0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS4962IQT

TS4962IQT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UDFN8_EP

  • 描述:

    IC AMP AUDIO PWR 2.8W MONO 8DFN

  • 数据手册
  • 价格&库存
TS4962IQT 数据手册
TS4962 2.8W filter-free mono class D audio power amplifier Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Operating from VCC=2.4V to 5.5V Standby mode active low Output power: 2.8W into 4Ω and 1.7W into 8Ω with 10% THD+N max and 5V power supply Output power: 2.2W @5V or 0.7W @ 3.0V into 4Ω with 1% THD+N max. Output power: 1.4W @5V or 0.5W @ 3.0V into 8Ω with 1% THD+N max. Adjustable gain via external resistors Low current consumption 2mA @ 3V Efficiency: 88% typ. Signal to noise ratio: 85dB typ. PSRR: 63dB typ. @217Hz with 6dB gain PWM base frequency: 280kHz Low pop & click noise Thermal shutdown protection Available in DFN8 3X3 mm package DFN8 3x3 mm TS4962IQT - Pinout Description The TS4962 is a differential class-D BTL power amplifier. It is able to drive up to 2.2W into a 4Ω load and 1.4W into a 8Ω load at 5V. It achieves outstanding efficiency (88% typ.) compared to standard AB-class audio amps. The gain of the device can be controlled via two external gain-setting resistors. Pop & click reduction circuitry provides low on/off switch noise while allowing the device to start within 5ms. A standby function (active low) allows the reduction of current consumption to 10nA typ. Applications ■ ■ ■ Cellular phone PDA Notebook PC January 2007 Rev 7 1/46 www.st.com 1 Contents TS4962 Contents 1 2 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6 Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 3.2 Electrical characteristics tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 33 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Shutdown time (tSTBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Consumption in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Several examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Example 1: Dual differential inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Example 2: One differential input plus one single ended input . . . . . . . . . . . . . . . 38 5 6 7 8 9 Demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2/46 List of tables TS4962 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Dissipation ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics at VCC = +5V, with GND = 0V, Vicm = 2.5V, and Tamb = 25°C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics at VCC = +4.2V with GND = 0V, Vicm = 2.1V, and Tamb = 25°C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical characteristics at VCC = +3.6V with GND = 0V, Vicm = 1.8V, Tamb = 25°C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical characteristics at VCC = +3.0V with GND = 0V, Vicm = 1.5V, Tamb = 25°C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical characteristics at VCC = +2.5V with GND = 0V, Vicm = 1.25V, Tamb = 25°C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical characteristics at VCC +2.4V with GND = 0V, Vicm = 1.2V, Tamb = 25°C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2/46 List of figures TS4962 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Schematic used for test measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Schematic used for PSSR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Current consumption vs. standby voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Output offset voltage vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Output power vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Output power vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PSRR vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CMRR vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2/46 TS4962 Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. List of figures Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Startup & shutdown time VCC = 5V, G = 6dB, Cin= 1µF (5ms/div) . . . . . . . . . . . . . . . . . . . 30 Startup & shutdown time VCC = 3V, G = 6dB, Cin= 1µF (5ms/div) . . . . . . . . . . . . . . . . . . . 30 Startup & shutdown time VCC = 5V, G = 6dB, Cin= 100nF (5ms/div) . . . . . . . . . . . . . . . . . 30 Startup & shutdown time VCC = 3V, G = 6dB, Cin= 100nF (5ms/div) . . . . . . . . . . . . . . . . . 31 Startup & shutdown time VCC = 5V, G = 6dB, No Cin (5ms/div) . . . . . . . . . . . . . . . . . . . . . 31 Startup & shutdown time VCC = 3V, G = 6dB, No Cin (5ms/div) . . . . . . . . . . . . . . . . . . . . . 31 Single-ended input typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Typical application schematic with multiple single-ended inputs . . . . . . . . . . . . . . . . . . . . 35 Method for shorting pertubations to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Typical application schematic with dual differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . 37 Typical application schematic with one differential input plus one single-ended input . . . . 38 Schematic diagram of mono class D demoboard for the TS4962 DFN package . . . . . . . . 39 Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Recommended footprint for TS4962 DFN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DFN8 3x3 exposed pad package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3/46 Absolute maximum ratings and operating conditions TS4962 1 Absolute maximum ratings and operating conditions Table 1. Symbol VCC Vi Toper Tstg Tj Rthja Pd ESD ESD Latch-up VSTBY Absolute maximum ratings Parameter Supply voltage(1), (2) Input voltage (3) Value 6 GND to VCC -40 to + 85 -65 to +150 150 120 Internally limited(4) 2 200 200 GND to VCC 260 Unit V V °C °C °C °C/W Operating free air temperature range Storage temperature Maximum junction temperature Thermal resistance junction to ambient DFN8 package Power dissipation Human body model Machine model Latch-up immunity Standby pin voltage maximum voltage (5) Lead temperature (soldering, 10sec) kV V mA V °C 1. Caution: This device is not protected in the event of abnormal operating conditions such as, for example, short-circuiting between any one output pin and ground, between any one output pin and VCC, and between individual output pins. 2. All voltage values are measured with respect to the ground pin. 3. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V. 4. Exceeding the power derating curves during a long period will provoke abnormal operation. 5. The magnitude of the standby signal must never exceed VCC + 0.3V / GND - 0.3V. Table 2. Dissipation ratings Derating factor 20 mW / °C Power rating @25°C 2.5 W Power rating @ 85°C 1.3 W Package DFN8 6/46 TS4962 Table 3. Symbol VCC VIC VSTBY RL Rthja Absolute maximum ratings and operating conditions Operating conditions Parameter Supply voltage(1) Common mode input voltage range Standby voltage input: (3) Device ON Device OFF Load resistor Thermal resistance junction to ambient DFN8 package(5) (2) Value 2.4 to 5.5 0.5 to VCC-0.8 1.4 ≤ VSTBY ≤ VCC GND ≤ VSTBY ≤ 0.4 (4) ≥4 50 Unit V V V Ω °C/W 1. For VCC between 2.4V and 2.5V, the operating temperature range is reduced to 0°C ≤Tamb 2. For VCC between 2.4V and 2.5V, the common mode input range must be set at VCC/2. 3. Without any signal on VSTBY, the device will be in standby. 4. Minimum current consumption is obtained when VSTBY = GND. 5. When mounted on a 4-layer PCB. ≤70°C. 7/46 Application component information TS4962 2 Application component information Table 4. Component information Functional description Bypass supply capacitor. Install as close as possible to the TS4962 to minimize high-frequency ripple. A 100nF ceramic capacitor should be added to enhance the power supply filtering at high frequency. Input resistor used to program the TS4962 differential gain (Gain = 300kΩ/Rin with Rin in kΩ). Because of common mode feedback these input capacitors are optional. However, they can be added to form with Rin a 1st order high pass filter with -3dB cut-off frequency = 1/(2*π*Rin*Cin). Component CS Rin Input capacitor Figure 1. Typical application schematics Vcc Vcc In+ 1 Stdby 300k Internal Bias 150k Out+ 5 Output PWM H Bridge SPEAKER 150k Oscillator GND 7 GND Vcc Vcc 6 Vcc 1 Stdby 300k Internal Bias 150k Out+ 5 Output PWM H Bridge 8 Out2µF GND 2µF 15µH Load GND Cs 1u 4 Ohms LC Output Filter 15µH 6 Vcc Cs 1u GND GND GND + Differential Input InRin 4 InIn+ 3 + Rin Input capacitors are optional 8 Out- GND In+ GND GND + Differential Input InRin 4 InIn+ 3 Rin + 150k Oscillator Input capacitors are optional GND GND 7 GND 1µF GND 1µF 30µH 8 Ohms LC Output Filter 30µH 8/46 TS4962 Electrical characteristics 3 3.1 Electrical characteristics Electrical characteristics tables Table 5. Electrical characteristics at VCC = +5V, with GND = 0V, Vicm = 2.5V, and Tamb = 25°C (unless otherwise specified) Parameter Supply current No input signal, no load Standby current (1) No input signal, VSTBY = GND Output offset voltage No input signal, RL = 8Ω Output power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Min. Typ. 2.3 10 3 Max. 3.3 1000 25 Unit mA nA mV Symbol ICC ISTBY Voo Pout 2.2 2.8 1.4 1.7 W Total harmonic distortion + noise Pout = 850 mWRMS, G = 6dB, 20Hz < f < 20kHz THD + N RL = 8Ω + 15µH, BW < 30kHz Pout = 1WRMS, G = 6dB, f = 1kHz RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Pout = 2 WRMS, RL = 4Ω + ≥ 15µH Pout =1.2 WRMS, RL = 8Ω+ ≥ 15µH PSRR CMRR Gain RSTBY FPWM SNR tWU tSTBY Power supply rejection ratio with inputs grounded (2) f = 217Hz, RL = 8Ω G=6dB, Vripple = 200mVpp , Common mode rejection ratio f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp Gain value (Rin in kΩ) Internal resistance from standby to GND Pulse width modulator base frequency Signal to noise ratio (A weighting), Pout = 1.2W, RL = 8Ω Wake-up time Standby time 273k Ω ----------------R in 2 0.4 78 88 63 57 300k Ω ----------------R in 327k Ω ----------------R in % % dB dB V/V kΩ kHz dB 10 10 ms ms 273 200 300 280 85 5 5 327 360 9/46 Electrical characteristics Table 5. TS4962 Electrical characteristics at VCC = +5V, with GND = 0V, Vicm = 2.5V, and Tamb = 25°C (unless otherwise specified) (continued) Parameter Output voltage noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A-weighted RL = 4Ω Unweighted RL = 8Ω A-weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A-weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A-weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A-weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter 85 60 86 62 83 60 88 64 78 57 87 65 82 59 μVRMS Min. Typ. Max. Unit Symbol VN 1. Standby mode is active when VSTBY is tied to GND. 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ f = 217Hz. 10/46 TS4962 Table 6. Symbol ICC ISTBY Voo Electrical characteristics Electrical characteristics at VCC = +4.2V with GND = 0V, Vicm = 2.1V, and Tamb = 25°C (unless otherwise specified)(1) Parameter Supply current No input signal, no load Standby current (2) No input signal, VSTBY = GND Output offset voltage No input signal, RL = 8Ω Output power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Min. Typ. 2.1 10 3 Max. 3 1000 25 Unit mA nA mV Pout 1.5 1.95 0.9 1.1 W Total harmonic distortion + noise Pout = 600 mWRMS, G = 6dB, 20Hz < f < 20kHz THD + N RL = 8Ω + 15µH, BW < 30kHz Pout = 700mWRMS, G = 6dB, f = 1kHz RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Pout = 1.45 WRMS, RL = 4Ω + ≥ 15µH Pout = 0.9 WRMS, RL = 8Ω+ ≥ 15µH Power supply rejection ratio with inputs grounded (3) f = 217Hz, RL = 8Ω G=6dB, Vripple = 200mVpp , Common mode rejection ratio f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp Gain value (Rin in kΩ) Internal resistance from standby to GND Pulse width modulator base frequency Signal to noise ratio (A-weighting) Pout = 0.8W, RL = 8Ω Wake-up time Standby time 273k Ω ----------------R in 2 0.35 78 88 63 57 300k Ω ----------------R in 327k Ω ----------------R in % % PSRR CMRR Gain RSTBY FPWM SNR tWU tSTBY dB dB V/V kΩ kHz dB 10 10 ms ms 273 200 300 280 85 5 5 327 360 11/46 Electrical characteristics Table 6. Symbol VN TS4962 Electrical characteristics at VCC = +4.2V with GND = 0V, Vicm = 2.1V, and Tamb = 25°C (unless otherwise specified)(1) (continued) Parameter Output voltage noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A-weighted RL = 4Ω Unweighted RL = 8Ω A-weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A-weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A-weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A-weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter 85 60 86 62 83 60 88 64 78 57 87 65 82 59 μVRMS Min. Typ. Max. Unit 1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V. 2. Standby mode is active when VSTBY is tied to GND. 3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ f = 217Hz. 12/46 TS4962 Table 7. Electrical characteristics Electrical characteristics at VCC = +3.6V with GND = 0V, Vicm = 1.8V, Tamb = 25°C (unless otherwise specified)(1) Parameter Supply current No input signal, no load Standby current (2) No input signal, VSTBY = GND Output offset voltage No input signal, RL = 8Ω Output power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Min. Typ. 2 10 3 Max. 2.8 1000 25 Unit mA nA mV Symbol ICC ISTBY Voo Pout 1.1 1.4 0.7 0.85 W Total harmonic distortion + noise Pout = 450 mWRMS, G = 6dB, 20Hz < f < 20kHz THD + N RL = 8Ω + 15µH, BW < 30kHz Pout = 500mWRMS, G = 6dB, f = 1kHz RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Pout = 1 WRMS, RL = 4Ω + ≥ 15µH Pout = 0.65 WRMS, RL = 8Ω+ ≥ 15µH Power supply rejection ratio with inputs grounded (3) f = 217Hz, RL = 8Ω G=6dB, Vripple = 200mVpp , Common mode rejection ratio f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp Gain value (Rin in kΩ) Internal resistance from standby to GND Pulse width modulator base frequency Signal to noise ratio (A-weighting) Pout = 0.6W, RL = 8Ω Wake-up time Standby time 273k Ω ----------------R in 2 0.1 78 88 62 56 300k Ω ----------------R in 327k Ω ----------------R in % % PSRR CMRR Gain RSTBY FPWM SNR tWU tSTBY dB dB V/V kΩ kHz dB 10 10 ms ms 273 200 300 280 83 5 5 327 360 13/46 Electrical characteristics Table 7. TS4962 Electrical characteristics at VCC = +3.6V with GND = 0V, Vicm = 1.8V, Tamb = 25°C (unless otherwise specified)(1) (continued) Parameter Output voltage noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A-weighted RL = 4Ω Unweighted RL = 8Ω A-weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A-weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A-weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A-weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter 83 57 83 61 81 58 87 62 77 56 85 63 80 57 μVRMS Min. Typ. Max. Unit Symbol VN 1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V. 2. Standby mode is actived when VSTBY is tied to GND. 3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ f = 217Hz. 14/46 TS4962 Table 8. Electrical characteristics Electrical characteristics at VCC = +3.0V with GND = 0V, Vicm = 1.5V, Tamb = 25°C (unless otherwise specified)(1) Parameter Supply current No input signal, no load Standby current (2) No input signal, VSTBY = GND Output offset voltage No input signal, RL = 8Ω Output power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Min. Typ. 1.9 10 3 Max. 2.7 1000 25 Unit mA nA mV Symbol ICC ISTBY Voo Pout 0.7 1 0.5 0.6 W Total harmonic distortion + noise Pout = 300 mWRMS, G = 6dB, 20Hz < f < 20kHz THD + N RL = 8Ω + 15µH, BW < 30kHz Pout = 350mWRMS, G = 6dB, f = 1kHz RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Pout = 0.7 WRMS, RL = 4Ω + ≥ 15µH Pout = 0.45 WRMS, RL = 8Ω+ ≥ 15µH PSRR CMRR Gain RSTBY FPWM SNR tWU tSTBY Power supply rejection ratio with inputs grounded (3) f = 217Hz, RL = 8Ω G=6dB, Vripple = 200mVpp , Common mode rejection ratio f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp Gain value (Rin in kΩ) Internal resistance from standby to GND Pulse width modulator base frequency Signal to noise ratio (A-weighting) Pout = 0.4W, RL = 8Ω Wake-up time Standby time 273k Ω ----------------R in 2 0.1 78 88 60 54 300k Ω ----------------R in 327k Ω ----------------R in % % dB dB V/V kΩ kHz dB 10 10 ms ms 273 200 300 280 82 5 5 327 360 15/46 Electrical characteristics Table 8. TS4962 Electrical characteristics at VCC = +3.0V with GND = 0V, Vicm = 1.5V, Tamb = 25°C (unless otherwise specified)(1) (continued) Parameter Output voltage noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A-weighted RL = 4Ω Unweighted RL = 8Ω A-weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A-weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A-weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A-weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter 83 57 83 61 81 58 87 62 77 56 85 63 80 57 μVRMS Min. Typ. Max. Unit Symbol VN 1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V. 2. Standby mode is active when VSTBY is tied to GND. 3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ f = 217Hz. 16/46 TS4962 Table 9. Electrical characteristics Electrical characteristics at VCC = +2.5V with GND = 0V, Vicm = 1.25V, Tamb = 25°C (unless otherwise specified) Parameter Supply current No input signal, no load Standby current (1) No input signal, VSTBY = GND Output offset voltage No input signal, RL = 8Ω Output power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Min. Typ. 1.7 10 3 Max. 2.4 1000 25 Unit mA nA mV Symbol ICC ISTBY Voo Pout 0.5 0.65 0.33 0.41 W Total harmonic distortion + noise Pout = 180 mWRMS, G = 6dB, 20Hz < f < 20kHz THD + N RL = 8Ω + 15µH, BW < 30kHz Pout = 200mWRMS, G = 6dB, f = 1kHz RL = 8Ω + 15µH, BW < 30kHz Efficiency Efficiency Pout = 0.47 WRMS, RL = 4Ω + ≥ 15µH Pout = 0.3 WRMS, RL = 8Ω+ ≥ 15µH Power supply rejection ratio with inputs grounded (2) f = 217Hz, RL = 8Ω G=6dB, Vripple = 200mVpp , Common mode rejection ratio f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp Gain value (Rin in kΩ) Internal resistance from standby to GND Pulse width modulator base frequency Signal to noise ratio (A-weighting) Pout = 0.3W, RL = 8Ω Wake-up time Standby time 273k Ω ----------------R in 1 0.05 78 88 60 54 300k Ω ----------------R in 327k Ω ----------------R in % % PSRR CMRR Gain RSTBY FPWM SNR tWU tSTBY dB dB V/V kΩ kHz dB 10 10 ms ms 273 200 300 280 80 5 5 327 360 17/46 Electrical characteristics Table 9. TS4962 Electrical characteristics at VCC = +2.5V with GND = 0V, Vicm = 1.25V, Tamb = 25°C (unless otherwise specified) (continued) Parameter Output voltage noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A-weighted RL = 4Ω Unweighted RL = 8Ω A-weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A-weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A-weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A-weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter 85 60 86 62 76 56 82 60 67 53 78 57 74 54 μVRMS Min. Typ. Max. Unit Symbol VN 1. Standby mode is active when VSTBY is tied to GND. 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ f = 217Hz. 18/46 TS4962 Table 10. Symbol ICC ISTBY Voo Electrical characteristics Electrical characteristics at VCC +2.4V with GND = 0V, Vicm = 1.2V, Tamb = 25°C (unless otherwise specified) Parameter Supply current No input signal, no load Standby current (1) No input signal, VSTBY = GND Output offset voltage No input signal, RL = 8Ω Output power, G=6dB THD = 1% Max, f = 1kHz, RL = 4Ω THD = 10% Max, f = 1kHz, RL = 4Ω THD = 1% Max, f = 1kHz, RL = 8Ω THD = 10% Max, f = 1kHz, RL = 8Ω Total harmonic distortion + noise Pout = 150 mWRMS, G = 6dB, 20Hz < f < 20kHz RL = 8Ω + 15µH, BW < 30kHz Efficiency Pout = 0.38 WRMS, RL = 4Ω + ≥ 15µH Pout = 0.25 WRMS, RL = 8Ω+ ≥ 15µH Common mode rejection ratio f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp Gain value (Rin in kΩ) Internal resistance from standby to GND Pulse width modulator base frequency Signal to noise ratio (A-weighting) Pout = 0.25W, RL = 8Ω Wake-up time Standby time 273k Ω ----------------R in Min. Typ. 1.7 10 3 Max. Unit mA nA mV Pout 0.42 0.61 0.3 0.38 W THD + N 1 % Efficiency 77 86 54 300k Ω ----------------R in 327k Ω ----------------R in % CMRR Gain RSTBY FPWM SNR tWU tSTBY dB V/V kΩ kHz dB ms ms 273 300 280 80 5 5 327 19/46 Electrical characteristics Table 10. Symbol VN TS4962 Electrical characteristics at VCC +2.4V with GND = 0V, Vicm = 1.2V, Tamb = 25°C (unless otherwise specified) Parameter Output voltage noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4Ω A-weighted RL = 4Ω Unweighted RL = 8Ω A-weighted RL = 8Ω Unweighted RL = 4Ω + 15µH A-weighted RL = 4Ω + 15µH Unweighted RL = 4Ω + 30µH A-weighted RL = 4Ω + 30µH Unweighted RL = 8Ω + 30µH A-weighted RL = 8Ω + 30µH Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter Unweighted RL = 4Ω + Filter A-weighted RL = 4Ω + Filter 85 60 86 62 76 56 82 60 67 53 78 57 74 54 μVRMS Min. Typ. Max. Unit 1. Standby mode is active when VSTBY is tied to GND. 20/46 TS4962 Electrical characteristics 3.2 Electrical characteristics curves The graphs shown in this section use the following abbreviations: ● ● RL + 15μH or 30μH = pure resistor+ very low series resistance inductor Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω) All measurements are done with CS1=1µF and CS2=100nF (see Figure 2), except for the PSRR where CS1 is removed (see Figure 3). Figure 2. Schematic used for test measurements Vcc 1uF Cs1 + 100nF Cs2 Cin GND Rin GND In+ Out+ 15uH or 30uH TS4962 or LC Filter Out4 or 8 Ohms 5th order RL 50kHz low pass filter 150k Cin Rin 150k In- GND Audio Measurement Bandwidth < 30kHz Figure 3. Schematic used for PSSR measurements 100nF Cs2 20Hz to 20kHz Vcc GND 4.7uF GND Rin In+ 150k TS4962 4.7uF Rin 150k GND GND 5th order 50kHz low pass filter Reference RMS Selective Measurement Bandwidth=1% of Fmeas InOutOut+ 15uH or 30uH or LC Filter 4 or 8 Ohms 5th order RL 50kHz low pass filter 21/46 Electrical characteristics TS4962 Figure 4. Current consumption vs. power supply voltage Figure 5. Current consumption vs. standby voltage 2.5 No load Tamb=25°C Current Consumption (mA) 2.5 2.0 Current Consumption (mA) 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 Vcc = 5V No load Tamb=25°C 0 1 2 3 4 5 Standby Voltage (V) 0 1 2 3 4 5 Power Supply Voltage (V) Figure 6. Current consumption vs. standby voltage Figure 7. Output offset voltage vs. common mode input voltage 2.0 10 G = 6dB Tamb = 25°C Current Consumption (mA) 1.5 Voo (mV) 8 6 Vcc=5V Vcc=3.6V 1.0 4 0.5 Vcc = 3V No load Tamb=25°C 0.5 1.0 1.5 2.0 2.5 3.0 Standby Voltage (V) 2 Vcc=2.5V 0.0 0.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Common Mode Input Voltage (V) Figure 8. 100 Efficiency vs. output power Figure 9. 100 600 Power Dissipation (mW) Efficiency vs. output power 200 Efficiency 500 400 300 150 Efficiency (%) 60 60 100 40 Power Dissipation Vcc=3V RL=4Ω + ≥ 15μH F=1kHz THD+N≤1% 0.1 0.2 0.3 0.4 Output Power (W) 0.5 0.6 50 40 Power Dissipation 20 200 Vcc=5V RL=4Ω + ≥ 15μH F=1kHz THD+N≤1% 2.0 100 0 2.2 20 0 0.0 0.5 1.0 1.5 Output Power (W) 0 0.0 0 0.7 22/46 Power Dissipation (mW) 80 Efficiency (%) Efficiency 80 TS4962 Electrical characteristics Figure 10. Efficiency vs. output power 100 150 Figure 11. Efficiency vs. output power 100 75 Efficiency Efficiency Efficiency (%) Efficiency (%) 60 100 50 60 40 Power Dissipation Vcc=5V RL=8Ω + ≥ 15μH F=1kHz THD+N≤1% 0.2 0.4 0.6 0.8 Output Power (W) 1.0 1.2 40 Power Dissipation 25 Vcc=3V RL=8Ω + ≥ 15μH F=1kHz THD+N≤1% 0.4 0 0.5 50 20 20 0 0.0 0 1.4 0 0.0 0.1 0.2 0.3 Output Power (W) Figure 12. Output power vs. power supply voltage 3.5 3.0 2.5 2.0 1.5 THD+N=1% 1.0 0.5 0.0 RL = 4Ω + ≥ 15μH F = 1kHz BW < 30kHz Tamb = 25°C THD+N=10% Figure 13. Output power vs. power supply voltage 2.0 RL = 8Ω + ≥ 15μH F = 1kHz BW < 30kHz Tamb = 25°C THD+N=10% 1.0 Output power (W) Output power (W) 1.5 0.5 THD+N=1% 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Figure 14. PSRR vs. frequency 0 -10 -20 PSRR (dB) Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 4Ω + 15μH ΔR/R≤0.1% Tamb = 25°C Vcc=5V, 3.6V, 2.5V Figure 15. PSRR vs. frequency 0 -10 -20 PSRR (dB) Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 4Ω + 30μH ΔR/R≤0.1% Tamb = 25°C Vcc=5V, 3.6V, 2.5V -30 -40 -50 -60 -70 -80 20 -30 -40 -50 -60 -70 100 1000 Frequency (Hz) 10000 20k -80 20 100 1000 Frequency (Hz) 10000 20k Power Dissipation (mW) Power Dissipation (mW) 80 80 23/46 Electrical characteristics TS4962 Figure 16. PSRR vs. frequency 0 -10 -20 PSRR (dB) Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 4Ω + Filter ΔR/R≤0.1% Tamb = 25°C Vcc=5V, 3.6V, 2.5V Figure 17. PSRR vs. frequency 0 -10 -20 PSRR (dB) Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 8Ω + 15μH ΔR/R≤0.1% Tamb = 25°C Vcc=5V, 3.6V, 2.5V -30 -40 -50 -60 -70 -80 20 -30 -40 -50 -60 -70 100 1000 Frequency (Hz) 10000 20k -80 20 100 1000 Frequency (Hz) 10000 20k Figure 18. PSRR vs. frequency 0 -10 -20 PSRR (dB) Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 8Ω + 30μH ΔR/R≤0.1% Tamb = 25°C Vcc=5V, 3.6V, 2.5V Figure 19. PSRR vs. frequency 0 -10 -20 PSRR (dB) Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 8Ω + Filter ΔR/R≤0.1% Tamb = 25°C Vcc=5V, 3.6V, 2.5V -30 -40 -50 -60 -70 -80 20 -30 -40 -50 -60 -70 100 1000 Frequency (Hz) 10000 20k -80 20 100 1000 Frequency (Hz) 10000 20k Figure 20. PSRR vs. common mode input voltage Figure 21. CMRR vs. frequency 0 -10 -20 PSRR(dB) 0 Vripple = 200mVpp F = 217Hz, G = 6dB RL ≥ 4Ω + ≥ 15μH Tamb = 25°C Vcc=2.5V -20 CMRR (dB) -30 -40 -50 -60 -70 -80 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Vcc=3.6V RL=4Ω + 15μH G=6dB ΔVicm=200mVpp ΔR/R≤0.1% Cin=4.7μF Tamb = 25°C Vcc=5V, 3.6V, 2.5V -40 -60 Vcc=5V 3.5 4.0 4.5 5.0 20 100 Common Mode Input Voltage (V) 1000 Frequency (Hz) 10000 20k 24/46 TS4962 Electrical characteristics Figure 22. CMRR vs. frequency 0 RL=4Ω + 30μH G=6dB ΔVicm=200mVpp ΔR/R≤0.1% Cin=4.7μF Tamb = 25°C Figure 23. CMRR vs. frequency 0 RL=4Ω + Filter G=6dB ΔVicm=200mVpp ΔR/R≤0.1% Cin=4.7μF Tamb = 25°C -20 CMRR (dB) -20 CMRR (dB) Vcc=5V, 3.6V, 2.5V Vcc=5V, 3.6V, 2.5V -40 -40 -60 -60 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k Figure 24. CMRR vs. frequency 0 RL=8Ω + 15μH G=6dB ΔVicm=200mVpp ΔR/R≤0.1% Cin=4.7μF Tamb = 25°C Figure 25. CMRR vs. frequency 0 RL=8Ω + 30μH G=6dB ΔVicm=200mVpp ΔR/R≤0.1% Cin=4.7μF Tamb = 25°C -20 CMRR (dB) -20 CMRR (dB) Vcc=5V, 3.6V, 2.5V Vcc=5V, 3.6V, 2.5V -40 -40 -60 -60 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k Figure 26. CMRR vs. frequency Figure 27. CMRR vs. common mode input voltage -20 0 RL=8Ω + Filter G=6dB ΔVicm=200mVpp ΔR/R≤0.1% Cin=4.7μF Tamb = 25°C -30 CMRR(dB) -20 CMRR (dB) Vcc=5V, 3.6V, 2.5V -40 ΔVicm = 200mVpp F = 217Hz G = 6dB RL ≥ 4Ω + ≥ 15μH Tamb = 25°C Vcc=2.5V -40 -50 Vcc=3.6V -60 -60 -70 0.0 Vcc=5V 20 100 1000 Frequency (Hz) 10000 20k 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Common Mode Input Voltage (V) 25/46 Electrical characteristics TS4962 Figure 28. THD+N vs. output power 10 RL = 4Ω + 15μH F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Figure 29. THD+N vs. output power 10 RL = 4Ω + 30μH or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V THD + N (%) 0.1 THD + N (%) 1 Vcc=2.5V 1 0.1 0.01 1E-3 0.01 0.1 Output Power (W) 1 3 0.01 1E-3 0.01 0.1 Output Power (W) 1 3 Figure 30. THD+N vs. output power 10 RL = 8Ω + 15μH F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Figure 31. THD+N vs. output power 10 RL = 8Ω + 30μH or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V THD + N (%) 0.1 THD + N (%) 1 Vcc=2.5V 1 0.1 0.01 1E-3 0.01 0.1 Output Power (W) 1 2 0.01 1E-3 0.01 0.1 Output Power (W) 1 2 Figure 32. THD+N vs. output power 10 RL = 4Ω + 15μH F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V Figure 33. THD+N vs. output power 10 RL = 4Ω + 30μH or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V THD + N (%) 1 THD + N (%) 1 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 3 1E-3 0.01 0.1 Output Power (W) 1 3 26/46 TS4962 Electrical characteristics Figure 34. THD+N vs. output power 10 RL = 8Ω + 15μH F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V Figure 35. THD+N vs. output power 10 RL = 8Ω + 30μH or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C Vcc=5V Vcc=3.6V Vcc=2.5V THD + N (%) 1 THD + N (%) 1 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 2 1E-3 0.01 0.1 Output Power (W) 1 2 Figure 36. THD+N vs. frequency 10 RL=4Ω + 15μH G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Figure 37. THD+N vs. frequency 10 RL=4Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Po=1.4W 1 THD + N (%) Po=1.4W 1 THD + N (%) Po=0.7W 0.1 0.1 Po=0.7W 0.01 50 100 1000 Frequency (Hz) 10000 20k 0.01 50 100 1000 Frequency (Hz) 10000 20k Figure 38. THD+N vs. frequency 10 RL=4Ω + 15μH G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Figure 39. THD+N vs. frequency 10 RL=4Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Po=0.85W 1 THD + N (%) 0.1 THD + N (%) Po=0.42W Po=0.85W 1 0.1 Po=0.42W 0.01 50 100 1000 Frequency (Hz) 10000 20k 0.01 50 100 1000 Frequency (Hz) 10000 20k 27/46 Electrical characteristics TS4962 Figure 40. THD+N vs. frequency 10 RL=4Ω + 15μH G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C Figure 41. THD+N vs. frequency 10 RL=4Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C Po=0.35W 1 THD + N (%) 0.1 THD + N (%) Po=0.17W Po=0.35W 1 0.1 Po=0.17W 0.01 50 100 1000 Frequency (Hz) 10000 20k 0.01 50 100 1000 Frequency (Hz) 10000 20k Figure 42. THD+N vs. frequency 10 RL=8Ω + 15μH G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Figure 43. THD+N vs. frequency 10 RL=8Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C Po=0.85W Po=0.85W 1 THD + N (%) 1 THD + N (%) Po=0.42W 0.1 0.1 Po=0.42W 0.01 50 100 1000 Frequency (Hz) 10000 20k 0.01 50 100 1000 Frequency (Hz) 10000 20k Figure 44. THD+N vs. frequency 10 RL=8Ω + 15μH G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Figure 45. THD+N vs. frequency 10 RL=8Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C Po=0.45W Po=0.45W 1 THD + N (%) 1 THD + N (%) Po=0.22W 0.1 0.1 Po=0.22W 0.01 50 100 1000 Frequency (Hz) 10000 20k 0.01 50 100 1000 Frequency (Hz) 10000 20k 28/46 TS4962 Electrical characteristics Figure 46. THD+N vs. frequency 10 RL=8Ω + 15μH G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C Figure 47. THD+N vs. frequency 10 RL=8Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C 1 THD + N (%) Po=0.1W THD + N (%) Po=0.18W 1 Po=0.18W Po=0.1W 0.1 0.1 0.01 50 100 1000 Frequency (Hz) 10000 20k 0.01 50 100 1000 Frequency (Hz) 10000 20k Figure 48. Gain vs. frequency 8 Figure 49. Gain vs. frequency 8 Differential Gain (dB) 4 Vcc=5V, 3.6V, 2.5V Differential Gain (dB) 6 6 4 Vcc=5V, 3.6V, 2.5V 2 RL=4Ω + 15μH G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k 2 RL=4Ω + 30μH G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k 0 0 Figure 50. Gain vs. frequency 8 Figure 51. Gain vs. frequency 8 Differential Gain (dB) Differential Gain (dB) 6 6 Vcc=5V, 3.6V, 2.5V 4 RL=8Ω + 15μH G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k 4 Vcc=5V, 3.6V, 2.5V 2 RL=4Ω + Filter G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k 2 0 0 29/46 Electrical characteristics TS4962 Figure 52. Gain vs. frequency 8 Figure 53. Gain vs. frequency 8 Differential Gain (dB) Vcc=5V, 3.6V, 2.5V 4 RL=8Ω + 30μH G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k Differential Gain (dB) 6 6 Vcc=5V, 3.6V, 2.5V 4 RL=8Ω + Filter G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k 2 2 0 0 Figure 54. Gain vs. frequency Figure 55. Startup & shutdown time VCC = 5V, G = 6dB, Cin= 1µF (5ms/div) Vo1 8 Differential Gain (dB) 6 Vcc=5V, 3.6V, 2.5V 4 RL=No Load G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C 20 100 1000 Frequency (Hz) 10000 20k Vo2 Standby Vo1-Vo2 2 0 Figure 56. Startup & shutdown time Figure 57. Startup & shutdown time VCC = 3V, G = 6dB, Cin= 1µF (5ms/div) VCC = 5V, G = 6dB, Cin= 100nF (5ms/div) Vo1 Vo1 Vo2 Vo2 Standby Standby Vo1-Vo2 Vo1-Vo2 30/46 TS4962 Electrical characteristics Figure 58. Startup & shutdown time Figure 59. Startup & shutdown time VCC = 3V, G = 6dB, Cin= 100nF (5ms/div) VCC = 5V, G = 6dB, No Cin (5ms/div) Vo1 Vo1 Vo2 Vo2 Standby Standby Vo1-Vo2 Vo1-Vo2 Figure 60. Startup & shutdown time VCC = 3V, G = 6dB, No Cin (5ms/div) Vo1 Vo2 Standby Vo1-Vo2 31/46 Application information TS4962 4 4.1 Application information Differential configuration principle The TS4962 is a monolithic fully-differential input/output class D power amplifier. The TS4962 also includes a common-mode feedback loop that controls the output bias value to average it at VCC/2 for any DC common mode input voltage. This allows the device to always have a maximum output voltage swing, and by consequence, maximize the output power. Moreover, as the load is connected differentially compared to a single-ended topology, the output is four times higher for the same power supply voltage. The advantages of a full-differential amplifier are: ● ● ● ● ● High PSRR (power supply rejection ratio). High common mode noise rejection. Virtually zero pop without additional circuitry, giving a faster start-up time compared to conventional single-ended input amplifiers. Easier interfacing with differential output audio DAC. No input coupling capacitors required because of common mode feedback loop. As the differential function is directly linked to external resistor mismatching, paying particular attention to this mismatching is mandatory in order to obtain the best performance from the amplifier. The main disadvantage is: ● 4.2 Gain in typical application schematic Typical differential applications are shown in Figure 1 on page 8. In the flat region of the frequency-response curve (no input coupling capacitor effect), the differential gain is expressed by the relation: AV diff 300 -----------------------------= Out – Out- = --------+ R in In – In + - with Rin expressed in kΩ. Due to the tolerance of the internal 150kΩ feedback resistor, the differential gain is in the range (no tolerance on Rin): 273 --------- ≤ A V ≤ 327 --------diff R in R in 32/46 TS4962 Application information 4.3 Common mode feedback loop limitations As explained previously, the common mode feedback loop allows the output DC bias voltage to be averaged at VCC/2 for any DC common mode bias input voltage. However, due to Vicm limitation in the input stage (see Table 3: Operating conditions on page 7), the common mode feedback loop can play its role only within a defined range. This range depends upon the values of VCC and Rin (AVdiff). To have a good estimation of the Vicm value, we can apply this formula (no tolerance on Rin): V CC × R in + 2 × V IC × 150k Ω V icm = ----------------------------------------------------------------------------2 × ( R in + 150k Ω) (V) with In + In V IC = --------------------2 + - (V) and the result of the calculation must be in the range: 0.5V ≤ V icm ≤ V CC – 0.8V Due to the +/-9% tolerance on the 150kΩ resistor, it’s also important to check Vicm in these conditions: V CC × R in + 2 × V IC × 163.5k Ω V CC × R in + 2 × V IC × 136.5k Ω ---------------------------------------------------------------------------------- ≤ V icm ≤ ---------------------------------------------------------------------------------2 × ( R in + 136.5k Ω) 2 × ( R in + 163.5k Ω) If the result of Vicm calculation is not in the previous range, input coupling capacitors must be used (with VCC between 2.4V and 2.5V, input coupling capacitors are mandatory). For example: With VCC=3V, Rin=150k and VIC=2.5V, we typically find Vicm=2V, which is lower than 3V-0.8V=2.2V. With 136.5kΩ we find 1.97V and with 163.5kΩ we have 2.02V. So, no input coupling capacitors are required. 4.4 Low frequency response If a low frequency bandwidth limitation is requested, it is possible to use input coupling capacitors. In the low frequency region, Cin (input coupling capacitor) starts to have an effect. Cin forms, with Rin, a first order high-pass filter with a -3dB cut-off frequency: 1 F CL = ------------------------------------2 π × R in × C in (Hz) So, for a desired cut-off frequency we can calculate Cin, 1 C in = --------------------------------------2 π × R in × F CL (F) with Rin in Ω and FCL in Hz. 33/46 Application information TS4962 4.5 Decoupling of the circuit A power supply capacitor, referred to as CS, is needed to correctly bypass the TS4962. The TS4962 has a typical switching frequency at 250kHz and output fall and rise time about 5ns. Due to these very fast transients, careful decoupling is mandatory. A 1µF ceramic capacitor is enough, but it must be located very close to the TS4962 in order to avoid any extra parasitic inductance being created by an overly long track wire. In relation with dI/dt, this parasitic inductance introduces an overvoltage that decreases the global efficiency and, if it is too high, may cause a breakdown of the device. In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its current capability is also important. A 0603 size is a good compromise, particularly when a 4Ω load is used. Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor used at 5V loses about 50% of its value. In fact, with a 5V power supply voltage, the decoupling value is about 0.5µF instead of 1µF. As CS has particular influence on the THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In addition, less decoupling means higher overshoots, which can be problematic if they reach the power supply AMR value (6V). 4.6 Wake-up time (tWU) When the standby is released to set the device ON, there is a wait of about 5ms. The TS4962 has an internal digital delay that mutes the outputs and releases them after this time in order to avoid any pop noise. 4.7 Shutdown time (tSTBY) When the standby command is set, the time required to put the two output stages into high impedance and to put the internal circuitry in standby mode is about 5ms. This time is used to decrease the gain and avoid any pop noise during the shutdown phase. 4.8 Consumption in standby mode Between the standby pin and GND there is an internal 300kΩ resistor. This resistor forces the TS4962 to be in standby mode when the standby input pin is left floating. However, this resistor also introduces additional power consumption if the standby pin voltage is not 0V. For example, with a 0.4V standby voltage pin, Table 3: Operating conditions on page 7 shows that you must add 0.4V/300kΩ=1.3µA in typical (0.4V/273kΩ=1.46µA in maximum) to the standby current specified in Table 5 on page 9. 34/46 TS4962 Application information 4.9 Single-ended input configuration It's possible to use the TS4962 in a single-ended input configuration. However, input coupling capacitors are needed in this configuration. The schematics in Figure 61 show a single-ended input typical application. Figure 61. Single-ended input typical application Vcc 6 Ve Standby Vcc 1 Stdby 300k Internal Bias 150k Out+ 5 Output PWM H Bridge SPEAKER 150k Oscillator GND 7 GND 8 OutGND Cs 1u Cin GND Rin 4 InIn+ 3 + Rin Cin GND All formulas are identical except for the gain with Rin in kΩ: AV sin gle Ve = ------------------------------ = 300 --------+ R in Out – Out And, due to the internal resistor tolerance we have: 327 273 --------- ≤ A V ≤ --------sin gle R in R in In the event that multiple single-ended inputs are summed, it is important that the impedance on both TS4962 inputs (In- and In+) are equal. Figure 62. Typical application schematic with multiple single-ended inputs Vcc Vek Standby Cink GND Ve1 Cin1 Rin1 4 Rink 1 Stdby 300k Internal Bias 150k Out+ 5 Output PWM H Bridge SPEAKER 150k Oscillator GND 7 GND 8 OutGND 6 Vcc Cs 1u 3 GND Ceq Req InIn+ + - GND 35/46 Application information We have the following equations: + 300 300 Out – Out = V e1 × ------------ + …+ V ek × -----------R ink R in1 k (V) TS4962 C eq = j=1 Σ C in i C in i 1 = ------------------------------------------------------2× π× R ×F ini CL i (F) 1 R eq = -----------------k j =1 ∑ ---------Rini 1 In general, for mixed situations (single-ended and differential inputs) it is best to use the same rule, that is, to equalize impedance on both TS4962 inputs. 4.10 Output filter considerations The TS4962 is designed to operate without an output filter. However, due to very sharp transients on the TS4962 output, EMI radiated emissions may cause some standard compliance issues. These EMI standard compliance issues can appear if the distance between the TS4962 outputs and the loudspeaker terminal is long (typically more than 50mm, or 100mm in both directions, to the speaker terminals). As the PCB layout and internal equipment device are different for each configuration, it is difficult to provide a one-size-fits-all solution. However, to decrease the probability of EMI issues, there are several simple rules to follow: ● ● ● Reduce, as much as possible, the distance between the TS4962 output pins and the speaker terminals. Use ground planes for “shielding” sensitive wires. Place, as close as possible to the TS4962 and in series with each output, a ferrite bead with a rated current at minimum 2.5A and impedance greater than 50Ω at frequencies above 30MHz. If, after testing, these ferrite beads are not necessary, replace them by a short-circuit. Allow enough footprint to place, if necessary, a capacitor to short perturbations to ground (see Figure 63). ● 36/46 TS4962 Figure 63. Method for shorting pertubations to ground Ferrite chip bead From TS4962 output about 100pF Gnd To speaker Application information In the case where the distance between the TS4962 output and the speaker terminals is high, it's possible to have low frequency EMI issues due to the fact that the typical operating frequency is 250kHz. In this configuration, we recommend using an output filter (as represented in Figure 1: Typical application schematics on page 8). It should be placed as close as possible to the device. 4.11 Several examples with summed inputs Example 1: Dual differential inputs Figure 64. Typical application schematic with dual differential inputs Vcc Standby 1 Stdby 300k R2 E2+ R1 E1+ E1R1 E2R2 150k Oscillator GND 7 GND Out4 Internal Bias 150k Out+ 5 Output PWM H Bridge SPEAKER 8 GND 6 Vcc Cs 1u 3 InIn+ + - With (Ri in kΩ): Out – Out A V = ------------------------------ = 300 --------1 + R1 E1 – E1 Out – OutA V = ------------------------------ = 300 --------2 + R2 E2 – E2 V CC × R 1 × R 2 + 300 × ( V IC1 × R 2 + V IC2 × R 1 ) 0.5V ≤ ------------------------------------------------------------------------------------------------------------------------------- ≤ V CC – 0.8V 300 × ( R 1 + R 2 ) + 2 × R 1 × R 2 E1 + E1 E2 + E2 V IC = ------------------------ and V IC = -----------------------1 2 2 2 + + + + - 37/46 Application information TS4962 Example 2: One differential input plus one single ended input Figure 65. Typical application schematic with one differential input plus one singleended input Vcc Standby 1 Stdby 300k R2 E2+ C1 E1+ E2R2 150k GND C1 R1 Oscillator GND 7 GND OutR1 4 Internal Bias 150k Out+ 5 Output PWM H Bridge SPEAKER 8 GND 6 Vcc Cs 1u 3 InIn+ + - With (Ri in kΩ) : Out – Out 300 A V = ------------------------------ = --------1 + R1 E1 300 Out – OutA V = ------------------------------ = --------2 + R2 E2 – E2 1 C 1 = ------------------------------------2 π × R 1 × F CL (F) + + - 38/46 TS4962 Demo board 5 Demo board A demo board for the TS4962 is available. For more information about this demo board, refer to the Application Note AN2406. Figure 66. Schematic diagram of mono class D demoboard for the TS4962 DFN package Vcc Cn4 1 2 3 Cn2 GND 1 Stdby 300k C1 100nF Vcc C3 1uF GND Internal Bias 150k Out+ 5 Output PWM H Bridge 150k Oscillator GND 7 8 Out6 Vcc U1 Cn6 Gnd Cn1 Negative input R1 150k Cn5 Positive Output Negative Output Speaker Positive Input Input 1 2 3 4 InIn+ 3 + GND R2 100nF C2 150k TS4962DFN Cn3 GND Figure 67. Top view 39/46 Demo board Figure 68. Bottom layer TS4962 Figure 69. Top layer 40/46 TS4962 Recommended footprint 6 Recommended footprint Figure 70. Recommended footprint for TS4962 DFN package 1.8mm 0.8mm 0.35mm 2.2mm 0.65mm 1.4mm 41/46 DFN8 package information TS4962 7 DFN8 package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 42/46 TS4962 Figure 71. DFN8 3x3 exposed pad package Dimensions Ref. Min. A A1 A2 A3 b D D2 E E2 e L 0.50 0.25 2.85 1.60 2.85 1.10 0.50 Millimeters Typ. 0.60 0.02 0.40 0.15 0.30 3.00 1.70 3.00 1.20 0.65 0.55 0.60 19.70 0.22 0.35 3.15 1.80 3.15 1.30 9.85 112.20 63.00 112.20 43.30 Max. 0.65 0.05 Min. 19.70 DFN8 package information Mils Typ. 23.62 0.79 15.75 5.90 11.81 118.10 66.93 118.10 47.25 25.60 21.65 23.62 8.67 13.78 124.00 70.87 124.00 51.18 Max. 25.60 1.97 Note: DFN8 exposed pad (e2 x d2) is connected to pin number 7. For enhanced thermal performance, the exposed pad must be soldered to a copper area on the PCB, acting as heatsink. This copper area can be electrically connected to pin7 or left floating. 43/46 Ordering information TS4962 8 Ordering information Table 11. Order codes Temperature range -40° C, +85°C Package DFN8 Packaging Tape & reel Marking K962 Part number TS4962IQT 44/46 TS4962 Revision history 9 Revision history Table 12. Date 31-May-2006 Document revision history Revision 5 Changes Modified package information. Now includes only standard DFN8 package. Added curves in Section 3: Electrical characteristics. Added evaluation board information in Section 5: Demo board. Added recommended footprint. Added paragraph about rated voltage of capacitor in Section 4.5: Decoupling of the circuit. 16-Oct-2006 6 10-Jan-2007 7 45/46 TS4962 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 46/46
TS4962IQT 价格&库存

很抱歉,暂时无法提供与“TS4962IQT”相匹配的价格&库存,您可以联系我们找货

免费人工找货