0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L9942XP1TR

L9942XP1TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    PowerSSO24

  • 描述:

    Bipolar Motor Driver DMOS SPI PowerSSO-24 Exposed Bottom Pad

  • 数据手册
  • 价格&库存
L9942XP1TR 数据手册
L9942 Integrated stepper motor driver for bipolar stepper motors with microstepping and programmable current profile Features ■ Two full bridges for max. 1.3 A load (RDSON = 500 m) ■ Programmable current waveform with look-up table: 9 entries with 5 bit resolution ■ Current regulation by integrated PWM controller and internal current sensing ■ Programmable stepping mode: full, half, mini and microstepping ■ Programmable slew rate for EMC and power dissipation optimization ■ Programmable Fast-, Slow-, Mixed- and AutoDecay Mode ■ Full-scale current programmable with 3 bit resolution ■ Programmable stall detection ■ Step clock input for reduced µController requirements ■ Very low current consumption in standby mode IS < 3 µA, typ. Tj  85 °C ■ All outputs short circuit protected with openload, overload current, temperature warning and thermal shutdown ■ The PWM signal of the internal PWM controller is available as digital output. ■ All parameters are guaranteed for 3 V < Vcc < 5.3 V and for 7 V < Vs < 20 V Applications Stepper motor driver for bipolar stepper motors in automotive applications like light levelling, Bending light and Throttle control. Table 1. PowerSSO24 Description The L9942 is an integrated stepper motor driver for bipolar stepper motors with microstepping and programmable current profile look-up-table to allow a flexible adaptation of the stepper motor characteristics and intended operating conditions. It is possible to use different current profiles depending on target criteria: audible noise, vibrations, rotation speed or torque. The decay mode used in PWM-current control circuit can be programmed to slow-, fast-, mixed-and autodecay. In autodecay mode device will use slow decay mode if the current for the next step will increase and the fast decay or mixed decay mode if the current will decrease. The programmable stall detection is useful in case of head lamp leveling and bending light application, by preventing to run the motor too long time in stall for position alignment. If a stall is detected, the alignment process is closed and the noise is minimized. Device summary Order code Junction temp. range, C Package Packing L9942XP1 -40 to 150 PowerSSO24 Tube L9942XP1TR -40 to 150 PowerSSO24 Tape and reel September 2013 Doc ID 11778 Rev 7 1/40 www.st.com 1 Contents L9942 Contents 1 Block diagram and pin information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 4 2/40 2.1 Dual power supply: VS and VCC 2.2 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Overvoltage and undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 10 2.6 Inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.8 PWM current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.9 Decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.11 Open load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.12 Stepping modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.13 Decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ..........................................9 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.2 Over- and undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.3 Reference current output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.4 Charge pump output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.5 Outputs: Qxn (x = A; B n = 1; 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.6 PWM control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Functional description of the logic with SPI . . . . . . . . . . . . . . . . . . . . . 21 4.1 Motor stepping clock input (STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 PWM output (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Doc ID 11778 Rev 7 L9942 5 6 7 Contents 4.4 Chip select not (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5 Serial data in (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6 Serial data out (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7 Serial clock (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.8 Data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI - control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5 Register 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.6 Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7 Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.8 Auxiliary logic blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.1 Fault condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.2 SPI communication monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.3 PWM monitoring for stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Logic with SPI - electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 Inputs: CSN, CLK, STEP, EN and DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 Outputs: DO, PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.4 Output: DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.5 CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.6 STEP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.1 Stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.2 Step clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.3 Load current control and detection of overcurrent (shortages at outputs) 33 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Doc ID 11778 Rev 7 3/40 List of tables L9942 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. 4/40 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Over- and undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Reference current output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Charge pump output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Outputs: Qxn (x = A; B n =1; 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PWM control (see Figure 4 and Figure 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Register 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Inputs: CSN, CLK, STEP, EN and DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DI timing (see Figure 11 and Figure 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Outputs: DO, PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Output: DO timing (see Figure 12 and Figure 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STEP timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Doc ID 11778 Rev 7 L9942 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Stepping modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thermal data of the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 VS monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Logic to set load current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Switching on minimum time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SPI and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SPI - DO valid data delay time and valid time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DO enable and disable time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Timing of status bit 0 (fault condition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Reference generation for PWM control (switch on) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Reference generation for PWM control (decay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 PowerSSO24 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 38 Doc ID 11778 Rev 7 5/40 Block diagram and pin information 1 L9942 Block diagram and pin information Figure 1. Block diagram VBAT ReversePolarityProtection VCC CP Charge Pump Oscillator STEP QA1 Diagnostic SPI + Register + Logic Phase Counter+Current Profile ⇓ PWM Current DAC EN PWM μC VS DO DI CLK CSN Gate-Driver & PWM-Controller Note: value of capacitor has to be choosen carefully to limit the VS voltage below absolute maximum ratings in case of an unexpected freewheeling condition (e.g. TSD, POR) QA2 Stepper Motor QB1 Gate-Driver & PWM-Controller Diagnostic QB2 U/IConverter Biasing GND RREF GNDP GND Figure 2. Pin connection (top view) PGND 1 Power SSO24 23 QA2 QA1 2 VS 3 22 VS CLK 4 21 EN 20 RREF DI 5 CSN 6 DO 7 Exposed Pad 19 VCC 18 TEST PWM 8 17 GND STEP 9 16 CP VS 10 15 VS 14 QB2 QB1 11 13 PGND PGND 12 All pins with the same name must be externally connected! All pins PGND are internally connected to the heat slug. 6/40 24 PGND Doc ID 11778 Rev 7 L9942 Block diagram and pin information Table 2. Pin description Pin Symbol 1, 12, 13, 24 PGND 3, 10, 15, 22 VS Function Power ground: All pins PGND are internally connected to the heat slug. Important: All pins of PGND must be externally connected! Power supply voltage (external reverse protection required): For EMI reason a ceramic capacitor as close as possible to PGND is recommended. Important: All pins of VS must be externally connected! 2, 23 Fullbridge-outputs An: The output is built by a high-side and a low-side switch, which are internally connected. The output stage of both switches is QA1,QA a power DMOS transistor. Each driver has an internal reverse diode (bulk2 drain-diode: highside driver from output to VS, low-side driver from PGND to output). This output is overcurrent protected. 11, 14 Fullbridge-outputs Bn: The output is built by a highside and a low-side switch, which are internally connected. The output stage of both switches is QB1,QB a power DMOS transistor. Each driver has an internal reverse diode (bulk2 drain-diode: highside driver from output to VS, low-side driver from PGND to output). This output is overcurrent protected. CLK SPI clock input: The input requires CMOS logic levels. The CLK input has a pull-down current. It controls the internal shift register of the SPI. 5 DI Serial data input: The input requires CMOS logic levels. The DI input has a pull-down current. It receives serial data from the microcontroller. The data is a 16bit control word and the most significant bit (MSB, bit 0) is transferred first. 6 CSN 7 DO SPI data output: The diagnosis data is available via the SPI and it is a tristate-output. The output is CMOS compatible will remain highly resistive, if the chip is not selected by the input CSN (CSN = high) PWM PWM output This CMOS compatible output reflects the current duty cycle of the internal PWM controller of bridge A. It is an high resistance output until VCC has reached minimum voltage ore can switched off via the SPI command. 9 STEP Step clock input: The input requires CMOS logic levels. The STEP input has a pull-down current. It is clock of up and down counter of control register 0. Rising edge starts new PWM cycle to drive motor in next position. 16 CP 17 GND Ground: Reference potential besides power ground e.g. for reference resistor RREF. From this pin exist a resistive path via substrate to PGND. 18 TEST Test input The TEST input has a pull-down current. Pin used for production test only. In the application it must be connected to GND. 19 VCC Logic supply voltage: For this input a ceramic capacitor as close as possible to GND is recommended. 4 8 Chip Select Not input The input requires CMOS logic levels. The CSN input has a pull-up current. The serial data transfer between device and micro controller is enabled by pulling the input CSN to low level. Charge Pump Output: A ceramic capacitor (e.g.100 nF) to VS can be connected to this pin to buffer the charge-pump voltage. Doc ID 11778 Rev 7 7/40 Block diagram and pin information Table 2. Pin 20 21 8/40 L9942 Pin description (continued) Symbol RREF EN Function Reference Resistor The reference resistor is used to generate a temperature stable reference current used for current control and internal oscillator. At this output a voltage of about 1.28V is present. The resistor should be chosen that a current of about 200uA will flow through the resistor. Enable input: The input requires CMOS logic levels. The EN input has a pull-down resistor. In standby-mode outputs will be switched off and all registers will be cleared. If EN is set to a logic high level then the device will enter the active mode. Doc ID 11778 Rev 7 L9942 Device description 2 Device description 2.1 Dual power supply: VS and VCC The power supply voltage VS supplies the half bridges. An internal charge-pump is used to drive the highside switches. The logic supply voltage VCC (stabilized) is used for the logic part and the SPI of the device. Due to the independent logic supply voltage the control and status information will not be lost, if there are temporary spikes or glitches on the power supply voltage. In case of power-on (VCC increases from undervoltage to VPOR OFF = 2.60 V, typical) the circuit is initialized by an internally generated power-on-reset (POR). If the voltage VCC decreases under the minimum threshold (VPOR ON = 2.3 V, typical), the outputs are switched to tristate (high impedance) and the internal registers are cleared. 2.2 Standby mode The EN input has a pull-down resistor. The device is in standby mode if EN input isn't set to a logic high level. All latched data will be cleared and the inputs and outputs are switched to high impedance. In the standby mode the current at VS (VCC) is less than 3 µA (1 µA) for CSN = high (DO in tristate). If EN is set to a logic high level then the device will enter the active mode. In the active mode the charge pump and the supervisor functions are activated. 2.3 Diagnostic functions All diagnostic functions (overload/-current, open load, power supply over-/undervoltage, temperature warning and thermal shutdown) are internally filtered (tGL = 32 µs, typical) and the condition has to be valid for a minimum time before the corresponding status bit in the status registers will be set. The filters are used to improve the noise immunity of the device. Open load and temperature warning function are intended for information purpose and will not change the state of the bridge drivers. On contrary, the overload/-current and thermal shutdown condition will disable the corresponding driver (overload/-current) or all drivers (thermal shutdown), respectively. The microcontroller has to clear the status bit to reactivate the bridge driver. 2.4 Overvoltage and undervoltage detection If the power supply voltage Vs rises above the overvoltage threshold VSOV OFF (typical 21 V), an overvoltage condition is detected. Programmable by SPI (OVW) the outputs are switched to high impedance state (default after reset) or the overvoltage bit is set without switching the outputs to high impedance. When the voltage Vs drops below the undervoltage threshold VSUV OFF, the outputs are switched to high impedance state to avoid the operation of the power devices without sufficient gate driving voltage (increased power dissipation). Error condition is latched and the microcontroller needs to clear the status bits to reactivate the drivers. Doc ID 11778 Rev 7 9/40 Device description 2.5 L9942 Temperature warning and thermal shutdown If junction temperature rises above Tj TW a temperature warning flag is set which is detectable via the SPI. If junction temperature increases above the second threshold Tj SD, the thermal shutdown bit will be set and power DMOS transistors of all output stages are switched off to protect the device. In order to reactivate the output stages the junction temperature must decrease below Tj SD -Tj SD HYS and the thermal shutdown bit has to be cleared by the microcontroller. 2.6 Inductive loads Each half bridge is built by an internally connected highside and a low-side power DMOS transistor. Due to the built-in reverse diodes of the output transistors, inductive loads can be driven without external free-wheeling diodes. In order to reduce the power dissipation during free-wheeling condition the PWM controller will switch-on the output transistor parallel to the freewheeling diode (synchronous rectification). 2.7 Cross-current protection The four half-brides of the device are cross-current protected by an internal delay time depending on the programmed slew rate. If one driver (LS or HS) is turned-off then activation of the other driver of the same half bridge will be automatically delayed by the cross-current protection time. 2.8 PWM current regulation An internal current monitor output of each high-side and low-side transistor sources a current image which has a fixed ratio of the instantaneous load current. This current images are compared with the current limit in PWM control. Range of limit can reach from programmed full scale value (register1 DAC Scale) down belonging LSB value of 5 bit DAC (register1 DAC Phase x). The data of the two 5 bit DACs comes form set up in 9 current profiles (register2 to 6). If signal changes to logic high at pin STEP then 2 current profiles are moved in register1 for DAC Phase A and B. Number of profile depends on phase counter reading and direction bit in register0 (Figure 7). The bridges are switched on until the load current sensed at HS switch exceeds the limit. Load current comparator signal is used to detect open load or overcurrent condition also. 2.9 Decay modes During off-time the device will use one of several decay modes programmable by SPI (Figure 4 top). In slow decay mode HS switches are activated after cross current protection time for synchronous rectification to reduce the power dissipation (Figure 4 detail A). In fast decay opposite half bridge will switched on after cross current protection time, that is same like change in the direction. For mixed decay the duration of fast decay period before slow decay can be set to a fixed time (Figure 4 detail B continuous line) or is triggered by underrun of the load current limit (Figure 4 detail B dashed line), that can be detected at LS switch. The special mode where the actual phase counter value is taken into account to select the decay mode is called auto decay (e.g. in Figure 3 Micro Stepping DIR=1). If the absolute value of the current limit is higher as during step before then PWM control uses 10/40 Doc ID 11778 Rev 7 L9942 Device description slow decay mode always. Otherwise one of the fast decay modes is automatic selected for a quick decrease of the load current and so it obtains new lower target value. 2.10 Overcurrent detection The overcurrent detection circuit monitors the load current in each activated output stage. In HS stage it is in function after detection of current limit during PWM cycle and in LS stage it works permanently. If the load current exceeds the overcurrent detection threshold for at least tISC = 4 µs, the overcurrent flag is set and the corresponding driver is switched off to reduce the power dissipation and to protect the integrated circuit. Error condition is latched and the microcontroller needs to clear the status bits to reactivate the drivers. 2.11 Open load detection The open load detection monitors the activity time of the PWM controller and is available for each phase. If the limit of load current is below around 100mA then open load condition is detectable. Open load bit for a bridge is set in the register6 if this low current limit can't reached after at least 15 consecutive PWM cycles. Table 3. Truth table DC2 DC1 DC0 I4 I3 I2 I1 I0 max. IOL 0 0 0 0 x x x x 46mA 0 0 1 0 x x x x 68mA 0 1 0 0 0 x x x 52mA 0 1 1 0 0 x x x 81mA 1 0 0 0 0 0 x x 53mA 1 0 1 0 0 0 x x 78mA 1 1 0 0 0 0 0 1 37mA 1 1 1 0 0 0 0 1 44mA Truth table shows possible profiles for active open load detection. Maximum threshold IOL is shown in left column if x bits are 1 (see also Figure 7). Lowest possible limit is e.g. 3.1 mA for DC2=DC1=DC0=0 and it is set only I0=1. 2.12 Stepping modes One full revolution can consist of four full steps, eight half steps, sixteen mini steps or 32 microsteps. Mode is set up in register 0 and it defines increment size of phase counter. Phase counter value defines address of corresponding current profile. Stepping modes with typical profile values can see in Figure 3 (e.g. also so called 'Two Phase On' shown in dashed line). Doc ID 11778 Rev 7 11/40 Device description Figure 3. L9942 Stepping modes Full-Stepping Mode: DIR=0 0 8 Full-Stepping Mode: DIR=1 16 Phase Counter 24 24 16 8 0 0 Current Driver A Current Driver A 0 8 Address of Current Profile Entry 8 0 8 0 8 Current Driver B Current Driver B 8 0 8 Address of Current Profile Entry 0 8 0 8 STEP Signal STEP Signal Half-Stepping Mode: DIR=0 0 4 8 12 16 20 Half-Stepping Mode: DIR=1 24 Phase Counter 28 0 28 24 20 Current Driver A 0 4 8 8 4 0 4 0 8 4 8 4 Address of Current Profile Entry 0 4 8 4 0 4 Address of Current Profile Entry 8 4 0 4 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 6 8 6 4 2 0 2 4 2 0 6 8 28 30 Phase Counter 0 30 28 26 2 4 24 22 6 8 6 4 2 Adress of Current Profile Entry 0 2 4 6 8 6 6 4 2 0 2 4 6 Adress of Current Profile Entry 8 6 4 2 0 2 8 4 0 4 20 18 16 14 12 10 8 6 4 2 Slow Decay Mode Mixed Decay Mode 0 2 4 6 8 6 4 2 4 6 8 6 4 2 0 2 4 6 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Slow Decay Mode Adress of Current Profile Entry Slow Decay Mode Adress of Current Profile Entry Mixed Decay Mode 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 Slow Decay Mode Mixed Decay Mode 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 Mixed Decay Mode 2 Current Driver A Mixed Decay Mode 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 Current Driver B 4 Micro Stepping Mode: DIR=1 (e.g. auto decay) Phase Counter Current Driver A 12/40 4 STEP Signal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Slow Decay Mode 8 Current Driver B Micro Stepping Mode: DIR=0 (e.g auto decay) Mixed Decay Mode 4 Current Driver A STEP Signal Slow Decay Mode 0 4 Current Driver B 4 4 Mini-Stepping Mode: DIR=1 26 Current Driver A 0 8 STEP Signal Mini-Stepping Mode: DIR=0 2 12 Driver Current B STEP Signal 0 16 Driver Current A Current Driver B 4 0 Current Driver B Mixed Decay Mode Slow Decay Mode 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 Doc ID 11778 Rev 7 Slow Decay Mode Mixed Decay Mode L9942 Device description 2.13 Decay modes Figure 4. Decay modes Load Current ON SLOW DECAY FAST DECAY MIXED DECAY VS VS on on A VS on on on on B VS VS on on on Time Internal PWM_CLK Detail A: SWITCH ON AND SLOW DECAY Step Limit HS ON TB TCC TFT TCC TB register0 DM2 DM1 DM0 0 0 0 TCC SLOW DECAY T FT fast decay fast decay Load Current MODE slow VS Time Fast decay is caused by current through internal diodes during cross current protection time. OFF OFF OFF OFF Filter time for the purpose of switch off delay in on mode is set by FT register6 Cross current protection time is set by SR1 SR0 register0 Blank time of load current comparator TB=TCC Detail B: MIXED DECAY register0 DM2 DM1 DM0 MODE CURVE X X X Load Current TCC Step Limit LS TFT FAST DECAY Tmc 0 1 1 1 0 1 T MD1 T MD2 T mc Load Current TCC SLOW DECAY after current undershoot > T mc = T FT + 2TCC SLOW DECAY FAST with delay DECAY TCC T MDx= TMD1 or T MD2 T MDx TCC Time TFT Filter time for purpose of delay when decay mode has to change after limit under-run TMD When limit is reached so fast decay duration time is set by DM1 DM2 register0 Doc ID 11778 Rev 7 Time 13/40 Electrical specifications L9942 3 Electrical specifications 3.1 Absolute maximum ratings Table 4. Absolute maximum ratings Symbol VS VCC Parameter DC supply voltage single pulse tmax < 400 ms Stabilized supply voltage, logic supply VDI,VDO, Digital input / output voltage VCLK VCSN, VSTEP VEN VRREF Current reference resistor -0.3 to 28 V 40 V -0.3 to 5.5 V -0.3 to VCC + 0.3 V -0.3 to VCC + 0.3 V Charge pump output -0.3 to VS + 11 V VQxn (x=A;B n=1;2) output voltage -0.3 to VS + 0.3 V IQxn (x=A;B n=1;2) output current 2.5 A Leaving the limitation of any of these values may cause an irreversible damage of the integrated circuit! ESD protection Table 5. ESD protection Parameter Value Unit All pins 2 (1) kV output pins: Qxn (x=A;B n=1;2) 4(2) kV 1. HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A 2. HBM with all unzapped pins grounded 14/40 Unit VCP Warning: 3.2 Value Doc ID 11778 Rev 7 L9942 3.3 Electrical specifications Thermal data Table 6. Symbol Tj Table 7. Symbol Operating junction temperature Parameter Operating junction temperature Value Unit -40 to 150 °C Temperature warning and thermal shutdown Parameter Min. Typ. Max. Unit - - 150 °C TjTW ON Temperature warning threshold junction temperature Tj increasing TjTW OFF Temperature warning threshold junction temperature - 130 - - °C TjSD ON Thermal shutdown threshold junction temperature - - - 170 °C TjSD OFF Thermal shutdown threshold junction temperature - 150 - - °C TjSD HYS Thermal shutdown hysteresis - - 5 - K Figure 5. Thermal data of the package Note: 1s 1 signal layer 2s2p 2 signal layers 2 internal planes Doc ID 11778 Rev 7 15/40 Electrical specifications 3.4 L9942 Electrical characteristics VS = 7 to 20 V, VCC = 3.0 to 5.3 V, Tj = -40 to 150 °C, IREF = -200 µA, unless otherwise specified. The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 3.4.1 Supply Table 8. Supply Symbol Parameter Test condition Min. Typ. Max. Unit - 7 20 mA - 3 10 - 6 20 VCC = 5.0 V EN=VCC, DI=CLK=STEP=0V - 1 3 mA VCC = 5.0 V TEST; EN = 0 V; CSN = VCC no clocks outputs floating - 1 3 µA Tj = 125 °C - 2 6 µA Tj = -40 °C - 4 13 VS DC supply current in active VS = 13.5 V, EN=VCC outputs mode floating IS VS quiescent supply current ICC ICC VCC DC supply current in active mode VCC quiescent supply current VS = 13.5 V, TEST, EN = 0V outputs floating CSN=VCC no clocks outputs floating VS = 13.5 V, VCC = 5.0 V IS + ICC tsetPOR (1) TEST; EN=0 V CSN=VCC no Sum quiescent supply current clocks outputs floating VCC on set up time Tj = -40 °C to 25 °C Tj = 125 °C Tj = -40 °C to 25 °C to 25 °C µA Tj = 125 °C - 8 26 EN = 5 V, CSN=CLK=0V DO changes from high ohmic to logic level LOW 2 - - 1. This parameter is guaranteed by design. 16/40 µA Doc ID 11778 Rev 7 µs L9942 Electrical specifications 3.4.2 Over- and undervoltage detection Table 9. Over- and undervoltage detection Symbol Parameter Test condition Min. Typ. Max. Unit VSUV ON VS UV-threshold voltage VS increasing - - 6.90 V VSUV OFF VS UV-threshold voltage VS decreasing 4.8 - - V VSUV hyst VS UV-hysteresis VSUV ON -VSUV OFF - 0.3 - V VSOV OFF VS OV-threshold voltage VS increasing - 21 25 V VSOV ON VS OV-threshold voltage VS decreasing 18.5 20 - V VSOV hyst VS OV-hysteresis VSOV OFF -VSOV ON - 0.5 - V VPOR OFF Power-off-reset threshold VCC increasing - 2.6 2.9 V VPOR ON Power-on-reset threshold VCC decreasing 2.00 2.3 - V VPOR hyst Power-on-reset hysteresis VPOR OFF -VPOR ON - 0.11 - V Figure 6. VS monitoring Register 7 OV Register 7 UV 1 1 0 0 VSUV OFF VSOV ON VSUV ON 3.4.3 Reference current output Table 10. Reference current output Symbol VREF IREFshorted IREFopen VS VS Parameter Reference voltage range Test condition IREF = -200 A Reference current register6 bit7 RERR = 1 threshold shorted pin REF Reference current threshold open pin REF register6 bit7 RERR = 1 VSOV OFF Min. Typ. Max. Unit 1.05 1.25 1.45 V - - -250 A -150 - - A The device works properly without the external resistor at pin REF. In this case it doesn't have to fulfill all specified parameters. Doc ID 11778 Rev 7 17/40 Electrical specifications L9942 3.4.4 Charge pump output Table 11. Charge pump output Symbol Parameter Test condition VS=7 V VCP Charge pump output voltage VS=13.5 V VS=20 V ICP= -100 A, all switches off at Qxn Min. Typ. Max. Unit 11 - 20 V 20 - 35 V 30 - 40 V The ripple of voltage at CP can suppressed using a capacity of e.g.100 nF. 3.4.5 Outputs: Qxn (x = A; B n = 1; 2) The comparator, which is monitoring current image of HS, is working during ON cycle of PWM control. If load current is higher as set value then the signal ILIMIT is generated and after filter time the bridge is switched off. Test mode gets access to signal ILIMIT and threshold of current can be measured. Table 12. Symbol Outputs: Qxn (x = A; B n =1; 2) Parameter RDSON HS On-resistance Qxn to VS RDSON LS |IQxnOC | On-resistance Qxn to PGND Test condition Min. Typ. Max. Unit VS = 13.5 V, Tj = 25 °C, IQxn = -1.0 A - 500 700 m VS = 13.5 V, Tj = 125 °C, IQxn = -1.0 A - 750 1000 m VS = 7.0 V, Tj = 25 °C, IQxn = -1.0 A - 550 750 m VS = 13.5 V, Tj = 25 °C, IQxn = + 1.0 A - 500 700 m VS = 13.5 V, Tj = 125 °C, IQxn = + 1.0 A - 750 1000 m VS = 7.0 V, Tj = 25 °C, IQxn = + 1.0 A - 550 750 m 1.6 2 - A Output overcurrent test mode exclusive of filter limitation to VS or PGND time 4µs (Chapter 2.10) Bits: DC2 DC1 DC0=000 60 95 130 Bits: DC2 DC1 DC0=001 100 140 180 Bits: DC2 DC1 DC0=010 Value of output current to Bits: DC2 DC1 DC0=011 supply VS (so called full IQxnFS_HS scale value)1 sourcing Bits: DC2 DC1 DC0=100 from HS switch Bits: DC2 DC1 DC0=101 180 230 280 300 360 420 485 550 615 720 810 900 Bits: DC2 DC1 DC0=110 1000 1150 1300 Bits: DC2 DC1 DC0=111 1200 1350 1500 - MIN(1) - MAX(1) IQxnLIM_HS Accuracy of micro steps current limit 1. MIN= 0.92 · IQxnLIM – 0.02 · |IQxnFS_HS |; MAX= 1.08 · IQxnLIM + 0.02 · |IQxnFS_HS | 18/40 Doc ID 11778 Rev 7 mA mA L9942 Electrical specifications Note: Current profile has to pre set with I4 I3 I2 I1 I0 = 11111 and load to register 1. Output current limit IQxnLIM is product of full scale current |IQxnFS_ | (bits DC2 DC1 DC0) and value of DAC Phase A/B (bits I4 I3 I2 I1 I0) in register1. Values of DAC Phase A and B can read out and depends on set up done before: Figure 7. 1. direction DIR, stepping mode ST1 ST0 and phase counter P4 P3 P2 P1 P0 in register 0 and 2. value of corresponding current profile (for address of current profile entry see also Figure 3). Logic to set load current limit Register 0 UP/Down Count by 1,2,4,8 PhaseCounter P4 P3 P2 Decay Mode P1 DM2 P0 DM1 DM0 Slew Rate StepMode SR1 ST1 ST0 SR0 DIR STEP 0 0 0 0 1 2 3 0 1 2 3 0 1 2 3 A2 A1 A0 MUX A3 A2 MUX A1 MUX A0 Address Calculation Phase A Adr A3=0 A[3..0] Adr Phase B A3=1 neg(A[3..0]) Adr Current-Profile Table stored in register2, ...6 5 9 I4 I4 I3 I3 I2 I2 I1 I1 A3=1 Adr A[3..0] A3=0 neg(A[3..0]) I0 I0 Profile 8 Profile 7 I4 I3 I2 I1 I0 Profile 6 I4 I3 I2 I1 I0 Profile 5 I4 I3 I2 I1 I0 Profile 4 I4 I3 I2 I1 I0 Profile 3 I4 I3 I2 I1 I0 Profile 2 I4 I3 I2 I1 I0 Profile 1 I4 I3 I2 I1 I0 Profile 0 Register 1 5 5 DAC Phase A DAC Phase B DAC Scale DI DC2 DC1 DC0 I4 I3 I2 I1 I0 I4 I3 I2 I1 I0 QA1 5 5 bit DAC Phase B 5 5 REF I REF DAC Full Scale LIMIT B 5 bit DAC Phase A I LIMIT A I QA1LIM 1000 I Qx1LIM QA2 I MAX I QB1LIM 1000 5 5 QB1 5 IQA2LIM 1000 I Qx2LIM 5 QB2 IQB2LIM 1000 Doc ID 11778 Rev 7 19/40 Electrical specifications L9942 3.4.6 PWM control Table 13. PWM control (see Figure 4 and Figure 7) Symbol Parameter Test condition Min. Typ. Max. Unit Bit: FRE= 1 - 20.8 - kHz Bit: FRE= 0 - 31.3 - kHz Bits: DM1 DM0= 0 1 - 4 - µs Bits: DM1 DM0= 1 0 - 8 - µs Bit: FILTER= 0 - 1.5 - µs Bit: FILTER= 1 - 2.5 - µs Bits: SR1 SR0= 0 0 - 0.5 - µs Cross current protection time Blank Bits: SR1 SR0= 0 1 time of comparator Bits: SR1 SR0= 1 0 - 1 - µs - 2 - µs Bits: SR1 SR0= 1 1 - 4 - µs Bits: SR1 SR0= 0 0 - 13 - V/µs Slew rate (dV/dt 30 % - 70 %) @HS Bits: SR1 SR0= 0 1 switches on resistive load of 10 , Bits: SR1 SR0= 1 0 VS = 13.5 V - 13 - V/µs - 6 - V/µs Bits: SR1 SR0= 1 1 - 6 - V/µs fPWM (1) Frequency of PWM cycles TMD(1) Mixed decay switch off delay time TFT(1) Glitch filter delay time Tcc (1) TB (1) VSR 1. This parameter is guaranteed by design. Time base is an internal trimmed oscillator of typical 2MHz and it has an accuracy of ±6 %. Figure 8. Switching on minimum time Load current at Qxn T FT Filter time of current comparator T FT TCC T CC Cross current protection time T B Blank time of current comparator Step limit e.g. T B = TCC = 1 us T CC TB Time Internal PWM clock 20 or 30 kHz TPWM on decay TINT _2MHz Pin PWM (for bridge A) 20/40 Doc ID 11778 Rev 7 T FT = 1.5 us L9942 Functional description of the logic with SPI 4 Functional description of the logic with SPI 4.1 Motor stepping clock input (STEP) Rising edge of signal STEP is latched. It is synchronized by internal clock. At next start of a new PWM cycle the new values of output current limit are used to drive motor in next position. Before start new motor step this signal has to be low for at least two internal clock periods to reset latch. 4.2 PWM output (PWM) This output reflects the current duty cycle of the internal PWM controller of bridge A. High level indicates on state to increase current through load and low level is in off state so load current decreases depending on chosen decay mode. 4.3 Serial peripheral interface (SPI) This device uses a standard 16 bit SPI to communicate with a microcontroller. The SPI can be driven by a microcontroller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode, input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO-pin will reflect an internal error flag of the device which is a logical-or of all status bits in the Status Register (reg 7) and in the current profile register 4 (reg 6). The microcontroller can poll the status of the device without the need of a full SPI-communication cycle. 4.4 Chip select not (CSN) The input pin is used to select the serial interface of this device. When CSN is high, the output pin (DO) will be in high impedance state. A low signal will activate the output driver and a serial communication can be started. The state when CSN is going low until the rising edge of CSN will be called a communication frame. 4.5 Serial data in (DI) The input pin is used to transfer data serial into the device. The data applied to the DI will be sampled at the rising edge of the CLK signal and latched into an internal 16 bit shift register. The first 3 bit are interpreted as address of the data register. At the rising edge of the CSN signal the contents of the shift register will be transferred to the selected data register. The writing to the register is only enabled if exactly 16 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame will be ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Doc ID 11778 Rev 7 21/40 Functional description of the logic with SPI L9942 Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended. 4.6 Serial data out (DO) The data output driver is activated by a logical low level at the CSN input and will go from high impedance to a low or high level depending on the status bit 0 (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN pin will transfer the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK will shift the next bit out. 4.7 Serial clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) will change with the falling edge of the CLK signal. 4.8 Data register The device has eight data registers. The first three bits (bit 0 ... bit 2) at the DI-input are used to select one of the input registers. All bits are first shifted into an input shift register. After the rising edge of CSN the contents of the input shift register will be written to the selected Input Data Register only if a frame of exact 16 data bits are detected. The selected register will be transferred to DO during the current communication frame. Figure 9. SPI and registers DI CLK D CLK_ADR CSN INT_2MHz POR SPIControll DO D0 D A0 D1 D2 A1 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 A0 A2 SEL_ERROR SPI2REG Phase Counter Register 0 P4 P3 P2 Decay Mode P1 P0 DM2 DM1 DM0 Slew Rate Step Mode SR1 ST1 SR0 ST0 DIR Read Only DAC_Scale Register 1 DC2 Register 2 I4 Current Profile 1 I3 I2 I1 I0 I4 Current Profile 3 I3 I2 I1 I0 Register 3 DC1 DC0 BI4 BI3 DAC Phase B BI2 BI1 OV I4 I3 Register 5 I4 I3 Register 6 I2 I1 CLR6 SST FT I1 PWM Freq Test only T1 T0 D1 D0 NPWM I0 D4 I0 D7 D3 D2 ST D5 Read-Only Openload RREF Error Phase Phase B A AI0 Current Profile 0 I3 I2 I1 I0 I4 Current Profile 2 I3 I2 I1 I0 I4 Current Profile 4 I3 I2 I1 I0 I4 Current Profile 6 I3 I2 I1 I0 I4 Current Profile 8 I3 I2 I1 I0 PWM Counter D6 DAC Phase A AI3 AI2 AI1 I4 PWM Counter Current Profile 7 I2 AI4 PWM Counter PWM Current Profile 5 Register 4 OVW BI0 Read-Only Register 7 22/40 Temperature CLR7 TSD TW VS Monitor OV(W) UV HSB2 HSB1 LSB2 Doc ID 11778 Rev 7 Overcurrent LSB1 HSA2 HSA1 LSA2 LSA1 A1 A2 L9942 SPI - control and status registers 5 SPI - control and status registers 5.1 Register 0 Table 14. Register 0 Phase counter Decay mode Slew rate Step mode DIR Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 Access rw rw rw rw rw rw rw rw rw rw rw rw rw Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Name P4 P3 P2 P1 P0 DM2 DM1 DM0 SR1 SR0 ST1 ST0 DIR The meaning of the different bits is as follows: : DIR ST1 ST0 This bit controls direction of motor movement. DIR=1 clockwise DIR=0 counter clockwise. This bits controls step mode of motor movement (Figure 3). 00 Micro-stepping 01 Mini-stepping 10 Half-stepping 11 Full-stepping SR1 SR0 DM2 DM1 DM0 This bit controls slew rate of bridge switches. See also parameter Table 13 This bits controls decay mode of output current (Figure 3). 000 Slow decay 001 Mixed decay, fast decay until TMD > 4 µs 010 Mixed decay, fast decay until TMD > 8 µs 011 Mixed decay, fast decay until current undershoot Tmc =TFT +TCC 100 Auto decay, fast decay without delay time 101 Auto decay, fast decay until TMD > 4 µs 110 Auto decay, fast decay until TMD > 8 µs 111 Auto decay, fast decay until current undershoot Tmc P4 P3 P2 P1 P0 Auto decay uses mixed decay automatically to reduce current for next step if required (see Figure 3 down right). This bits control position of motor, e.g. 00000 step angle is 0°, 01111 step angle is 180 °. Doc ID 11778 Rev 7 23/40 SPI - control and status registers 5.2 Register 1 Table 15. Register 1 L9942 DAC scale DAC phase B DAC phase A Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 Access rw rw rw r r r r r r r r r r Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Name DC2 DC1 DC0 BI4 BI3 BI2 BI1 BI0 AI4 AI3 AI2 AI1 AI0 The meaning of the different bits is as follows: These bits control DAC of bridge A. AI4 AI3 AI2 AI1 AI0 Value depends on address and the value of corresponding current profile. BI4 BI3 BI2 BI1 BI0 These bits control DAC of bridge B. DC2 DC1 DC0 These bits set full scale range of limit, e.g. 000 for 100 mA or 111 for e.g. 1500 mA 5.3 Register 2 Table 16. Register 2 Current profile 1 See also parameter Table 12. OV Test only Current profile 0 Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 Access rw rw rw rw rw rw rw rw rw rw rw rw rw Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Name I4 I3 I2 I1 I0 OVW T1 T0 I4 I3 I2 I1 I0 The meaning of the different bits is as follows: : I4 I3 I2 I1 I0 T1 T0 These bits are loaded in register1 DAC Phase A or B if needed. See also parameter Table 12 Should be programmed to 0. - OVW = 0 In case of an overvoltage event (V-SOV OFF) the outputs are switched to high impedance state and the Vs Monitor bit OV is set. - OVW = 1 In case of an overvoltage event (V-SOV OFF) the Vs Monitor bit OV is set. The status of the outputs are unchanged. 24/40 Doc ID 11778 Rev 7 L9942 SPI - control and status registers 5.4 Register 3 Table 17. Register 3 Current profile 3 PWM counter PWM Current profile 2 Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 Access rw rw rw rw rw rw rw rw rw rw rw rw rw Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Name I4 I3 I2 I1 I0 D1 D0 NPW M I4 I3 I2 I1 I0 The meaning of the different bits is as follows: I4 I3 I2 I1 I0 These bits are loaded in register1 DAC Phase A or B if needed. See also parameter Table 12 D1 D0 These bits are for threshold value in counter of active time during signal PWM. - NPWM This bit switches internal PWM signal of bridge A to pin PWM if it is set to 0, otherwise pin is in high resistance status. - 5.5 Register 4 and 5 Table 18. Register 4 and 5 Current profile 5 (7) PWM counter Current profile 4 (6) Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 Access rw rw rw rw rw rw rw rw rw rw rw rw rw Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Name I4 I3 I2 I1 I0 D4(7) D3(6) D2(5) I4 I3 I2 I1 I0 The meaning of the different bits is as follows: I4 I3 I2 I1 I0 These bits are loaded needed. in register1 DAC Phase A or B if needed. See also parameter Table 12 D4 D3 D2 (register4) These bits are for threshold value in counter of active time D7 D6 D5 (register5) during signal PWM. LSB and next value are set in register3 by D0 and D1. Doc ID 11778 Rev 7 - 25/40 SPI - control and status registers 5.6 Register 6 Table 19. Register 6 CLR ST (PWM) L9942 Filter Freq. ST REF ERR Open load Current profile 8 Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 Access rw rw rw rw r r r r rw rw rw rw rw Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Name CLR6 SST FT PWM Freq. ST I4 I3 I2 I1 I0 RREF Phase Phase Error B A The meaning of the different bits is as follows: I4 I3 I2 I1 I0 These bits are loaded in register1 DAC Phase A or B if needed Phase B Phase A RREF Error ST This bit indicates if reference current is OK (150 µA 2 A This bit resets all bits to 0 in register 7. Doc ID 11778 Rev 7 L9942 SPI - control and status registers 5.8 Auxiliary logic blocks 5.8.1 Fault condition Logical level at pin D0 represents fault condition. It is valid from first high to low edge of signal CLK up to transfer of data bit D12. Fault bit is an logical OR of: Control and status register 6 bit 5 and 6 for open load, bit 7 reference current failure (RERR) and Control and status register 7 bit 0 to bit 7 for overcurrent, bit 8 and 9 failure at VS (UV,OV) and bit 10 and bit 11 during high temperature (TW,TSD) 5.8.2 SPI communication monitoring At the rising edge of the CSN signal the contents of the shift register will be transferred to the selected data register. A counter monitors proper SPI communication. It counts rising edges at pin CLK. The writing to the register is only enabled if exactly 16 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame will be ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. SPI communication can be checked by loading a command twice and then answer at pin DO must be same. Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended. 5.8.3 PWM monitoring for stall detection Control registers 4, 5, and 3 contain bits D0-D7, use for setting a stall detection threshold. The value in this set of bits determine the minimum time for current rise over one quadrant of motor driving. D7-D0 is compared with the sum of the rise times over one quadrant. When the sum is less than the value stored in D7-D0 the ST bit (register 6 bit 8) is set to a logic “1”. The PWM pin reflects the PWM control signal of the load current in bridge A. This is so after power on when the SST bit (register 6, bit11) is reset to a logic “0”. If this bit is set to a logical “1” then status of the ST bit 8 is mirrored to pin PWM. This provides stall detection without the need of reading register 6 through the SPI bus. Doc ID 11778 Rev 7 27/40 Logic with SPI - electrical characteristics 6 L9942 Logic with SPI - electrical characteristics VS = 7 to 20 V, VCC = 3.0 to 5.3 V, EN=VCC, Tj = -40 to 150 °C, IREF = -200 A, unless otherwise specified. The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6.1 Inputs: CSN, CLK, STEP, EN and DI Table 21. Inputs: CSN, CLK, STEP, EN and DI Symbol Parameter Test condition Min. Typ. Max. Unit - V Vin L input low level - Vin H input high level - - 0.6*VCC 0.7*VCC V Vin Hyst input hysteresis - - 0.1*VCC - V ICSN in pull up current at input CSN VCSN = VCC -1.5 V, -50 -25 -10 µA ICLK in pull down current at input CLK VCLK = 1.5 V 10 25 50 µA pull down current at input DI VDI = 1.5 V 10 25 50 µA ISTEP in pull down current at input STEP VSTEP = 1.5 V 10 25 50 µA REN in resistance at input EN to GND VEN in = VCC 110 510 k Cin (1) input capacitance at input CSN, CLK, DI and PWM 0 V < VCC < 5.3 V 15 pF IDI in 0.3*VCC 0.4*VCC - 10 1. Parameter guaranteed by design. 6.2 DI timing Table 22. DI timing (see Figure 11 and Figure 13) (1) Symbol Parameter Test condition Min. Typ. Max. Unit tCLK Clock period VCC = 5 V 250 - - ns tCLKH Clock high time VCC = 5 V 100 - - ns tCLKL Clock low time VCC = 5 V 100 - - ns tset CSN CSN set up time, CSN low before rising edge of CLK VCC = 5 V 100 - - ns tset CLK CLK set up time, CLK high before rising edge of CSN VCC = 5 V 100 - - ns tset DI DI set up time VCC = 5 V 50 - - ns thold DI DI hold time VCC = 5 V 50 - - ns tr in Rise time of input signal DI, CLK, CSN VCC = 5 V - - 25 ns tf in Fall time of input signal DI, CLK, CSN VCC = 5 V - - 25 ns 1. DI timing parameters tested in production by a passed/failed test: Tj=-40°C/+25°C: SPI communication @5MHz; Tj=+125°C: SPI communication @4.25MHz 28/40 Doc ID 11778 Rev 7 L9942 Logic with SPI - electrical characteristics 6.3 Outputs: DO, PWM Table 23. Outputs: DO, PWM Symbol Parameter VDOoutL Test condition Min. Typ. Max. Unit Output low level VCC = 5 V, ID = 2 mA - 0.2 0.4 V output high level VCC = 5 V, ID = -2 mA VCC 0.4 VCC 0.2 - V IDOoutLK Tristate leakage current VCSN = VCC, 0 V < VDO < VCC -10 - 10 µA IPWMoutLK Tristate leakage current Register3bit5=1 (NPWM) 0 V < VPWM < VCC -10 - 10 µA Tristate input capacitance VCSN = VCC, 0 V < VCC < 5.3 V - 10 15 pF Min. Typ. Max. Unit VPWMoutL VDOoutH VPWMoutH Cout (1) 6.4 Output: DO timing Table 24. Output: DO timing (see Figure 12 and Figure 13) Symbol Parameter Test condition tr DO DO rise time CL = 100 pF, Iload = -1 mA - 50 100 ns tf DO DO fall time CL = 100 pF, Iload = 1 mA - 50 100 ns ten DO tri L DO enable time from tristate to low CL = 100 pF, Iload = 1 mA pullup load to VCC level - 50 250 ns tdis DO L tri DO disable time from low level to tristate CL = 100 pF, Iload = 4 mA pullup load to VCC - 50 250 ns ten DO tri H DO enable time from tristate to high level CL = 100 pF, Iload = -1 mA pulldown load to GND - 50 250 ns tdis DO H tri DO disable time from high level to tristate CL = 100 pF, Iload = -4 mA - 50 250 ns - 50 250 ns Min. Typ. Max. Unit 2 - - µs td DO DO delay time 6.5 CSN timing Table 25. CSN timing Symbol Parameter tCSN_HI,min(1) CSN high time, active mode pull-down load to GND VDO < 0.3 VCC, VDO > 0.7 VCC, CL = 100 pF Test condition Transfer of SPI-command to Input Register 1. Parameter guaranteed by design. Doc ID 11778 Rev 7 29/40 Logic with SPI - electrical characteristics 6.6 STEP timing Table 26. STEP timing Symbol tSTEPmin(1) L9942 Parameter Test condition STEP low or high time Min. Typ. Max. Unit 2 - - µs - 1. Parameter guaranteed by design. Figure 10. Transfer timing diagram t CSN_HI,min CSN high to low: DO enabled CSN time CLK 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 time DI: data will be accepted on the rising edge of CLK signal actual data DI A2 A1 A0 D12D11 D10 D9 D8 D7 D6 new data D5 D4 D3 D2 D1 D0 A2 A1 time DO: data will change on the falling edge of CLK signal status information DO D12D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 time CSN low to high: actual data is transfered to registers fault bit fault bit actual data old data Control and Status Register time Figure 11. Input timing 0.8 VCC t CLK CSN 0.2 VCC t set CSN t CLKH t set CLK 0.8 VCC CLK 0.2 VCC t set DI t hold DI t CL KL 0.8 VCC DI Valid Valid 0.2 VCC 30/40 Doc ID 11778 Rev 7 L9942 Logic with SPI - electrical characteristics Figure 12. SPI - DO valid data delay time and valid time tf in t r in 0.8 VCC 0.5 VCC 0.2 VCC CLK t r DO DO (low to high) 0.8 VCC 0.2 VCC td DO t f DO 0.8 VCC DO (high to low) 0.2 VCC Figure 13. DO enable and disable time tf tr in in 0 .8 V C C 50% 0 .2 V C C C S N D O p u ll - u p lo a d to V C C C L = 10 0 pF 50% ten D O tri L t d is D O L tri 50% D O p u ll- d o w n lo a d t o G N D C L = 10 0 pF ten D O tri H Doc ID 11778 Rev 7 t d is D O H tri 31/40 Logic with SPI - electrical characteristics L9942 Figure 14. Timing of status bit 0 (fault condition) CSN high to low and CLK stays low: status information of data bit 0 (fault condition) is transferred to D0 CSN time CLK time DI time DI: data is not accepted D0 D0 0 time D0: status information of data bit 0 (fault condition) will stay as long as CSN is low 32/40 Doc ID 11778 Rev 7 L9942 Appendix 7 Appendix 7.1 Stall detection The L9942 contains logic blocks designed to detect a motor stall caused by excessive mechanical load.During a motor stall condition the load current rises much faster than during normal operation. The L9942 measures this time and compares it to a programmed value. This is done by summing the PWM on times for one full quadrant. For a full wave stepping this is just one value (step 0). For microstepping this includes 8 separate values added together, one for each step. This measurement is only done on phase A during the quadrants where the current is increasing naturally (quadrants 1 and 3 of Figure 15); e.g. stall detection is active during phase counter values 1 to 8 and 17 to 24 for DIR=0. During the quadrants where the current is decreasing fast decay recirculation interferes with accurate measurement of this time. If the sum of the PWM on time is less than a programmed threshold stored in D0-D7, stall is detected and indicated as a logic “1” in the stall (ST) bit found in register 6 bit 8 (Figure 15 bottom). If bit 11 of register 6 is set to logical “1” then the ST bit is mirrored to the PWM pin providing detection externally.The register values DT7-DT0 store the threshold value in 16us intervals. These bits can be found interstitially in register 3 (D0, D1), register4 (D2, D3, D4) and register5 (D5, D6, D7). Care should be taken when deciding the threshold timing. Motor current slew rates are dependant on the driving voltage, the actual speed of the motor, the back EMF of the motor as well as the motor and the inductance. Be sure to set your threshold well away from what can be seen in normal operation at any temperature. 7.2 Step clock input The Step clock input allows to run one device in micro-step mode, or several devices simultaneously with cost effective 8 bit µController. In case of the L9942, the SPI communication link provides only the settings for motor operation mode. Motor commutation as high duty process is outsourced to a parallel driven pin. Without this step clock input, the SPI command would also have to clock the motor, leading to a high SPI speed. For full micro-step operation or simultaneous motor drive, an 8 bit µController could be rapidly overloaded. 7.3 Load current control and detection of overcurrent (shortages at outputs) The L9942 controls load current in the two full bridges by using a pulls with modulation (PWM) regulator. The mirrored output current of active HS switch is compared with a programmed reference current (e.g. in figure A2 HSA1 and HSB2). Bridge is switched off if current has exceeded the programmed limit value. A second comparator of the related LS switch uses the mirrored load current to detect an overcurrent to ground during ON state of bridges (e.g. in Figure 16 LSA2 and LSB1). The event of shortage from output to supply voltage VS is detectable, but short current between outputs is limited through PWM controller and so an overcurrent failure will not occur. Load currents decrease more or less fast during OFF state of bridges depending on selected decay mode. Slow decay mode is released by activating the HS switches of the Doc ID 11778 Rev 7 33/40 Appendix L9942 bridge and current comparator has as new reference the overcurrent limit. A shortage to ground can be detected, but not between the outputs. Is it recommended to use the different fast decay modes too, especially in period if the load current has to reduce from step to step. The duration of fast decay can set by fixed time ore that it depends on the comparator signal utilizing the second current mirror at LS switch. There can be monitored the undershoot of bridge current during OFF state. Fast decay can be seen as switching the bridge in opposite direction, if it is compared to ON state before. The load current control at HS switch is not used, but the comparator is still active. The reference value is changed to overcurrent limit and a shortage to ground or now between the outputs too will result in a signal. The internal filter time of at least 4 us will inhibit the signal in many applications. Then you can use the mode “auto decay without any delay time“ (On Section 5.1 mode 100). On page 12 you can find in the lower part of Figure 3 the phase counter values, when fast decay as only part of mixed decay is used and the shortages can be detected during a longer time. After this it is signalized in register 7 as overcurrent in HS switch (e.g. in Figure 17 HSA1). 34/40 Doc ID 11778 Rev 7 L9942 Appendix Figure 15. Stall detection Load Current Rising During High Speed Counter value is above threshold value. PWM activ detection Stall Time Threshold 16us * Register 5 Register 4 Reg3 bit7 bit6 bit5 bit7 bit6 bit5 bit7 bit6 D7 D6 PWM activ detection Time D5 D4 D3 D2 D1 D0 PWM activ detection Stall Threshold Stall Threshold PWM activ counter PWM activ counter No Stall Signal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Phase Counter 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Activ sampling and threshold Current Driver A 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 Activ sampling and threshold Current Driver A Adress of Current Profile Entry 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 Adress of Current Profile Entry 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 Current Driver B Current Driver B 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 STEP Signal Micro Stepping Mode: DIR=0 Micro Stepping Mode: DIR=1 Load Current Rising During Low Speed or Stall Counter value is below threshold value. PWM activ detection PWM activ detection PWM activ detection Time Stall Threshold Stall Signal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Phase Counter 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 Current Driver A Stall Signal 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Activ sampling and threshold Activ sampling and threshold PWM activ counter PWM activ counter Stall Threshold Current Driver A Adress of Current Profile Entry 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 Adress of Current Profile Entry 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 Current Driver B Current Driver B 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 STEP Signal Micro Stepping Mode: DIR=0 Doc ID 11778 Rev 7 Micro Stepping Mode: DIR=1 35/40 Appendix L9942 Figure 16. Reference generation for PWM control (switch on) 1 Register 0 UP/Down PhaseCounter 1 Count by 1,2,4,8 0 0 Decay Mode 0 0 DM2 1 DM1 DM0 Slew Rate SR1 Counter value changes after an signal at STEP to next one depending on selected stepping mode described in figure 3 (e.g. during micro stepping to value 2) . StepMode DIR SR0 0 0 0 STEP 0 0 0 0 1 2 3 0 1 2 3 0 1 2 3 A3 Address Calculation A2 A1 A0 MUX MUX MUX A2 A1 A0 Phase A Adr A3=0 A[3..0] Adr Phase B A3=1 neg(A[3..0]) Adr A3=0 neg(A[3..0]) PWM Control With HS Current Monitoring Overcurrent Detection At LS Switch A3=1 Adr A[3..0] Current-Profile Table stored in register2, ...6 9 5 1 1 1 1 1 Profile 8 1 1 1 1 0 Profile 7 1 1 1 0 1 Profile 6 1 1 0 1 0 Profile 5 1 0 1 1 0 Profile 4 1 0 0 0 1 Profile 3 0 1 1 0 0 Profile 2 Phase Counter 5 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 Current Driver A 5 Adress of Current Profile Entry Phase A 5 5 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 5 5 Current Driver B Adress of Current Profile Entry Phase B 5 0 0 1 1 0 Profile 1 0 0 0 0 0 Profile 0 5 STEP Signal 5 HS Current Monitoring (Load control) Register 1 DAC Scale DI 0 0 0 95 mA 1 1 1 1 0 0 DAC Full Scale 0 1 1 0 100mA * 6/31 = 18.4mA 100mA * 30/31 = 91.9mA 5 bit DAC Phase B I REF REF 200 uA DAC Phase A DAC Phase B I LIMIT B LIMIT HSA1 I LIMIT A 5 bit DAC Phase A + 2mA 2mA I MAX HS1 on QA1 + - IA + + QB1 2mA LS Current Monitoring (Overcurrentl) IQA1LIM 1000 - 2mA OC LSB1 - + LS1 on + - 2mA IB + QA2 2mA OC LSA2 + - LS2 on - LIMIT HSB2 HS Current Monitoring (Load control) + 2mA 2mA IQA2LIM 1000 HS2on + QB2 + - + - 36/40 Doc ID 11778 Rev 7 - LS Current Monitoring (Overcurrent) L9942 Appendix Figure 17. Reference generation for PWM control (decay) 1 Register 0 UP/Down 1 PhaseCounter Count by 1,2,4,8 0 0 0 Decay Mode 0 1 DM2 DM1 DM0 StepMode DIR Slew Rate SR1 Counter value changes after an signal at STEP to next one depending on selected stepping mode described in figure 1.2 (e.g. during micro stepping to value 2) . SR0 0 0 0 STEP 0 0 1 2 3 A3 Address Calculation 0 0 1 2 3 0 1 2 3 A2 A1 A0 MUX MUX MUX A2 A1 A0 Phase A Adr A3=0 A[3..0] Adr Auto Decay 0 Mixed Decay Fast and Slow Decay Slow Decay Phase B A3=1 neg(A[3..0]) Adr A3=1 Adr A[3..0] A3=0 neg(A[3..0]) Current-Profile Table stored in register2, ...6 9 5 1 1 1 1 1 Profile 8 1 1 1 1 0 Profile 7 1 1 1 0 1 Profile 6 1 1 0 1 0 Profile 5 1 0 1 1 0 Profile 4 1 0 0 0 1 Profile 3 0 1 1 0 0 Profile 2 Phase Counter 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Current Driver A 5 Adress of Current Profile Entry Phase A 5 5 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 5 5 Current Driver B Adress of Current Profile Entry Phase B 5 0 0 1 1 0 Profile 1 0 0 0 0 0 Profile 0 5 STEP Signal 5 HS Current Monitoring (Overcurrent) Register 1 DAC Scale DI 0 0 0 95 mA 1 1 1 1 DAC Full Scale 0 0 0 1 1 0 100mA * 6/31 = 18.4mA 95mA * 30/31 = 91.9mA 5 bit DAC Phase B I REF REF 200 uA DAC Phase A DAC Phase B I LIMIT B OC I LIMIT A 5 bit DAC Phase A HSA1 + QA1 2mA - I MAX HS Current Monitoring (Overcurrent) + - OC HSB1 + 2mA 2mA IQB1 1000 + HS1 on - HSB1 + Fast Decay IB 2mA + - + + QB2 2mA HS2 on QA2 2mA - 2mA IA - OC + Slow Decay QB1 + - LS Current Monitoring (Load Control) HS1 on 2mA HS Current Monitoring (Overcurrent) - LS2on + - LIMIT LSB2 + - Doc ID 11778 Rev 7 37/40 Package information 8 L9942 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 18. PowerSSO24 mechanical data and package dimensions Dim. A A2 a1 b c D (1) E (1) e e3 F G G1 H h k L O Q S T U N X Y Min. mm Typ. 2.15 0 0.33 0.23 10.10 7.40 Max. 2.45 2.35 0.10 0.51 0.32 10.50 0.084 0 0.013 0.009 0.398 7.60 0.291 0.80 8.80 2.30 0.55 Max. 0.0965 0.0925 0.003 0.020 0.012 0.413 OUTLINE AND MECHANICAL DATA 0.299 0.031 0.346 0.090 0.10 0.06 10.50 0.398 0.40 0˚ (min.), 8˚ (max.) 0.85 0.0217 10.10 1.20 0.80 2.90 3.65 1.0 4.10 6.50 4.90(4) inch Typ. Min. 10˚ (max) 4.70 0.161 7.10 0.256 5.50(4) 0.192(4) 0.004 0.002 0.413 0.016 0.0335 0.047 0.031 0.114 0.143 0.039 0.185 0.279 0.216(4) (1) “D and E1” do not include mold flash or protusions. Mold flash or protusions shall not exceed 0.15mm (0.006”) (2) No intrusion allowed inwards the leads. (3) Flash or bleeds on exposed die pad shall not exceed 0.4 mm per side (4) Variation for small window leadframe option. PowerSSO24 (Exposed pad down) 7412818 I 38/40 Doc ID 11778 Rev 7 L9942 9 Revision history Revision history Table 27. Document revision history Date Revision Changes 10-Nov-2005 1 Initial release. 04-May-2006 2 Feature list updated. Part numbers updated. 21-Sep-2006 3 Feature list updated. Table 21 on page 28 updated. 09-Jul-2007 4 Updated the order codes (see Table 1: Device summary on page 1). Changed the status from Preliminary data to Datasheet. 02-Feb-2009 5 Updated the following tables: 2, 9, 14, 15, 16, 17, 18, 19 and 20. Updated the following chapters: 2.4, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7. 15-May-2009 6 Updated Figure 18: PowerSSO24 mechanical data and package dimensions on page 38. 19-Sep-2013 7 Updated Disclaimer. Doc ID 11778 Rev 7 39/40 L9942 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 40/40 Doc ID 11778 Rev 7
L9942XP1TR 价格&库存

很抱歉,暂时无法提供与“L9942XP1TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货