏源电压(Vdss):150V;连续漏极电流(Id):4A;29A;功率(Pd):135W;导通电阻(RDS(on)@Vgs,Id):54mΩ@10V,9A;

  • 数据手册
  • 价格&库存
FDB2572 数据手册
Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. N-Channel PowerTrench® MOSFET 150V, 29A, 54mΩ Features Applications • r DS(ON) = 45mΩ (Typ.), VGS = 10V, ID = 9A • DC/DC converters and Off-Line UPS • Qg(tot) = 26nC (Typ.), VGS = 10V • Distributed Power Architectures and VRMs • Low Miller Charge • Primary Switch for 24V and 48V Systems • Low QRR Body Diode • UIS Capability (Single Pulse and Repetitive Pulse) • High Voltage Synchronous Rectifier Formerly developmental type 82860 D DRAIN (FLANGE) GATE SOURCE G TO-263AB FDB SERIES S MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 150 Units V VGS Gate to Source Voltage ±20 V Continuous (TC = 25oC, VGS = 10V) 29 A Continuous (TC = 100oC, VGS = 10V) 20 A 4 A Drain Current ID Continuous (Tamb = 25oC, VGS = 10V, R θJA = 43oC/W) Pulsed E AS PD TJ, TSTG Figure 4 A Single Pulse Avalanche Energy (Note 1) 36 mJ Power dissipation 135 W Derate above 25oC 0.9 W/oC Operating and Storage Temperature o -55 to 175 C Thermal Characteristics RθJC Thermal Resistance Junction to Case, TO-263 RθJA Thermal Resistance Junction to Ambient , TO-263 RθJA (Note 2) 2 Thermal Resistance Junction to Ambient TO-263, 1in copper pad area ©2012 Fairchild Semiconductor Corporation 1.11 o C/W 62 o C/W 43 o C/W FDB2572 Rev. C FDB2572 January 2012 FDB2572 Device Marking FDB2572 Device FDB2572 Package TO-263AB Reel Size 330mm Tape Width 24mm Quantity 800 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V 150 - - V - - 1 - - 250 µA VGS = ±20V - - ±100 nA V GS = VDS, ID = 250µA 2 - 4 V ID=9A, VGS=10V - 0.045 0.054 ID = 4A, VGS = 6V, - 0.050 0.075 ID=9A, VGS=10V, TC=175oC - 0.126 0.146 - 1770 - - 183 - pF - 40 - pF nC VDS = 120V VGS = 0V TC = 150o On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance VDS = 25V, VGS = 0V, f = 1MHz pF Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V - 26 34 Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 3.3 4.3 nC Qgs Gate to Source Gate Charge - 8 - nC Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge VDD = 75V ID = 9A Ig = 1.0mA - 5 - nC - 6 - nC ns Resistive Switching Characteristics (VGS = 10V) tON Turn-On Time - - 36 td(ON) Turn-On Delay Time - 11 - ns tr Rise Time - 14 - ns td(OFF) Turn-Off Delay Time - 31 - ns tf Fall Time - 14 - ns tOFF Turn-Off Time - - 66 ns VDD = 75V, ID = 9A VGS = 10V, RGS = 11.0Ω Drain-Source Diode Characteristics ISD = 9A - - 1.25 V ISD = 4A - - 1.0 V Reverse Recovery Time ISD = 9A, dISD/dt =100A/µs - - 74 ns Reverse Recovered Charge ISD = 9A, dISD/dt =100A/µs - - 169 nC VSD Source to Drain Diode Voltage trr QRR Notes: 1: Starting TJ = 25°C, L = 0.2mH, IAS = 19A. 2: Pulse Width = 100s ©2012 Fairchild Semiconductor Corporation FDB2572 Rev. C FDB2572 Package Marking and Ordering Information FDB2572 Typical Characteristics TC = 25°C unless otherwise noted 40 VGS = 10V 35 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 30 25 20 15 10 0.2 5 0 0 25 50 75 100 150 125 175 0 25 TC , CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 Figure 2. Maximum Continuous Drain Current vs Case Temperature 2.0 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1.0 PDM 0.1 SINGLE PULSE t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 0.01 10-5 10-4 10-3 10-2 10-1 t , RECTANGULAR PULSE DURATION (s) 100 101 Figure 3. Normalized Maximum Transient Thermal Impedance 500 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 175 - TC I = I25 150 100 VGS = 10V 20 10-5 10-4 10-3 10-2 t , PULSE WIDTH (s) 10-1 100 101 Figure 4. Peak Current Capability ©2012 Fairchild Semiconductor Corporation FDB2572 Rev. C FDB2572 Typical Characteristics TC = 25°C unless otherwise noted 100 1000 STARTING TJ = 25oC IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 10µs 100 100µs 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms 1 SINGLE PULSE TJ = MAX RATED TC = 25oC DC STARTING TJ = 150oC 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 0.1 0.1 1 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.001 200 1 Figure 6. Unclamped Inductive Switching Capability 60 60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V TC = 25oC 40 TJ = 175o C 30 TJ = 25o C 20 VGS = 10V 50 ID, DRAIN CURRENT (A) 50 TJ = -55oC 10 40 VGS = 7V VGS = 6V 30 VGS = 5V 20 10 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VGS , GATE TO SOURCE VOLTAGE (V) 0 6.5 Figure 7. Transfer Characteristics 1 2 3 4 VDS , DRAIN TO SOURCE VOLTAGE (V) 5 Figure 8. Saturation Characteristics 3.0 60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE DRAIN TO SOURCE ON RESISTANCE (m Ω) 0.01 0.1 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area ID , DRAIN CURRENT (A) 10 VGS = 6V 55 50 VGS = 10V 45 40 2.5 2.0 1.5 1.0 0.5 VGS = 10V, ID =9A 0 0 10 20 30 ID, DRAIN CURRENT (A) Figure 9. Drain to Source On Resistance vs Drain Current ©2012 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature FDB2572 Rev. C FDB2572 Typical Characteristics TC = 25°C unless otherwise noted 1.2 1.4 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.0 0.8 0.6 0.4 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 1000 10 1000 C, CAPACITANCE (pF) VGS , GATE TO SOURCE VOLTAGE (V) VDD = 75V CISS = CGS + CGD COSS ≅ CDS + C GD CRSS = CGD 100 VGS = 0V, f = 1MHz 10 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 9A ID = 4A 2 0 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage ©2012 Fairchild Semiconductor Corporation 150 0 5 10 15 20 Qg , GATE CHARGE (nC) 25 30 Figure 14. Gate Charge Waveforms for Constant Gate Currents FDB2572 Rev. C FDB2572 Test Circuits and Waveforms BVDSS VDS tP VDS L IAS VDD VARY tP TO OBTAIN + RG REQUIRED PEAK IAS VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS = 10V VGS + VDD VGS - VGS = 2V DUT Qgs2 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2012 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms FDB2572 Rev. C FDB2572 Thermal Resistance vs. Mounting Pad Area (T –T ) JM A P D M = ----------------------------R θ JA (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of P DM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 80 RθJA = 26.51+ 19.84/(0.262+Area) EQ.2 RθJA = 26.51+ 128/(1.69+Area) EQ.3 60 RθJA (oC/W) The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 40 20 0.1 1 10 (0.645) (6.45) AREA, TOP COPPER AREA in2 (cm2) (64.5) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeter square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. R θ JA 19.84 ( 0.262 + Area ) = 26.51 + ------------------------------------- (EQ. 2) Area in Inches Squared R θ JA 128 ( 1.69 + Area ) = 26.51 + ---------------------------------- (EQ. 3) Area in Centimeters Squared ©2012 Fairchild Semiconductor Corporation FDB2572 Rev. C rev April 2002 LDRAIN DPLCAP 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RSLC2 5 51 EVTHRES + 19 8 + LGATE GATE 1 ESLC 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + Lgate 1 9 9.56e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 7.71e-9 RLDRAIN RSLC1 51 Ebreak 11 7 17 18 160 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 7 RSOURCE RLgate 1 9 95.6 RLdrain 2 5 10 RLsource 3 7 77.1 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A 13 8 S1B CA Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 35e-3 Rgate 9 20 1.6 RSLC1 5 51 RSLCMOD 1.0e-6 RSLC2 5 50 1.0e3 Rsource 8 7 RsourceMOD 3.0e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD 17 18 RVTEMP S2B 13 CB 6 8 5 8 EDS - 19 VBAT + IT 14 + + EGS RLSOURCE RBREAK 15 14 13 SOURCE 3 - 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*52),3))} .MODEL DbodyMOD D (IS=6.0E-11 N=1.14 RS=3.9e-3 TRS1=3.5e-3 TRS2=3.0e-6 + CJO=1.1e-9 M=0.63 TT=6.2e-8 XTI=4.5) .MODEL DbreakMOD D (RS=10 TRS1=5.0e-3 TRS2=-5.0e-6) .MODEL DplcapMOD D (CJO=3.5e-10 IS=1.0e-30 N=10 M=0.65) .MODEL MmedMOD NMOS (VTO=3.55 KP=3 IS=1e-40 N=10 TOX=1 L=1u W=1u RG=1.6) .MODEL MstroMOD NMOS (VTO=4.0 KP=25 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=2.95 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=16 RS=0.1) .MODEL RbreakMOD RES (TC1=1.15e-3 TC2=-9.5e-7) .MODEL RdrainMOD RES (TC1=9.0e-3 TC2=2.5e-5) .MODEL RSLCMOD RES (TC1=3.0e-3 TC2=2.5e-6) .MODEL RsourceMOD RES (TC1=4.0e-3 TC2=1.0e-6) .MODEL RvthresMOD RES (TC1=-4.1e-3 TC2=-1.0e-5) .MODEL RvtempMOD RES (TC1=-4.0e-3 TC2=1.0e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5.0 VOFF=-3.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-5.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0.3) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2012 Fairchild Semiconductor Corporation FDB2572 Rev. C FDB2572 PSPICE Electrical Model .SUBCKT FDB2572 2 1 3 ; CA 12 8 5.5e-10 Cb 15 14 7.4e-10 Cin 6 8 1.7e-9 EVTHRES + 19 8 + LGATE spe.ebreak n11 n7 n17 n18 = 160 GATE 1 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 9.56e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 7.71e-9 S2A S1B CA res.rlgate n1 n9 = 95.6 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 77.1 15 14 13 13 8 RBREAK 17 18 RVTEMP S2B 13 CB + - IT 14 + 6 8 EGS 19 VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=1.15e-3,tc2=-9.5e-7 res.rdrain n50 n16 = 35e-3, tc1=9.0e-3,tc2=2.5e-5 res.rgate n9 n20 = 1.6 res.rslc1 n5 n51 = 1.0e-6, tc1=3.0e-3,tc2=2.5e-6 res.rslc2 n5 n50 = 1.0e3 res.rsource n8 n7 = 3.0e-3, tc1=4.0e-3,tc2=1.0e-6 res.rvthres n22 n8 = 1, tc1=-4.1e-3,tc2=-1.0e-5 res.rvtemp n18 n19 = 1, tc1=-4.0e-3,tc2=1.0e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/52))** 3))} } ©2012 Fairchild Semiconductor Corporation FDB2572 Rev. C FDB2572 SABER Electrical Model REV April 2002 ttemplate FDB2572 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=6.0e-11,nl=1.14,rs=3.9e-3,trs1=3.5e-3,trs2=3.0e-6,cjo=1.1e-9,m=0.63,tt=6.2e-8,xti=4.5) dp..model dbreakmod = (rs=10,trs1=5.0e-3,trs2=-5.0e-6) dp..model dplcapmod = (cjo=3.5e-10,isl=10.0e-30,nl=10,m=0.65) m..model mmedmod = (type=_n,vto=3.55,kp=3,is=1e-40, tox=1) m..model mstrongmod = (type=_n,vto=4.0,kp=25,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.95,kp=0.05,is=1e-30, tox=1,rs=0.1) LDRAIN DPLCAP 5 DRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5.0,voff=-3.5) 2 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-5.0) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0.3) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.5) 51 c.ca n12 n8 = 5.5e-10 RSLC2 c.cb n15 n14 = 7.4e-10 ISCL c.cin n6 n8 = 1.7e-9 th FDB2572 SPICE Thermal Model JUNCTION REV 26 April 2002 FDB2572 CTHERM1 TH 6 3.8e-3 CTHERM2 6 5 4.0e-3 CTHERM3 5 4 4.2e-3 CTHERM4 4 3 4.3e-3 CTHERM5 3 2 8.5e-3 CTHERM6 2 TL 3.0e-2 CTHERM1 RTHERM1 6 RTHERM1 TH 6 5.5e-4 RTHERM2 6 5 5.0e-3 RTHERM3 5 4 4.5e-2 RTHERM4 4 3 10.5e-2 RTHERM5 3 2 3.7e-1 RTHERM6 2 TL 3.8e-1 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model FDB2572 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =3.8e-3 ctherm.ctherm2 6 5 =4.0e-3 ctherm.ctherm3 5 4 =4.2e-3 ctherm.ctherm4 4 3 =4.3e-3 ctherm.ctherm5 3 2 =8.5e-3 ctherm.ctherm6 2 tl =3.0e-2 rtherm.rtherm1 th 6 =5.5e-4 rtherm.rtherm2 6 5 =5.0e-3 rtherm.rtherm3 5 4 =4.5e-2 rtherm.rtherm4 4 3 =10.5e-2 rtherm.rtherm5 3 2 =3.7e-1 rtherm.rtherm6 2 tl =3.8e-1 } CTHERM3 RTHERM3 4 CTHERM4 RTHERM4 3 CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2012 Fairchild Semiconductor Corporation CASE FDB2572 Rev. C FDB2572 TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool™ F-PFS™ PowerTrench® The Power Franchise® ® PowerXS™ AccuPower™ FRFET® Global Power ResourceSM Programmable Active Droop™ AX-CAP™* ® ® Green Bridge™ QFET BitSiC TinyBoost™ Build it Now™ QS™ Green FPS™ TinyBuck™ CorePLUS™ Quiet Series™ Green FPS™ e-Series™ TinyCalc™ CorePOWER™ RapidConfigure™ Gmax™ TinyLogic® CROSSVOLT™ GTO™ ™ TINYOPTO™ CTL™ IntelliMAX™ TinyPower™ Saving our world, 1mW/W/kW at a time™ Current Transfer Logic™ ISOPLANAR™ TinyPWM™ DEUXPEED® Marking Small Speakers Sound Louder SignalWise™ TinyWire™ Dual Cool™ SmartMax™ and Better™ TranSiC® EcoSPARK® SMART START™ MegaBuck™ TriFault Detect™ EfficentMax™ Solutions for Your Success™ MICROCOUPLER™ TRUECURRENT®* ESBC™ SPM® MicroFET™ μSerDes™ STEALTH™ MicroPak™ ® SuperFET® MicroPak2™ SuperSOT™-3 MillerDrive™ Fairchild® UHC® SuperSOT™-6 MotionMax™ Fairchild Semiconductor® Ultra FRFET™ SuperSOT™-8 Motion-SPM™ FACT Quiet Series™ UniFET™ SupreMOS® mWSaver™ FACT® VCX™ ® SyncFET™ OptoHiT™ FAST ® VisualMax™ Sync-Lock™ OPTOLOGIC FastvCore™ ® VoltagePlus™ OPTOPLANAR ®* FETBench™ XS™ FlashWriter® * ® FPS™ tm tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I61 ©2012 Fairchild Semiconductor Corporation FDB2572 Rev. C ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
FDB2572 价格&库存

很抱歉,暂时无法提供与“FDB2572”相匹配的价格&库存,您可以联系我们找货

免费人工找货