0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74HC374ADTG

MC74HC374ADTG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP-20_6.5X4.4MM

  • 描述:

    IC FF D-TYPE SNGL 8BIT 20TSSOP

  • 数据手册
  • 价格&库存
MC74HC374ADTG 数据手册
MC74HC374A Octal 3-State Non-Inverting D Flip-Flop High−Performance Silicon−Gate CMOS The MC74HC374A is identical in pinout to the LS374. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. Data meeting the setup time is clocked to the outputs with the rising edge of the clock. The Output Enable input does not affect the states of the flip−flops, but when Output Enable is high, the outputs are forced to the high−impedance state; thus, data may be stored even when the outputs are not enabled. The HC374A is identical in function to the HC574A which has the input pins on the opposite side of the package from the output. This device is similar in function to the HC534A which has inverting outputs. www.onsemi.com SOIC−20 DW SUFFIX CASE 751D PIN ASSIGNMENT OUTPUT ENABLE Q0 D0 D1 Q1 Q2 D2 D3 Q3 GND Features • • • • • • • • • Output Drive Capability: 15 LSTTL Loads Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2.0 to 6.0 V Low Input Current: 1.0 mA High Noise Immunity Characteristic of CMOS Devices In Compliance with the Requirements Defined by JEDEC Standard No. 7 A Chip Complexity: 266 FETs or 66.5 Equivalent Gates NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant TSSOP−20 DT SUFFIX CASE 948E 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 MARKING DIAGRAMS 20 20 HC 374A ALYWG G HC374A AWLYYWWG 1 1 SOIC−20 D1 D2 DATA INPUTS D3 D4 D5 D6 D7 CLOCK OUTPUT ENABLE 3 2 4 5 7 6 8 9 13 14 17 12 15 16 18 19 11 1 Q0 Q1 Q2 Q3 Q4 TSSOP−20 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) LOGIC DIAGRAM D0 VCC Q7 D7 D6 Q6 Q5 D5 D4 Q4 CLOCK FUNCTION TABLE NONINVERTING OUTPUTS Inputs Output Enable Q5 L L L H Q6 Q7 Output Clock D Q L,H, X H L X X H L No Change Z X = don’t care Z = high impedance PIN 20 = VCC PIN 10 = GND ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. © Semiconductor Components Industries, LLC, 2014 October, 2017 − Rev. 15 1 Publication Order Number: MC74HC374A/D MC74HC374A MAXIMUM RATINGS Symbol Parameter Value Unit –0.5 to +7.0 V DC Input Voltage (Referenced to GND) –0.5 to VCC + 0.5 V DC Output Voltage (Referenced to GND) –0.5 to VCC + 0.5 V VCC DC Supply Voltage (Referenced to GND) Vin Vout Iin DC Input Current, per Pin ±20 mA Iout DC Output Current, per Pin ±35 mA ICC DC Supply Current, VCC and GND Pins ±75 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature –65 to +150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds (SOIC, SSOP or TSSOP Package) SOIC Package† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. _C 260 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating: SOIC Package: –7 mW/_C from 65_ to 125_C TSSOP Package: −6.1 mW/_C from 65_ to 125_C RECOMMENDED OPERATING CONDITIONS Symbol VCC Vin, Vout Parameter Min Max Unit 2.0 6.0 V 0 VCC V –55 +125 _C 0 0 0 1000 500 400 ns DC Supply Voltage (Referenced to GND) DC Input Voltage, Output Voltage (Referenced to GND) TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figure 1) VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) Guaranteed Limit VCC V –55 to 25_C v 85_C v 125_C Unit Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 mA 2.0 3.0 4.5 6.0 1.50 2.10 3.15 4.20 1.50 2.10 3.15 4.20 1.50 2.10 3.15 4.20 V Maximum Low−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 mA 2.0 3.0 4.5 6.0 0.50 0.90 1.35 1.80 0.50 0.90 1.35 1.80 0.50 0.90 1.35 1.80 V Minimum High−Level Output Voltage Vin = VIH or VIL |Iout| v 20 mA 2.0 4.5 6.0 1.90 4.40 5.90 1.90 4.40 5.90 1.90 4.40 5.90 V 3.0 4.5 6.0 2.48 2.98 5.48 2.34 3.84 5.34 2.20 3.70 5.20 2.0 4.5 6.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 3.0 4.5 6.0 0.26 0.26 0.26 0.33 0.33 0.33 0.40 0.40 0.40 V 6.0 ±0.1 ±1.0 ±1.0 mA Symbol Parameter VIH Minimum High−Level Input Voltage VIL VOH Test Conditions Vin = VIH or VIL VOL Maximum Low−Level Output Voltage Vin = VIH or VIL |Iout| v 20 mA Vin = VIH or VIL Iin Maximum Input Leakage Current |Iout| v 2.4 mA |Iout| v 6.0 mA |Iout| v 7.8 mA |Iout| v 2.4 mA |Iout| v 6.0 mA |Iout| v 7.8 mA Vin = VCC or GND www.onsemi.com 2 V V MC74HC374A DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued) Guaranteed Limit VCC V –55 to 25_C v 85_C v 125_C Unit IOZ Maximum Three−State Leakage Current Output in High−Impedance State Vin = VIL or VIH Vout = VCC or GND 6.0 ±0.5 ±5.0 ±10 mA ICC Maximum Quiescent Supply Current (per Package) Vin = VCC or GND Iout = 0 mA 6.0 4 40 160 mA Symbol Parameter Test Conditions AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns) Guaranteed Limit VCC V –55 to 25_C v 85_C v 125_C Unit fmax Maximum Clock Frequency (50% Duty Cycle) 2.0 3.0 4.5 6.0 6 15 30 35 5 10 24 28 4 8 20 24 MHz tPLH tPHL Maximum Propagation Delay, Input Clock to Q (Figures 1 and 5) 2.0 3.0 4.5 6.0 125 80 25 21 155 110 31 26 190 130 38 32 ns tPLZ tPHZ Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6) 2.0 3.0 4.5 6.0 150 100 30 26 190 125 38 33 225 150 45 38 ns tPZL tPZH Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6) 2.0 3.0 4.5 6.0 150 100 30 26 190 125 38 33 225 150 45 38 ns tTLH tTHL Maximum Output Transition Time, Any Output (Figures 1 and 5) 2.0 3.0 4.5 6.0 75 27 15 13 95 32 19 16 110 36 22 19 ns Cin Maximum Input Capacitance 10 10 10 pF Cout Maximum Three−State Output Capacitance (Output in High−Impedance State) 15 15 15 pF Symbol Parameter Typical @ 25°C, VCC = 5.0 V CPD 34 Power Dissipation Capacitance (Per Enabled Output)* * Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC . www.onsemi.com 3 pF MC74HC374A TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns) Guaranteed Limit Parameter Symbol VCC Volts Figure v 85_C –55 to 25_C Min Max Min Max v 125_C Min Max Unit tsu Minimum Setup Time, Data to Clock 3 2.0 3.0 4.5 6.0 50 40 10 9 65 50 13 11 75 60 15 13 ns th Minimum Hold Time, Clock to Data 3 2.0 3.0 4.5 6.0 5.0 5.0 5.0 5.0 5.0 50 5.0 5.0 5.0 5.0 5.0 5.0 ns tw Minimum Pulse Width, Clock 1 2.0 3.0 4.5 6.0 60 23 12 10 75 27 15 13 90 32 18 15 ns Maximum Input Rise and Fall Times 1 2.0 3.0 4.5 6.0 tr, tf 1000 800 500 400 1000 800 500 400 1000 800 500 400 ns SWITCHING WAVEFORMS tr CLOCK tf VCC VCC 90% 50% 10% OUTPUT ENABLE 50% GND GND tPZL tPLZ tPZH tPHZ HIGH IMPEDANCE tW 1/fmax tPLH Q 50% tPHL 90% Q 50% 10% Q tTLH 50% Figure 2. VALID VCC DATA 50% GND th tsu VCC CLOCK 50% GND Figure 3. www.onsemi.com 4 VOL 90% VOH HIGH IMPEDANCE tTHL Figure 1. 10% MC74HC374A TEST CIRCUITS TEST POINT TEST POINT OUTPUT DEVICE UNDER TEST DEVICE UNDER TEST CL* CL* *Includes all probe and jig capacitance *Includes all probe and jig capacitance Figure 4. D0 3 Q D2 7 D C Clock Figure 5. D1 4 D CONNECT TO VCC WHEN TESTING tPLZ AND tPZL. CONNECT TO GND WHEN TESTING tPHZ AND tPZH. 1 kW OUTPUT Q D3 8 D C Q D4 13 D C Q D5 14 D C Q D6 17 D C Q D7 18 D C Q D C Q C 11 Output 1 Enable 2 Q0 5 Q1 6 Q2 9 Q3 12 Q4 15 Q5 16 Q6 19 Q7 Figure 6. Expanded Logic Diagram ORDERING INFORMATION Package Shipping† MC74HC374ADWG SOIC−20 WIDE (Pb−Free) 38 Units / Rail NLV74HC374ADWG* SOIC−20 WIDE (Pb−Free) 38 Units / Rail MC74HC374ADWR2G SOIC−20 WIDE (Pb−Free) 1000 Tape & Reel NLV74HC374ADWR2G* SOIC−20 WIDE (Pb−Free) 1000 Tape & Reel MC74HC374ADTG TSSOP−20 (Pb−Free) 75 Units / Rail MC74HC374ADTR2G TSSOP−20 (Pb−Free) 2500 Tape & Reel NLV74HC374ADTR2G* TSSOP−20 (Pb−Free) 2500 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. www.onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−20 WB CASE 751D−05 ISSUE H DATE 22 APR 2015 SCALE 1:1 A 20 q X 45 _ M E h 0.25 H NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M D 1 10 20X B b 0.25 M T A S B DIM A A1 b c D E e H h L q S L A 18X e SEATING PLANE A1 c T GENERIC MARKING DIAGRAM* RECOMMENDED SOLDERING FOOTPRINT* 20 20X 20X 1.30 0.52 20 XXXXXXXXXXX XXXXXXXXXXX AWLYYWWG 11 1 11.00 1 XXXXX A WL YY WW G 10 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ 98ASB42343B SOIC−20 WB = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−20 WB CASE 948E ISSUE D DATE 17 FEB 2016 SCALE 2:1 20X 0.15 (0.006) T U 2X L K REF 0.10 (0.004) S L/2 20 M T U S V ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ K K1 S J J1 11 B SECTION N−N −U− PIN 1 IDENT 0.25 (0.010) N 1 10 M 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C G D H DETAIL E 0.100 (0.004) −T− SEATING PLANE DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 6.40 6.60 4.30 4.50 --1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.27 0.37 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.252 0.260 0.169 0.177 --0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.011 0.015 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT 7.06 XXXX XXXX ALYWG G 1 0.65 PITCH 16X 0.36 16X 1.26 DOCUMENT NUMBER: 98ASH70169A DESCRIPTION: TSSOP−20 WB A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DIMENSIONS: MILLIMETERS Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74HC374ADTG 价格&库存

很抱歉,暂时无法提供与“MC74HC374ADTG”相匹配的价格&库存,您可以联系我们找货

免费人工找货