0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO8200BQTR

ISO8200BQTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TQFN32

  • 描述:

    IC PWR DRIVER 1:1 32TFQFPN

  • 数据手册
  • 价格&库存
ISO8200BQTR 数据手册
ISO8200BQ Galvanic isolated octal high-side smart power solid state-relay Datasheet - production data Applications  Programmable logic control  Industrial PC peripheral input/output  Numerical control machines  Drivers for all types of loads (resistive, capacitive, inductive) TFQFPN32 Features Description  Vdemag = VCC - 45 V (per channel) The ISO8200BQ is a galvanic isolated 8-channel driver featuring a very low supply current. It contains 2 independent galvanic isolated voltage domains (VCC for the power stage and VDD for the digital stage). Additional embedded functions are: loss of GND protection, undervoltage shutdown with hysteresis, and reset function for immediate power output shutdown.  RDS(on) = 0.12  (per channel)  IOUT = 0.7 A (per channel)  VCC = 45 V  Parallel input interface  Direct and synchronous control mode  High common mode transient immunity  Short-circuit protection  Channel overtemperature protection  Thermal independence of separate channels  Common output disable pin  Case overtemperature protection  Loss of GNDCC and VCC protection  Undervoltage shutdown with auto-restart and hysteresis  Overvoltage protection (VCC clamping)  Very low supply current  Common fault open-drain output  5 V and 3.3 V TTL/CMOS compatible I/Os  Fast demagnetization of inductive loads  Reset function for IC output disable  ESD protection IC is intended to drive any kind of load with one side connected to ground. Active channel current limitation combined with thermal shutdown, (independent for each channel), and automatic restart, protect the device against overload and short-circuit. In overload conditions, if junction temperature overtakes threshold, the channel involved is turned off and on again automatically after the IC temperature decreases below a reset threshold. If this condition causes case temperature to reach TCR limit threshold, the overloaded channel is turned off and it only restarts when case and junction temperature decrease down to the reset thresholds. Nonoverloaded channels continue operating normally. An internal circuit provides an OR-wired nonlatched common FAULT indicator signaling the channel OVT. The FAULT pin is an open-drain active low fault indication pin.  Designed to meet IEC 61000-4-2, IEC 610004-4, IEC 61000-4-5 and IEC 61000-4-8  UL1577 and UL508 certified  Safety Limits as per VDE0884-11 May 2020 This is information on a product in full production. DS10781 Rev 9 1/40 www.st.com Contents ISO8200BQ Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1 Parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.1 Input signals (IN1 to IN8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.2 Load input data (LOAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.3 Output synchronization (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.4 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1.5 Output enable (OUT_EN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.2 Direct control mode (DCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.3 Synchronous control mode (SCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.4 Fault indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.4.1 7 Junction overtemperature and case overtemperature . . . . . . . . . . . . . . 23 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9 Reverse polarity on VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 Demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Supply voltage and power output conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2/40 DS10781 Rev 9 ISO8200BQ 12 Contents Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 13 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 13.1 14 TFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.1 TFQFPN32 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.1.1 TFQFPN32 packing method concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.1.2 TFQFPN32 winding direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 14.1.3 TFQFPN32 leader and trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 15 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DS10781 Rev 9 3/40 40 List of tables ISO8200BQ List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. 4/40 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Digital supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Diagnostic pin and output protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power switching characteristics (VCC = 24 V; -40 °C < TJ < 125 °C) . . . . . . . . . . . . . . . . 11 Logic input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Parallel interface timings (VDD = 5 V; VCC = 24 V; -40 °C < TJ < 125 °C) . . . . . . . . . . . . 14 Insulation and safety-related specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Insulation characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Safety limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Interface signal operation (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Interface signal operation in direct control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Interface signal operation in synchronous control mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 TFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Tolerance of form and position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DS10781 Rev 9 ISO8200BQ List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (top through view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 RDS(on) measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 dV/dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 td(ON) - td(OFF) synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 td(ON) - td(OFF) direct control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Watchdog behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Output channel enable timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Direct control mode IC configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Direct control mode time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Synchronous control mode IC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Synchronous control mode time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Multiple device synchronous control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal status update (DCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Thermal status update (SCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Current limitation with different load conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Thermal protection flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Reverse polarity protection on VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Maximum demagnetization energy vs. load current, typical values Tamb = 125 °C . . . . . 30 Supply voltage and power output conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Simplified thermal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 TFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 TFQFPN32 package detail outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 TFQFPN32 suggested footprint (measured in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 TFQFPN32 packing method concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 TFQFPN32 carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TFQFPN32 reel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TFQFPN32 winding direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 TFQFPN32 leader and trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DS10781 Rev 9 5/40 40 Block diagram 1 ISO8200BQ Block diagram Figure 1. Block diagram 6/40 DS10781 Rev 9 ISO8200BQ 2 Pin connection Pin connection Figure 2. Pin connection (top through view) Table 1. Pin description Pin Name 1 GNDDD 2 NC 3 GNDCC 4 OUT8 5 OUT8 6 OUT7 7 OUT7 8 OUT6 9 OUT6 10 OUT5 11 OUT5 12 OUT4 13 OUT4 14 OUT3 15 OUT3 16 OUT2 17 OUT2 Description Input logic ground, negative logic supply Not connected Output power ground Channel 8 power output Channel 7 power output Channel 6 power output Channel 5 power output Channel 4 power output Channel 3 power output Channel 2 power output DS10781 Rev 9 7/40 40 Pin connection ISO8200BQ Table 1. Pin description (continued) Pin Name 18 OUT1 19 OUT1 20 VDD 21 8/40 Description Channel 1 power output Positive logic supply OUT_EN Output enable 22 SYNC Input-to-output synchronization signal. Active low, see Section 6.3: Synchronous control mode (SCM) on page 21. 23 LOAD Load input data signal. Active low, see Section 6.3 24 IN1 Channel 1 input 25 IN2 Channel 2 input 26 IN3 Channel 3 input 27 IN4 Channel 4 input 28 IN5 Channel 5 input 29 IN6 Channel 6 input 30 IN7 Channel 7 input 31 IN8 Channel 8 input 32 FAULT TAB(VCC) VCC TAB(GNDCC) GNDCC Common fault indication, active low Exposed tab internally connected to VCC, positive power supply voltage Exposed tab internally connected to GNDCC DS10781 Rev 9 ISO8200BQ 3 Absolute maximum ratings Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Min. Max. Unit VCC Power supply voltage -0.3 45 V VDD Digital supply voltage -0.3 6.5 V VIN DC input pin voltage (INx, OUT_EN, LOAD, SYNC) -0.3 +6.5 V VFAULT Fault pin voltage -0.3 +6.5 V IGNDDD DC digital ground reverse current - -25 mA Channel output current (continuous) - Internally limited A IGNDcc DC power ground reverse current - -250 mA -IOUT Reverse output current (single channel) - -5 A DC input pin current (INx, OUT_EN, LOAD, SYNC) -10 + 10 mA IFAULT Fault pin current -10 + 10 mA VESD Electrostatic discharge with human body model (R = 1.5 k; C = 100 pF) - 2000 V Single pulse avalanche energy per channel not simultaneously at Tamb= 125 °C, IOUT = 0.5 A - 1.8 Single pulse avalanche energy per channel, all channels driven simultaneously at Tamb = 125 °C, IOUT = 0.5 A - 0.35 PTOT Power dissipation at Tc = 25 °C - Internally limited(1) W TJ Junction operating temperature - Internally limited(1) °C Storage temperature - -55 to 150 °C IOUT IIN EAS TSTG J 1. Protection functions are intended to avoid IC damage in fault conditions and are not intended for continuous operation. Continuous or repetitive operations of protection functions may reduce the IC lifetime. 4 Thermal data Table 3. Thermal data Symbol Rthj-case Rthj-amb Parameter Thermal resistance, junction-case((1) Thermal resistance, junction-ambient(2) Max. value Unit 2 °C/W 15 °C/W 1. For each channel. 2. TFQFPN32 mounted on the product evaluation board (FR4, 4 layers, 8 cm2 for each layer, copper thickness 35 mm). DS10781 Rev 9 9/40 40 Electrical characteristics 5 ISO8200BQ Electrical characteristics (10.5 V < VCC < 36 V; -40 °C < TJ < 125 °C, unless otherwise specified) Table 4. Power section Symbol Parameter Test conditions Min. Typ. Max. Unit VCC(THON) VCC undervoltage turn-ON threshold - - 9.5 10.5 V VCC(THOFF) VCC undervoltage turn-OFF threshold - 8 9 - V VCC(hys) VCC undervoltage hysteresis - 0.25 0.5 - V VCCclamp Clamp on VCC pin Iclamp = 20 mA 45 50 52 V On-state resistance(1) IOUT = 0.5 A, TJ = 25 °C IOUT = 0.5 A TJ = 125 °C RDS(on) Rpd Output pull-down resistor ICC Power supply current Ground disconnection output current ILGND VOUT(OFF) Off-state output voltage IOUT(OFF) Off-state output current - 0.12 0.24  - 210 - k All channels in OFF-state All channels in ON-state - 5 9 - mA VCC = VGND = 0 V VOUT = -24 V - - 500 μA Channel OFF and IOUT = 0 A - - 1 V Channel OFF and VOUT = 0 V - - 5 μA 1. See Figure 3: RDS(on) measurement. Table 5. Digital supply voltage Symbol VDD Test conditions Min. Typ. Max. Unit Operating voltage - 2.75 - 5.5 V VDD(THON) VDD undervoltage turn-ON threshold - 2.55 - 2.75 V VDD(THOFF) VDD undervoltage turn-OFF threshold - 2.45 - 2.65 V VDD undervoltage hysteresis - 0.04 0.1 - V - 4.5 6 mA - 4.4 5.9 mA VDD(hys) IDD 10/40 Parameter IDD supply current VDD = 5 V and input channel with a steady logic level VDD = 3.3 V and input channel with a steady logic level DS10781 Rev 9 ISO8200BQ Electrical characteristics Table 6. Diagnostic pin and output protection function Symbol Parameter Test conditions Min. Typ. Max. Unit VFAULT FAULT pin open-drain voltage output low IFAULT = 10 mA - - 0.4 V ILFAULT FAULT output leakage current VFAULT = 5 V - - 1 μA IPEAK Maximum DC output current before limitation VCC = 24 V RLOAD = 0  - 1.6 - A ILIM Short-circuit current limitation - 0.7 1.3 1.9 A Hyst ILIM tracking limits - - 0.3 - A TJSD Junction shutdown temperature - 150 170 - °C TJR Junction reset temperature - - 150 - °C THIST Junction thermal hysteresis - - 20 - °C TCSD Case shutdown temperature - 115 130 145 °C TCR Case reset temperature - - 110 - °C TCHYST Case thermal hysteresis - - 20 - °C Vdemag Output voltage at turn-OFF IOUT = 0.5 A ILOAD > = 1 mH VCC -45 VCC -50 VCC -52 V Table 7. Power switching characteristics (VCC = 24 V; -40 °C < TJ < 125 °C) Symbol dV/dt(ON) Parameter Test conditions Turn-ON voltage slope dV/dt(OFF) Turn-OFF voltage slope td(ON) Turn-ON delay time(1) td(OFF) Turn-OFF delay tf time(1) tr Fall (1) Rise time time(1) Min. Typ. Max. Unit IOUT = 0.5 A, resistive load 48  - 5.6 - V/μs IOUT = 0.5 A, resistive load 48  - 2.81 - V/μs IOUT = 0.5 A, resistive load 48  - 17 22 μs IOUT = 0.5 A, resistive load 48  - 22 40 μs IOUT = 0.5 A, resistive load 48  - 5 - μs IOUT = 0.5 A, resistive load 48  - 5 - μs 1. See Figure 3: RDS(on) measurement , Figure 4: dV/dT and Figure 6: td(ON) - td(OFF) direct control mode. DS10781 Rev 9 11/40 40 Electrical characteristics ISO8200BQ Figure 3. RDS(on) measurement Figure 4. dV/dT 12/40 DS10781 Rev 9 ISO8200BQ Electrical characteristics Figure 5. td(ON) - td(OFF) synchronous mode Figure 6. td(ON) - td(OFF) direct control mode DS10781 Rev 9 13/40 40 Electrical characteristics ISO8200BQ Table 8. Logic input and output Symbol Parameter Test conditions VIL Logic input pin low level voltage (INx, OUT_EN, LOAD, SYNC) VIH Logic input pin high level voltage (INx, OUT_EN, LOAD, SYNC) Min. Max. Unit -0.3 0.3 x VDD V 0.7 x VDD VDD + 0.3 V - Typ. VI(HYST) Logic input hysteresis voltage (INx, OUT_EN, LOAD, SYNC) VDD = 5 V - 100 - mV IIN Logic input pin current (INx, OUT_EN, LOAD, SYNC) VIN = 5 V 10 - - μA Power side watchdog time - 272 320 400 μs tWM Table 9. Parallel interface timings (VDD = 5 V; VCC = 24 V; -40 °C < TJ < 125 °C) Symbol Parameter tdis(SYNC) SYNC disable time Test conditions Min. Typ. Max. Unit Sync. control mode 10 - - μs tdis(DCM) SYNC, LOAD disable time Direct control mode 80 - - ns tw(SYNC) SYNC negative pulse width Sync. control mode 20 - 195 μs tsu(LOAD) LOAD setup time Sync. control mode 80 - - ns th(LOAD) LOAD hold time Sync. control mode 400 - - ns tw(LOAD) LOAD pulse width Sync. control mode 240 - - ns tsu(IN) Input setup time - 80 - - ns th(IN) Input hold time - 10 - - ns tw(IN) Input pulse width Sync. control mode 160 - - ns Direct control mode 20 - - μs tINLD IN to LOAD time Direct control mode From IN variation to LOAD falling edge 80 - - ns tLDIN LOAD to IN time Direct control mode From LOAD falling edge to IN variation 400 - - ns - 150 - - ns tp(OUT_EN) OUT_EN propagation delay - - 22 40 μs tjitter(SCM) tw(OUT_EN) OUT_EN pulse width tjitter(DCM) frefresh 14/40 Jitter on single channel Sync. mode Direct mode - - 6 20 μs Refresh delay - - 15 - kHz DS10781 Rev 9 ISO8200BQ Electrical characteristics Table 10. Insulation and safety-related specifications Symbol Parameter Test conditions Value Unit CLR Clearance (minimum external air gap) Measured from input terminals to output terminals, the shortest distance through air 3.3 mm CPG Creepage (minimum external tracking) Measured from input terminals to output terminals, the shortest distance path along body 3.3 mm  600 V I - CTI Comparative tracking DIN IEC 112/VDE 0303 part 1 index (tracking resistance) Isolation group Material group (DIN VDE 0110, 1/89, Table 1) Table 11. Insulation characteristics Symbol Parameter Test conditions Value Unit - 937 VPEAK Method a, type test, VPR = VIORM x 1.6, tm = 10s partial discharge < 5 pC 1500 VPEAK Method b, 100% production test, VPR = VIORM x 1.875, tm = 1s partial discharge < 5 pC 1758 VPEAK IEC 60747-5-5 VIORM VPR Maximum working isolation Input to output test voltage VIOTM Transient overvoltage Type test tini = 60 s 4245 VPEAK VIOSM Maximum surge insulation voltage Type test 4245 VPEAK Insulation resistance VIO = 500 V at ts >109  Insulation withstand voltage 1 min. type test 2500/3536 Vrms/VPEAK 1 s 100% production 3000/4245 Vrms/VPEAK RIO UL1577 VISO VISO test Insulation withstand test DS10781 Rev 9 15/40 40 Electrical characteristics ISO8200BQ Table 12. Safety limits Parameter Description Test Condition Limit value Unit - 150 o 0.9 W 150 o 4.5 W Input safety, Logic side Tsi Psi Safety temperature of Logic side Safety power of Logic side VDD ≤ 6.5V, VLOGIC(x) ≤ 6.5V, ILOGIC(x) ≤ 10mA, TJ ≤ Tsi C Output safety, Process side Note: Tso Safety temperature of Process side Pso Safety power of Process side VCC ≤ 36V, IOUT(x) ≤ 1.5A, TJ ≤ Tso The above limits are measured according to VDE 0884-11. Respecting above limits prevents potential damage potential damage to the isolation barrier upon failure on logic or process side circuitry. User can use these values to protect the IC and consequently guarantee the safety of the embedded isolation barrier. LOGIC(X) stands for "any pin of logic side". OUT(X) stands for "any of the 8 output pins of process side". 16/40 C DS10781 Rev 9 ISO8200BQ Functional description 6 Functional description 6.1 Parallel interface Smart parallel interface built-in ISO8200BQ offers three interfacing signals easily managed by a microcontroller. The LOAD signal enables the input buffer storing the value of the channel inputs. The SYNC signal copies the input buffer value into the transmission buffer and manages the synchronization between low voltage side and the channel outputs on the isolated side. The OUT_EN signal enables the channel outputs. An internal refresh signal updates the configuration of the channel outputs with a frefresh frequency. This signal can be disabled forcing low the SYNC input when LOAD is high. SYNC and LOAD pins can be in direct control mode (DCM) or synchronous control mode (SCM). The operation of these two signals is described as follows: Table 13. Interface signal operation (general) LOAD SYNC Don't care Don't care OUT_EN Low(1) Device behavior The outputs are disabled (turned off) High High High The outputs are left unchanged Low High High The input buffer is enabled The outputs are left unchanged High Low High The internal refresh signal is disabled The transmission buffer is updated The outputs are left unchanged Low Low High The device operates in direct control mode as described in Section 6.2: Direct control mode (DCM) 1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low. 6.1.1 Input signals (IN1 to IN8) Inputs from IN1 to IN8 are the driving signals of the corresponding OUT1 to OUT8 outputs. Data are direct loaded on related outputs if SYNC and LOAD inputs are low (DCM operation) or stored into input buffer when LOAD is low and SYNC is high. 6.1.2 Load input data (LOAD) The input is active low; it stores the data from IN1 to IN8 into the input buffer. 6.1.3 Output synchronization (SYNC) The input is active low; it enables the ISO8200BQ transmission buffer loading input buffer data and manages the transmission between the two isolated sides of the device. DS10781 Rev 9 17/40 40 Functional description 6.1.4 ISO8200BQ Watchdog The isolated side of the device provides a watchdog function in order to guarantee a safe condition when VDD supply voltage is missing. If the logic side does not update the output status within tWD, all outputs are disabled until a new update request is received. The refresh signal is also considered a valid update signal, so the isolated side watchdog does not protect the system from a failure of the host controller (MCU freezing). Figure 7. Watchdog behavior 18/40 DS10781 Rev 9 ISO8200BQ 6.1.5 Functional description Output enable (OUT_EN) This pin provides a fast way to disable all outputs simultaneously. When the OUT_EN pin is driven low the outputs are disabled. To enable the output stage, the OUT_EN pin has to be raised. This timing execution is compatible with an external reset push, safety requirement, and allows, in a PLC system, the microcontroller polling to obtain all internal information during a reset procedure. Figure 8. Output channel enable timing 6.2 Direct control mode (DCM) When SYNC and LOAD inputs are driven by the same signal, the device operates in direct control mode (DCM). In DCM the SYNC / LOAD signal operates as an active low input enable:  When the signal is high, the current output configuration is kept regardless the input values  When the signal is low, each channel input directly drives the respective output This operation mode can also be set shorting both signals to the digital ground; in this case the channel outputs are always directly driven by the inputs except when OUT_EN is low (outputs disabled). Table 14. Interface signal operation in direct control mode SYNC / LOAD Don't care OUT_EN Low (1) Device behavior The outputs are disabled (turned off) High High The outputs are left unchanged Low High The channel inputs drive the outputs 1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low. DS10781 Rev 9 19/40 40 Functional description ISO8200BQ Figure 9. Direct control mode IC configuration Figure 10. Direct control mode time diagram 20/40 DS10781 Rev 9 ISO8200BQ 6.3 Functional description Synchronous control mode (SCM) When SYNC and LOAD inputs are independently driven, the device can operate in synchronous control mode (SCM). The SCM is used to reduce the jittering of the outputs and to drive all outputs of different devices at the same time. In SCM the LOAD signal is forced low to update the input buffer while the SYNC signal is high. The LOAD signal is raised and the SYNC one is forced low for at least tSYNC(SCM). During this period, the internal refresh is disabled and any pending transmission between the low voltage and the isolated side is completed. When the SYNC signal is raised the channel output configuration is changed according to the one stored in the input. If the tSYNC(SCM) limit is met, the maximum jitter of the channel outputs is tjitter(SCM). If more devices share the same SYNC signal, all device outputs change simultaneously with a maximum jitter related to maximum delay and maximum jitter for single device. Table 15. Interface signal operation in synchronous control mode LOAD SYNC OUT_EN Device behavior Don't care Don't care Low(1) High High High The outputs are left unchanged Low High High The input buffer is enabled. The outputs are left unchanged. High Low High The internal refresh signal is disabled. The transmission buffer is updated. The outputs are left unchanged. High Rising edge High The outputs are updated according to the current transmission buffer value Low Low High Should be avoided (DCM operation only) The outputs are disabled (turned off) 1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low. Figure 11. Synchronous control mode IC configuration DS10781 Rev 9 21/40 40 Functional description ISO8200BQ Figure 12. Synchronous control mode time diagram Figure 13. Multiple device synchronous control mode 22/40 DS10781 Rev 9 ISO8200BQ 6.4 Functional description Fault indication The FAULT pin is an active low open-drain output indicating fault conditions. This pin is active when at least one of the following conditions occurs:  Junction overtemperature of one or more channels (TJ >TTJSD)  Communication error The communication error is intended as an internal data corruption event in the data transfer through isolation. In case of communication error the outputs are initially kept in the previous status and then reset (turned off) at the first communication error during data transfer of the refresh signal. 6.4.1 Junction overtemperature and case overtemperature The thermal status of the device is updated during each transmission sequence between the two isolated sides. In SCM operation, when the LOAD signal is high and the SYNC one is low, the communication is disabled. In this case the thermal status of the device cannot be updated and the FAULT indication can be different from the current status. In any case, the thermal protection of the channel outputs is always operative. Figure 14. Thermal status update (DCM) DS10781 Rev 9 23/40 40 Functional description ISO8200BQ Figure 15. Thermal status update (SCM) 24/40 DS10781 Rev 9 ISO8200BQ Power section 7 Power section 7.1 Current limitation The current limitation process is active when the current sense connected on the output stage measures a current value, which is higher than a fixed threshold. When this condition is verified the gate voltage is modulated to avoid the increase of the output current over the limitation value. Figure 16 shows typical output current waveforms with different load conditions. Figure 16. Current limitation with different load conditions DS10781 Rev 9 25/40 40 Power section 7.2 ISO8200BQ Thermal protection The device is protected against overheating in case of overload conditions. During the driving period, if the output is overloaded, the device suffers two different thermal stresses, the former related to the junction, and the latter related to the case. The two faults have different trigger thresholds: the junction protection threshold is higher than the case protection one; generally the first protection, that is active in thermal stress conditions, is the junction thermal shutdown. The output is turned off when the temperature is higher than the related threshold and turned back on when it goes below the reset threshold. This behavior continues until the fault on the output is present. If the thermal protection is active and the temperature of the package increases over the fixed case protection threshold, the case protection is activated and the output is switched off and back on when the junction temperature of each channel in fault and case temperature is below the respective reset thresholds. Figure 17 shows the thermal protection behavior, while Figure 18 reports typical temperature trends and output vs. input state. Figure 17. Thermal protection flowchart 26/40 DS10781 Rev 9 ISO8200BQ Power section Figure 18. Thermal protection DS10781 Rev 9 27/40 40 Reverse polarity protection 8 ISO8200BQ Reverse polarity protection Reverse polarity protection can be implemented on board using two different solutions: 1. Placing a resistor (RGND) between IC GND pin and load GND 2. Placing a diode in parallel to a resistor between IC GND pin and load GND If option 1 is selected, the minimum resistance value has to be selected according to Equation 1: Equation 1 RGND  VCC/IGNDcc where IGNDcc is the DC reverse ground pin current and can be found in Section 3: Absolute maximum ratings on page 9. Power dissipated by RGND during reverse polarity situations is: Equation 2 PD = (VCC)2/RGND If option 2 is selected, the diode has to be chosen by taking into account VRRM > |VCC| and its power dissipation capability: Equation 3 PD  IS * VF Note: In normal operation (no reverse polarity), there is a voltage drop (ΔV) between GND of the device and GND of the system. Using option 1, ΔV = Rgnd * Icc. Using option 2, ΔV = VF@(IF). Figure 19. Reverse polarity protection This schematic can be used with any type of load. 28/40 DS10781 Rev 9 ISO8200BQ 9 Reverse polarity on VDD Reverse polarity on VDD The reverse polarity on VDD can be implemented on board by placing a diode between GNDDD pin and GND digital ground. The diode has to be chosen by taking into account VRRM > |VDD| and its power dissipation capability: Equation 4 PD  IDD * VF Note: In normal operation (no reverse polarity), there is a voltage drop (ΔV = VF@(Idd)) between GNDDD of the device and digital ground of the system. In order to guarantee to proper triggering of the input signal, ΔV(max.) must result lower than VIH(MIN). Figure 20. Reverse polarity protection on VDD DS10781 Rev 9 29/40 40 Demagnetization energy 10 ISO8200BQ Demagnetization energy Figure 21. Maximum demagnetization energy vs. load current, typical values Tamb = 125 °C 11 Conventions Supply voltage and power output conventions Figure 22 shows the convention used in this paper for voltage and current usage. Figure 22. Supply voltage and power output conventions 30/40 DS10781 Rev 9 ISO8200BQ 12 Thermal information Thermal information Thermal impedance Figure 23. Simplified thermal model DS10781 Rev 9 31/40 40 Package information 13 ISO8200BQ Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 13.1 TFQFPN32 package information Figure 24. TFQFPN32 package outline 32/40 DS10781 Rev 9 ISO8200BQ Package information Figure 25. TFQFPN32 package detail outline Figure 26. TFQFPN32 suggested footprint (measured in mm) 0.3 0 0.3 0 0.7 0 0.3 0 0.9 0 0.2 0 0.2 0 0.9 0 DS10781 Rev 9 33/40 40 Package information ISO8200BQ Table 16. TFQFPN32 package mechanical data Dimensions (mm] Symbol Min. Typ. Max. A 0.95 1.00 1.05 A1 0 - 0.05 A2 - 0.20 REF - b(1) 0.20 0.25 0.30 0.25 0.30 0.35 D 10.90 11.0 11.10 E(1) 8.90 9.00 9.10 D2 4.30 4.40 4.50 E2 6.70 6.80 6.90 D3 1.40 1.50 1.60 E3 3.20 3.30 3.40 D4 1.13 1.23 1.33 E4 1.00 1.10 1.20 e - 0.65 - e2 - 0.40 - e3 - 1.05 - e4 - 3.15 - e5 - 4.85 - k 0 0.30 - z1 - 0.80 - z2 - 4.07 - z3 - 3.80 - z4 - 1.10 - z5 - 1.15 - z6 - 2.85 - 0.45 0.50 0.55 b1 (1) (1) L 1. Dimensions “b” and “L” are measured on terminal plating surface. 34/40 DS10781 Rev 9 ISO8200BQ Package information Table 17. Tolerance of form and position Symbol Tolerance of form and position aaa 0.15 The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E. bbb 0.10 The tolerance that controls the position of the entire terminal pattern with respect to datum's A and B. The center of the tolerance zone for each terminal is defined by the basic dimension "e" as related to datum's A and B. ccc 0.10 The tolerance located parallel to the seating plane in which the top surface of the package must be located. 0.08 The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension "e". 0.08 This tolerance is The unilateral tolerance located above the seating plane commonly known as where in the bottom surface of all terminals must be the “coplanarity” of the located. package terminals. fff 0.10 The tolerance that controls the position of the exposed metal heat feature. The center of the tolerance zone will be datum's defined by the centerlines of the package body. REF - - ddd eee Definition DS10781 Rev 9 Notes This tolerance is normally compounded with tolerance zone defined by bbb. No tolerance for A2 35/40 40 Packing information ISO8200BQ 14 Packing information 14.1 TFQFPN32 packing information 14.1.1 TFQFPN32 packing method concept Figure 27. TFQFPN32 packing method concept 36/40 DS10781 Rev 9 ISO8200BQ Packing information Figure 28. TFQFPN32 carrier tape Reel – 330 mm diameter x 101 mm hub x 24 mm width Figure 29. TFQFPN32 reel DS10781 Rev 9 37/40 40 Packing information 14.1.2 ISO8200BQ TFQFPN32 winding direction Figure 30. TFQFPN32 winding direction 14.1.3 TFQFPN32 leader and trailer Figure 31. TFQFPN32 leader and trailer Note: 38/40 Leader and trailer length as per EAI-481specification. DS10781 Rev 9 ISO8200BQ 15 Ordering information Ordering information Table 18. Ordering information 16 Order code Package Packing ISO8200BQ TFQFPN32 Tube ISO8200BQTR TFQFPN32 Tape and reel Revision history Table 19. Document revision history Date Revision 17-Nov-2016 3 Datasheet promoted from preliminary to production data. Updated Table 6: Diagnostic pin and output protection function. 21-Apr-2017 4 Updated Table 10: “Insulation and safety-related specifications”. Minor text changes. 05-Oct-2017 5 Updated Table 11: “IEC 60747-5-2 insulation characteristics”. 6 Updated Section : Features on page 1. Replaced Vdd by VDD in whole document. Updated titles of Table 7 on page 11 and Table 9 on page 14 . Updated titles of Figure 3 on page 12, Figure 5 on page 13, Figure 6 on page 13, Figure 20 on page 29 and Figure 21 on page 30 . Added cross-reference to Section 6.2 in Table 13 on page 17. Updated Figure 9 on page 20 and Figure 11 on page 21 (replaced ISO8200B by ISO8200BQ). Added Section on page 34. Minor modifications throughout document. 24-Apr-2019 7 Added Table 12: Safety limits on page 15, Updated Table 2: Absolute maximum ratings on page 9 Updated Section : Features on page 1. Minor text changes. 18-Oct-2019 8 Updated Section : Features on page 1. 08-May-2020 9 Table 4, 11 and 16 updated. Figure 24 replaced. Table 17 added. 18-May-2018 Changes DS10781 Rev 9 39/40 40 ISO8200BQ IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved 40/40 DS10781 Rev 9
ISO8200BQTR 价格&库存

很抱歉,暂时无法提供与“ISO8200BQTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO8200BQTR
    •  国内价格 香港价格
    • 1+37.450001+4.52438
    • 15+37.2749915+4.50324
    • 75+37.2741775+4.50314
    • 300+37.27334300+4.50304
    • 1500+37.272521500+4.50294

    库存:1818

    ISO8200BQTR
      •  国内价格
      • 500+39.74182
      • 1000+39.54605
      • 2000+39.35027
      • 3000+39.15450

      库存:4680