0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS421IQT

TS421IQT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFDFN8_EP

  • 描述:

    IC AMP AUDIO PWR .367W MONO 8DFN

  • 数据手册
  • 价格&库存
TS421IQT 数据手册
TS419, TS421 Datasheet 360 mW mono amplifier with standby mode Features TS419IST : MiniSO8 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 Standby TS421IQT : DFN8 GND 1 8 VCC VOUT2 2 7 VOUT1 Standby 3 6 VIN+ Bypass 4 5 VIN- • Operating from VCC = 2 V to 5.5 V • • Standby mode active high (TS419) or low (TS421) Output power into 16 Ω: 367 mW @ 5 V with 10% THD+N max or 295 mW @ 5 V and 110 mW @ 3.3 V with 1% THD+N max. Low current consumption: 2.5 mA max. High signal-to-noise ratio: 95 dB (A) at 5 V PSRR: 56 dB typ. at 1 kHz, 46 dB at 217 Hz Short-circuit limitation ON/OFF click reduction circuitry Available in MiniSO8 and DFN 3x3 • • • • • • Applications • • • • 16/32 Ω earpiece or receiver speaker driver Mobile and cordless phones (analog / digital) PDAs & computers Portable appliances Description Maturity status link TS3431 The TS419/TS421 is a monaural audio power amplifier driving in BTL mode a 16 or 32 Ω earpiece or receiver speaker. The main advantage of this configuration is to get rid of bulky output capacitors. Capable of descending to low voltages, it delivers up to 220 mW per channel (into 16 Ω loads) of continuous average power with 0.2% THD+N in the audio bandwidth from a 5 V power supply. An externally controlled standby mode reduces the supply current to 10 nA (typ.). The TS419 / TS421 can be configured by external gain-setting resistors. DS3048 - Rev 5 - May 2019 For further information contact your local STMicroelectronics sales office. www.st.com TS419, TS421 Maximum ratings 1 Maximum ratings Table 1. Absolute maximum ratings Symbol VCC Vi Tstg Tj Parameter Supply voltage Value Unit 6 V -0.3 V to VCC +0.3 V V -65 to +150 °C 150 °C (1) Input voltage Storage temperature Maximum junction temperature Thermal resistance junction-to-ambient Rthja 215 MiniSO8 Power dissipation (2) Pd °C/W 70 DFN8 0.58 MiniSO8 W 1.79 DFN8 ESD Human body model (pin to pin): TS419 (3), TS421 1.5 kV ESD Machine Model - 220 pF - 240 pF (pin to pin) 100 V Latch-up Immunity (All pins) 200 mA Lead temperature (soldering, 10 s) 250 Latch-up Output short-circuit to VCC or GND °C continuous (4) 1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25 °C, Tj = 150 °C. 3. TS419 stands 1.5 KV on all pins except standby pin which stands 1 KV 4. Attention must be paid to continous power dissipation (VDD x 300 mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy. Table 2. Operating conditions Symbol VCC RL Toper Parameter Supply voltage Load resistor Operating free air temperature range Load capacitor CL RL = 16 to 100 Ω RL > 100 Ω VICM VSTB Value Unit 2 to 5.5 V ≥ 16 Ω -40 to +85 °C 400 100 Common mode input voltage range GND to VCC - 1 V Standby voltage input 1.5 ≤ VSTB ≤ VCC TS421 ACTIVE / TS419 in STANDBY GND ≤ VSTB ≤ 0.4 TS421 in STANDBY / TS419 ACTIVE (1) pF V V Thermal resistance junction-to-ambient Rthja MiniSO8 190 DFN8 41 °C/W (2) DS3048 - Rev 5 page 2/47 TS419, TS421 Maximum ratings Symbol Parameter Value Unit Twu Wake-up time from standby to active mode (Cb = 1 μF) (3) ≥ 0.12 s 1. The minimum current consumption (ISTANDBY) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature range. 2. When mounted on a 4-layer PCB. 3. For more details on TWU, please refer to application note section on Wake-up time page 28. DS3048 - Rev 5 page 3/47 TS419, TS421 Typical application schematics 2 Typical application schematics Figure 1. Application schematics Table 3. Application components information Components RIN Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fcl = 1 / (2 x Pi x RIN x CIN)). CIN Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal. RFEED DS3048 - Rev 5 Functional description Feedback resistor which sets the closed loop gain in conjunction with RIN. AV = Closed Loop Gain= 2 x RFEED / RIN. CS Supply bypass capacitor which provides power supply filtering. CB Bypass capacitor which provides half supply filtering. page 4/47 TS419, TS421 Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics VCC = +5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Symbol ICC Parameter Min. Supply current No input signal, no load Typ. Max. Unit 6 8 mA 10 1000 nA 5 25 mV Standby current ISTANDBY No input signal, VSTANDBY = GND for TS421 No input signal, VSTANDBY = VCC for TS419 VOO Output offset voltage No input signal, RL = 16 Ω or 32 Ω, Rfeed = 20 kΩ Output power 190 THD+N = 0.1% Max, F = 1 kHz, RL = 32 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 32 Ω 166 Output power PO 258 THD+N = 10% Max, F = 1 kHz, RL = 32 Ω mW Output power 270 THD+N = 0.1% Max, F = 1 kHz, RL = 16 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 16 Ω 240 Output power Total harmonic distortion + noise (Av = 2) 0.15 RL = 32 Ω, Pout = 150 mW, 20 Hz ≤ F ≤ 20 kHz 0.2 RL = 16 Ω, Pout = 220 mW, 20 Hz ≤ F ≤ 20 kHz PSRR SNR ϕM GM GBP SR Power supply rejection ratio (Av = 2) F = 1 kHz, Vripple = 200 mVpp, input grounded, Cb = 1 μF Signal-to-Noise Ratio (Filter Type A, Av = 2) (1) (RL = 32 Ω, THD +N < 0.5%, 20 Hz ≤ F ≤ 20 kHz) Phase margin at unity gain RL = 16 Ω, CL = 400 pF Gain margin RL = 16 Ω, CL = 400 pF Gain bandwidth product RL = 16 Ω Slew rate RL = 16 Ω 295 367 THD+N = 10% Max, F = 1 kHz, RL = 16 Ω THD + N 207 % 50 56 dB 85 98 dB 58 Degrees 18 dB 1.1 MHz 0.4 V/µS 1. Guaranteed by design and evaluation. DS3048 - Rev 5 page 5/47 TS419, TS421 Electrical characteristics Table 5. Electrical characteristics VCC = +3.3 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Symbol ICC Parameter Min. Supply current No input signal, no load Typ. Max. Unit 1.8 2.5 mA 10 1000 nA 5 25 mV Standby current ISTANDBY No input signal, VSTANDBY = GND for TS421 No input signal, VSTANDBY = VCC for TS419 VOO Output offset voltage No input signal, RL = 16 Ω or 32 Ω, Rfeed = 20 kΩ Output power 75 THD+N = 0.1% Max, F = 1 kHz, RL = 32 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 32 Ω 65 Output power PO 102 THD+N = 10% Max, F = 1 kHz, RL = 32 Ω mW Output power 104 THD+N = 0.1% Max, F = 1 kHz, RL = 16 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 16 Ω 91 Output power Total harmonic distortion + noise (Av = 2) 0.15 RL = 32 Ω, Pout = 150 mW, 20 Hz ≤ F ≤ 20 kHz 0.2 RL = 16 Ω, Pout = 220 mW, 20 Hz ≤ F ≤ 20 kHz PSRR SNR ϕM GM GBP SR Note: DS3048 - Rev 5 Power supply rejection ratio (Av = 2) F = 1 kHz, Vripple = 200 mVpp, input grounded, Cb = 1 μF Signal-to-Noise Ratio (Weighted A, Av = 2) (RL = 32 Ω, THD +N < 0.5%, 20 Hz ≤ F ≤ 20 kHz) 113 143 THD+N = 10% Max, F = 1 kHz, RL = 16 Ω THD + N 81 % 50 56 dB 82 94 dB 58 Degrees 18 dB 1.1 MHz 0.4 V/µS Phase margin at unity gain RL = 16 Ω, CL = 400 pF Gain margin RL = 16 Ω, CL = 400 pF Gain bandwidth product RL = 16 Ω Slew rate RL = 16 Ω All electrical values are guaranted with correlation measurements at 2 V and 5 V. page 6/47 TS419, TS421 Electrical characteristics Table 6. Electrical characteristics VCC = +2.5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Symbol ICC Parameter Min. Supply current No input signal, no load Typ. Max. Unit 1.7 2.5 mA 10 1000 nA 5 25 mV Standby current ISTANDBY No input signal, VSTANDBY = GND for TS421 No input signal, VSTANDBY = VCC for TS419 VOO Output offset voltage No input signal, RL = 16 Ω or 32 Ω, Rfeed = 20 kΩ Output power 37 THD+N = 0.1% Max, F = 1 kHz, RL = 32 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 32 Ω 32 Output power PO 52 THD+N = 10% Max, F = 1 kHz, RL = 32 Ω mW Output power 50 THD+N = 0.1% Max, F = 1 kHz, RL = 16 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 16 Ω 44 Output power Total harmonic distortion + noise (Av = 2) 0.15 RL = 32 Ω, Pout = 150 mW, 20 Hz ≤ F ≤ 20 kHz 0.2 RL = 16 Ω, Pout = 220 mW, 20 Hz ≤ F ≤ 20 kHz PSRR SNR ϕM GM GBP SR Note: DS3048 - Rev 5 Power supply rejection ratio (Av = 2) F = 1 kHz, Vripple = 200 mVpp, input grounded, Cb = 1 μF Signal-to-Noise Ratio (Weighted A, Av = 2) (RL = 32 Ω, THD +N < 0.5%, 20 Hz ≤ F ≤ 20 kHz) 55 70 THD+N = 10% Max, F = 1 kHz, RL = 16 Ω THD + N 41 % 50 56 dB 80 91 dB 58 Degrees 18 dB 1.1 MHz 0.4 V/µS Phase margin at unity gain RL = 16 Ω, CL = 400 pF Gain margin RL = 16 Ω, CL = 400 pF Gain bandwidth product RL = 16 Ω Slew rate RL = 16 Ω All electrical values are guaranted with correlation measurements at 2 V and 5 V. page 7/47 TS419, TS421 Electrical characteristics Table 7. Electrical characteristics VCC = +2 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) Symbol ICC Parameter Min. Supply current No input signal, no load Typ. Max. Unit 1.7 2.5 mA 10 1000 nA 5 25 mV Standby current ISTANDBY No input signal, VSTANDBY = GND for TS421 No input signal, VSTANDBY = VCC for TS419 VOO Output offset voltage No input signal, RL = 16 Ω or 32 Ω, Rfeed = 20 kΩ Output power 20 THD+N = 0.1% Max, F = 1 kHz, RL = 32 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 32 Ω 19 Output power PO 30 THD+N = 10% Max, F = 1 kHz, RL = 32 Ω mW Output power 26 THD+N = 0.1% Max, F = 1 kHz, RL = 16 Ω Output power THD+N = 1% Max, F = 1 kHz, RL = 16 Ω 24 Output power Total harmonic distortion + noise (Av = 2) 0.1 RL = 32 Ω, Pout = 150 mW, 20 Hz ≤ F ≤ 20 kHz 0.15 RL = 16 Ω, Pout = 220 mW, 20 Hz ≤ F ≤ 20 kHz PSRR SNR ϕM GM GBP SR Power supply rejection ratio (Av = 2) (1) F = 1 kHz, Vripple = 200 mVpp, input grounded, Cb = 1 μF Signal-to-Noise Ratio (Weighted A, Av = 2) (1) (RL = 32 Ω, THD +N < 0.5%, 20 Hz ≤ F ≤ 20 kHz) Phase margin at unity gain RL = 16 Ω, CL = 400 pF Gain margin RL = 16 Ω, CL = 400 pF Gain bandwidth product RL = 16 Ω Slew rate RL = 16 Ω 30 40 THD+N = 10% Max, F = 1 kHz, RL = 16 Ω THD + N 23 % 49 54 dB 80 89 dB 58 Degrees 20 dB 1.1 MHz 0.4 V/µS 1. Guaranteed by design and evaluation. DS3048 - Rev 5 page 8/47 TS419, TS421 Electrical characteristics curves Electrical characteristics curves Figure 2. Open loop gain and phase vs. frequency Figure 3. Open loop gain and phase vs. frequency Vcc = 2 V 180 Gain 60 180 160 140 80 60 0 40 -40 0.1 40 80 20 60 0 40 10 100 Frequency (kHz) 1000 20 -20 0 1 -20 10000 -40 0.1 Figure 4. Open loop gain and phase vs. frequency Vcc = 5 V 0 1 10 100 Frequency (kHz) 1000 -20 10000 Figure 5. Open loop gain and phase vs. frequency ZL = 8 Ω 180 Vcc = 5V ZL = 8Ω+400pF Tamb = 25°C 80 Gain 60 180 Vcc = 2V ZL = 8Ω+400pF Tamb = 25°C 80 160 140 Gain 60 Phase 80 20 60 0 40 20 -20 -40 0.1 DS3048 - Rev 5 0 1 10 100 Frequency (kHz) 1000 -20 10000 160 140 120 Gain (dB) 100 Phase (Deg) Gain (dB) 120 40 140 100 Phase 20 -20 160 120 Gain (dB) Phase 20 Phase (Deg) Gain (dB) 100 Gain 60 120 40 Vcc = 2V RL = 8Ω Tamb = 25°C 80 Phase (Deg) Vcc = 5V RL = 8Ω Tamb = 25°C 80 40 100 Phase 80 20 60 0 40 20 -20 -40 0.1 Phase (Deg) 4 0 1 10 100 Frequency (kHz) 1000 -20 10000 page 9/47 TS419, TS421 Electrical characteristics curves Figure 6. Open loop gain and phase vs. frequency RL = 16 Ω Figure 7. Open loop gain and phase vs. frequency RL = 16 Ω, Vcc = 2 V 180 180 60 160 140 Gain 60 160 140 120 100 Phase 80 20 60 0 40 100 Phase 80 20 60 0 40 20 -20 -40 0.1 Gain (dB) 40 Phase (Deg) Gain (dB) 120 40 20 -20 0 0 1 10 100 Frequency (kHz) 1000 -40 0.1 -20 10000 Figure 8. Open loop gain and phase vs. frequency ZL = 16 Ω, Vcc = 5 V 1 10 100 Frequency (kHz) 1000 -20 10000 Figure 9. Open loop gain and phase vs. frequency ZL = 16 Ω, Vcc = 2 V 180 180 Vcc = 5V ZL = 16Ω+400pF Tamb = 25°C 80 Gain 60 Vcc = 2V ZL = 16Ω+400pF Tamb = 25°C 80 160 140 Gain 60 80 20 60 0 40 20 -20 -40 0.1 DS3048 - Rev 5 Gain (dB) Phase Phase (Deg) Gain (dB) 100 40 1 10 100 Frequency (kHz) 1000 140 100 Phase 80 20 60 0 40 20 -20 0 0 -20 10000 160 120 120 40 Phase (Deg) Gain Vcc = 2V RL = 16Ω Tamb = 25°C 80 -40 0.1 Phase (Deg) Vcc = 5V RL = 16Ω Tamb = 25°C 80 1 10 100 Frequency (kHz) 1000 -20 10000 page 10/47 TS419, TS421 Electrical characteristics curves Figure 10. Open loop gain and phase vs. frequency Figure 11. Open loop gain and phase vs. frequency RL = 32 Ω RL = 32 Ω, Vcc = 2 V 180 180 Gain 60 Vcc = 2V RL = 32 Ω Tamb = 25°C 80 160 Gain 140 60 60 0 20 10 100 Frequency (kHz) 1000 20 100 80 Phase 60 40 20 -20 0 1 40 0 40 -20 -40 0.1 Gain (dB) 80 Phase Phase (Deg) Gain (dB) 20 100 140 120 120 40 160 -40 0.1 -20 10000 Phase (Deg) Vcc = 5V RL = 32Ω Tamb = 25°C 80 0 1 10 100 Frequency (kHz) 1000 -20 10000 Figure 12. Open loop gain and phase vs. frequency Figure 13. Open loop gain and phase vs. frequency ZL = 32 Ω ZL = 32 Ω, Vcc = 2 V 180 180 Gain 60 Vcc = 2V ZL = 32Ω+400pF Tamb = 25°C 80 160 Gain 140 60 60 0 40 20 -20 -40 0.1 DS3048 - Rev 5 Gain (dB) 80 Phase Phase (Deg) Gain (dB) 20 100 40 20 100 80 Phase 60 0 40 20 -20 0 0 1 10 100 Frequency (kHz) 1000 -20 10000 140 120 120 40 160 -40 0.1 Phase (Deg) Vcc = 5V ZL = 32Ω+400pF Tamb = 25°C 80 1 10 100 Frequency (kHz) 1000 -20 10000 page 11/47 TS419, TS421 Electrical characteristics curves Figure 15. Current consumption vs. standby voltage Vcc = 5 V Figure 14. Current consumption vs. power supply voltage 2.0 No load Ta=85°C Current Consumption (mA) Current Consumption (mA) 2.0 1.5 Ta=25°C Ta=-40°C 1.0 0.5 0.0 0 1 2 3 4 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 0.0 5 TS419 Vcc = 5V No load 0 1 Power Supply Voltage (V) 2 3 4 5 Standby Voltage (V) Figure 16. Current consumption vs. standby voltage Vcc = 3.3 V Figure 17. Current consumption vs. standby voltage Vcc = 2 V 2.0 2.0 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 0.0 TS419 Vcc = 3.3V No load 0 1 2 Standby Voltage (V) DS3048 - Rev 5 3 Current Consumption (mA) Current Consumption (mA) Ta=85°C 1.5 Ta=25°C 1.0 Ta=-40°C 0.5 0.0 TS419 Vcc = 2V No load 0 1 2 Standby Voltage (V) page 12/47 TS419, TS421 Electrical characteristics curves Figure 19. Current consumption vs. standby voltage Vcc = 3.3 V (TS421) Figure 18. Current consumption vs. standby voltage Vcc = 5 V (TS421) 2.5 2.0 Ta=25°C Ta=25°C 2.0 Current Consumption (mA) Current Consumption (mA) Ta=85°C 1.5 Ta=-40°C 1.0 0.5 0.0 TS421 Vcc = 5V No load 0 1 2 3 4 1.5 Ta=85°C 1.0 0.5 0.0 5 Ta=-40°C TS421 Vcc = 3.3V No load 0 1 Standby Voltage (V) Figure 20. Current consumption vs. standby voltage Vcc = 2 V (TS421) 550 500 450 1.5 Output power (mW) Current Consumption (mA) Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS421 Vcc = 2V No load 0 1 Standby Voltage (V) DS3048 - Rev 5 3 Figure 21. Output power vs. power supply voltage RL = 8 Ω 2.0 0.0 2 Standby Voltage (V) 400 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=1% 350 THD+N=10% 300 250 200 150 THD+N=0.1% 100 50 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Vcc (V) page 13/47 TS419, TS421 Electrical characteristics curves Figure 22. Output power vs. power supply voltage RL = 16 Ω Figure 23. Output power vs. power supply voltage RL = 32 Ω 500 Output power (mW) 400 350 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C 300 250 THD+N=10% 250 200 150 100 THD+N=0.1% 2.5 3.0 3.5 4.0 4.5 5.0 THD+N=1% 200 THD+N=10% 150 100 THD+N=0.1% 50 50 0 2.0 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C 300 THD+N=1% Output power (mW) 450 0 2.0 5.5 2.5 3.0 3.5 Vcc (V) Figure 24. Output power vs. power supply voltage RL = 64 Ω 5.5 THD+N=10% 50 350 250 200 150 4.0 Vcc (V) 4.5 5.0 THD+N=0.1% 50 0 3.5 THD+N=1% 300 100 THD+N=0.1% 3.0 THD+N=10% 400 THD+N=1% 100 2.5 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 450 RL = 64Ω F = 1kHz BW < 125kHz Tamb = 25°C Output power (mW) Output power (mW) 5.0 500 0 2.0 DS3048 - Rev 5 4.5 Figure 25. Output power vs. load resistor Vcc = 5 V 200 150 4.0 Vcc (V) 5.5 8 16 24 32 40 48 56 64 Load Resistance (W) page 14/47 TS419, TS421 Electrical characteristics curves Figure 26. Output power vs. load resistor Vcc = 3.3 V Figure 27. Output power vs. load resistor Vcc = 2.5 V 200 100 Output power (mW) THD+N=10% 150 THD+N=1% 100 50 THD+N=0.1% Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25°C 90 THD+N=1% 80 Output power (mW) Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 70 THD+N=10% 60 50 40 30 20 THD+N=0.1% 10 0 8 16 24 32 40 48 56 0 64 8 16 24 Load Resistance (W) Figure 28. Output power vs. load resistor Vcc = 2 V Output power (mW) 40 THD+N=1% 35 30 25 20 15 THD+N=0.1% 10 8 16 24 32 40 48 56 64 Vcc=5V F=1kHz THD+N=16Ω Vcc=2V Av=2 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C 10 0 10000 20k Standby=OFF 20 Vcc = 5V, 3.3V & 2.5V 10000 100000 -80 100 1000 10000 100000 Frequency (Hz) page 21/47 TS419, TS421 Electrical characteristics curves Figure 53. PSRR vs. bypass capacitor Cb = Cin = 1 µF Figure 54. PSRR vs. bypass capacitor Cb = 4.7 µF 0 0 Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C PSRR (dB) -20 -30 -40 -20 Vcc = 2V -30 -40 Vcc = 2V -50 -50 -60 -60 Vcc = 5V, 3.3V & 2.5V Vcc = 5V, 3.3V & 2.5V -70 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C -10 PSRR (dB) -10 100 1000 -70 10000 100 100000 Figure 55. PSRR vs. bypass capacitor Cb = 10 µF 10 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C -40 THD + N (%) PSRR (dB) -30 100000 Figure 56. THD + N vs. output power RL = 8 Ω 0 -20 10000 Frequency (Hz) Frequency (Hz) -10 1000 Vcc = 2V RL = 8Ω F = 20Hz Av = 4 1 Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V 0.1 Vcc=2.5V -50 0.01 -60 Vcc=3.3V Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) DS3048 - Rev 5 100000 1 10 Vcc=5V 100 Output Power (mW) page 22/47 TS419, TS421 Electrical characteristics curves Figure 57. THD + N vs. output power RL = 16 Ω Figure 58. THD + N vs. output power RL = 32 Ω 10 RL = 16Ω F = 20Hz Av = 4 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 Vcc=2V THD + N (%) THD + N (%) 10 Vcc=2.5V 0.01 0.01 Vcc=3.3V 1E-3 RL = 32Ω F = 20Hz Av = 4 1 Cb = 1µF Vcc=2V BW < 22kHz Tamb = 25°C Vcc=2.5V 0.1 1 Vcc=5V 10 1E-3 100 Vcc=3.3V 1 Figure 59. THD + N vs. output power RL = 8 Ω, Av = 4 Figure 60. THD + N vs. output power RL = 16 Ω, Av = 4 10 RL = 8Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 10 THD + N (%) 100 Output Power (mW) Output Power (mW) Vcc=2V Vcc=2.5V 0.1 0.01 Vcc=3.3V 1 Vcc=5V 10 Output Power (mW) DS3048 - Rev 5 Vcc=5V 10 100 RL = 16Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 0.01 Vcc=3.3V 1 10 Vcc=5V 100 Output Power (mW) page 23/47 TS419, TS421 Electrical characteristics curves Figure 61. THD + N vs. output power RL = 32 Ω, Av = 4 Figure 62. THD + N vs. output power RL = 8 Ω 10 RL = 32Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V RL = 8Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2V Vcc=2.5V 0.01 Vcc=3.3V 1E-3 1 10 Vcc=3.3V Vcc=5V 1 100 100 Output Power (mW) Output Power (mW) Figure 63. THD + N vs. output power RL = 16 Ω Figure 64. THD + N vs. output power RL = 32 Ω 10 10 RL = 16Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2V THD + N (%) THD + N (%) 10 Vcc=5V Vcc=2.5V RL = 32Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 0.1 Vcc=3.3V 1 10 Output Power (mW) DS3048 - Rev 5 Vcc=5V 100 Vcc=3.3V 1 10 Vcc=5V 100 Output Power (mW) page 24/47 TS419, TS421 Electrical characteristics curves Figure 65. THD + N vs. frequency RL = 8 Ω RL=8Ω Av=4 Cb = 1µF Bw < 125kHz Tamb = 25°C RL=16Ω Av=4 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C Vcc=2V, Po=28mW Vcc=2V, Po=20mW THD + N (%) THD + N (%) 0.1 Figure 66. THD + N vs. frequency RL = 16 Ω 0.01 Vcc=5V, Po=220mW Vcc=5V, Po=300mW 0.01 20 100 1000 10000 20k 20 100 Frequency (Hz) Frequency (Hz) Figure 67. THD + N vs. frequency RL = 32 Ω Signal to Noise Ratio (dB) THD + N (%) Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 100 1000 Frequency (Hz) DS3048 - Rev 5 Figure 68. Signal-to-noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz) 90 RL=32Ω Av=4 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C 20 10000 20k 1000 10000 20k Av = 4 Cb = 1µF THD+N < 0.5% 85 Tamb = 25°C RL=32Ω 80 RL=8Ω 75 70 2.0 RL=16Ω 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) page 25/47 TS419, TS421 Electrical characteristics curves Figure 69. Signal-to-noise ratio vs power supply voltage with weighted filter Type A Figure 70. Noise floor Vcc = 5 V Av = 4 Cb = 1µF 95 THD+N < 0.5% Tamb = 25°C 40 RL=32Ω Noise Floor ( VRms) Signal to Noise Ratio (dB) 100 90 85 RL=8Ω RL=16Ω 80 75 2.0 3.0 3.5 4.0 4.5 RL>=16Ω Vcc=5V Av=4 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C 20 10 0 2.5 Standby=OFF 30 5.0 Standby=ON 20 100 1000 10000 20k Frequency (Hz) Power Supply Voltage (V) Figure 71. Noise floor Vcc = 2 V Figure 72. PSRR vs. power supply voltage 0 40 -10 20 10 RL>=16Ω Vcc=2V Av=4 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=ON -30 PSRR (dB) Noise Floor ( VRms) -20 Standby=OFF 30 Vripple = 100mVrms Rfeed = 40kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C -40 Vcc = 2V -50 -60 -70 0 Vcc = 5V, 3.3V & 2.5V 20 100 1000 Frequency (Hz) DS3048 - Rev 5 10000 20k -80 100 1000 10000 100000 Frequency (Hz) page 26/47 TS419, TS421 Electrical characteristics curves Figure 74. PSRR vs. bypass capacitor Cb = Cin = 1 µF Figure 73. PSRR vs. input capacitor 0 Cin = 1µF, 220nF PSRR (dB) -20 -20 -30 -40 -30 Vcc = 2V -40 -50 -50 Cin = 100nF -60 Vripple = 200mVpp Av = 4 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C -10 PSRR (dB) -10 0 Vripple = 200mVpp Av = 4, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C 100 -60 1000 10000 100000 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 100000 Frequency (Hz) Frequency (Hz) Figure 75. PSRR vs. bypass capacitor Cb = Cin = 4.7 µF Figure 76. PSRR vs. bypass capacitor Cb = Cin = 10 µF 0 0 PSRR (dB) -20 -30 -10 -20 PSRR (dB) -10 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 Frequency (Hz) DS3048 - Rev 5 Vcc = 2V -40 -50 -50 -60 -30 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C 10000 100000 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 100000 Frequency (Hz) page 27/47 TS419, TS421 Electrical characteristics curves Figure 77. THD + N vs. output power RL = 8 Ω Figure 78. THD + N vs. output power RL = 16 Ω 10 RL = 8Ω F = 20Hz Av = 8 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 THD + N (%) THD + N (%) 10 Vcc=2V Vcc=2.5V Vcc=3.3V 0.01 1 10 RL = 16Ω F = 20Hz Av = 8 1 Cb = 1µF BW < 22kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 0.01 Vcc=5V 100 Vcc=3.3V 1 10 Output Power (mW) Figure 80. THD + N vs. output power RL = 8 Ω, Av = 8 10 RL = 32Ω F = 20Hz Av = 8 Cb = 1µF 1 BW < 22kHz Tamb = 25°C THD + N (%) THD + N (%) 10 Vcc=2V 0.01 Vcc=2.5V Vcc=3.3V 1 10 Output Power (mW) DS3048 - Rev 5 100 Output Power (mW) Figure 79. THD + N vs. output power RL = 32 Ω 0.1 Vcc=5V RL = 8Ω F = 1kHz Av = 8 Cb = 1µF 1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V 0.1 Vcc=5V Vcc=3.3V 100 0.01 1 Vcc=5V 10 100 Output Power (mW) page 28/47 TS419, TS421 Electrical characteristics curves Figure 81. THD + N vs. output power RL = 16 Ω, Av = 8 Figure 82. THD + N vs. output power RL = 32 Ω, Av = 8 10 RL = 16Ω F = 1kHz Av = 8 Cb = 1µF 1 BW < 125kHz Tamb = 25°C Vcc=2V THD + N (%) THD + N (%) 10 Vcc=2.5V 0.1 Vcc=3.3V 0.01 1 10 RL = 32Ω F = 1kHz Av = 8 1 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2.5V 0.1 0.01 Vcc=5V 100 Vcc=3.3V 1 Figure 83. THD + N vs. output power RL = 8 Ω, Cb = 1 µF Vcc=5V 100 Figure 84. THD + N vs. output power RL = 16 Ω, Cb = 1 µF 10 10 RL = 8Ω, F = 20kHz Av = 8, Cb = 1µF BW < 125kHz, Tamb = 25°C Vcc=2V THD + N (%) THD + N (%) 10 Output Power (mW) Output Power (mW) Vcc=2.5V 1 Vcc=3.3V 1 10 Output Power (mW) DS3048 - Rev 5 Vcc=2V RL = 16Ω F = 20kHz Av = 8 Cb = 1µF BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.5V 1 Vcc=5V 100 Vcc=3.3V 1 10 Vcc=5V 100 Output Power (mW) page 29/47 TS419, TS421 Electrical characteristics curves Figure 85. THD + N vs. output power RL = 32 Ω, Cb = 1 µF Figure 86. THD + N vs. frequency RL = 8 Ω RL = 32Ω F = 20kHz Av = 8 Cb = 1µF BW < 125kHz Tamb = 25°C 1 0.1 RL=8Ω Av=8 Cb = 1µF Bw < 125kHz Tamb = 25°C Vcc=2V THD + N (%) THD + N (%) 10 Vcc=2.5V Vcc=3.3V 1 10 0.1 Vcc=5V, Po=300mW Vcc=5V 20 100 100 1000 10000 20k Frequency (Hz) Output Power (mW) Figure 87. THD + N vs. frequency RL = 16 Ω Figure 88. THD + N vs. frequency RL = 32 Ω RL=32Ω Av=8 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C Vcc=2V, Po=20mW THD + N (%) THD + N (%) RL=16Ω Av=8 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C Vcc=2V, Po=28mW 0.01 Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 Vcc=5V, Po=220mW 20 100 1000 Frequency (Hz) DS3048 - Rev 5 10000 20k 20 100 1000 10000 20k Frequency (Hz) page 30/47 TS419, TS421 Electrical characteristics curves Figure 89. Signal to noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz) Figure 90. Signal to noise ratio vs. power supply voltage with weighted filter Type A 95 Av = 8 Cb = 1µF 85 THD+N < 0.5% Tamb = 25°C 80 RL=32Ω Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 90 75 RL=8Ω 70 RL=16Ω 65 60 2.0 2.5 3.0 3.5 4.0 4.5 Av = 8 Cb = 1µF 90 THD+N < 0.5% Tamb = 25°C 85 80 RL=8Ω RL=16Ω 75 70 2.0 5.0 Power Supply Voltage (V) 60 60 Standby=OFF 20 10 0 Standby=ON 100 1000 Frequency (Hz) DS3048 - Rev 5 4.0 4.5 5.0 10000 20k RL>=16Ω Vcc=2V Av=8 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C 40 30 20 10 0 20 3.5 Standby=OFF 50 RL>=16Ω Vcc=5V Av=8 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Noise Floor ( VRms) Noise Floor ( VRms) 70 30 3.0 Figure 92. Noise floor Vcc = 2 V 70 40 2.5 Power Supply Voltage (V) Figure 91. Noise floor Vcc = 5 V 50 RL=32Ω Standby=ON 20 100 1000 10000 20k Frequency (Hz) page 31/47 TS419, TS421 Electrical characteristics curves Figure 93. PSRR vs. power supply voltage Figure 94. PSRR vs. input capacitor 0 PSRR (dB) -20 -30 -10 Cin = 1µF, 220nF -20 -40 PSRR (dB) -10 0 Vripple = 100mVrms Rfeed = 80kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -50 Vripple = 200mVpp Av = 8, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -30 -40 -60 -70 -50 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 100000 Cin = 100nF 100 Frequency (Hz) 10000 100000 Frequency (Hz) Figure 95. PSRR vs. bypass capacitor Cb = Cin = 1 µF Figure 96. PSRR vs. bypass capacitor Cb = 4.7 µF 0 0 Vripple = 200mVpp Av = 8 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C -20 -10 -20 PSRR (dB) -10 PSRR (dB) 1000 -30 Vcc = 2V -30 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -40 -50 -50 Vcc = 5V, 3.3V & 2.5V 100 1000 -60 10000 Frequency (Hz) DS3048 - Rev 5 100000 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 100000 Frequency (Hz) page 32/47 TS419, TS421 Electrical characteristics curves Figure 97. PSRR vs. bypass capacitor Cb = 1 μF 0 -10 PSRR (dB) -20 -30 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 100000 Frequency (Hz) DS3048 - Rev 5 page 33/47 TS419, TS421 Application information 5 Application information 5.1 BTL configuration principle The TS419 and TS421 are monolithic power amplifiers with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have: Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) The output power is: Pout (2VoutRMS)2 / RL (W) For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. 5.2 Gain in typical application schematic In flat region (no effect of Cin), the output voltage of the first stage is: For the second stage : Vout2 = -Vout1 (V) The differential output voltage is: Vout = − Vin Rfeed V Rin Vout2 − Vout1 = 2Vin Rfeed V Rin (1) (2) The differential gain named gain (Gv) for more convenient usage is: Gv = Vout2 − Vout1 Rfeed = 2 Vin Rin (3) Remark : Vout2 is in phase with Vin and Vout1 is 180° phased with Vin. It means that the positive terminal of the loud speaker should be connected to Vout2 and the negative to Vout1. 5.3 Low and high frequency response In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a -3 dB cut-off frequency 1 FCL = Hz 2πRinCin In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Rfeed. Its form a low pass filter with a -3 dB cut-off frequency. 5.4 1 FCH = Hz 2πRfeedCfeed Power dissipation and efficiency Hypothesis: • Voltage and current in the load are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) Regarding the load we have: and VOUT = VPEAKsin ωt t IOUT = DS3048 - Rev 5 VOUT A RL (4) (5) page 34/47 TS419, TS421 Decoupling of the circuit POUT = VPEAK2 W 2RL (6) Then, the average current delivered by the supply voltage is: VPEAK IccAVG = 2 A πRL (7) The power delivered by the supply voltage is Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W) Pdiss = and the maximum value is obtained when: 2 2Vcc POUT − POUT W π RL (8) ∂Pdiss = 0 ∂POUT and its value is: Pdissmax = (9) 2VCC2 W π2RL (10) Remark : This maximum value is only depending on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply η= POUT πVPEAK = Psupply 4VCC (11) The maximum theoretical value is reached when Vpeak = Vcc, so 5.5 Decoupling of the circuit π = 78.5 % 4 (12) Two capacitors are needed to bypass properly the TS419/TS421. A power supply bypass capacitor CS and a bias voltage bypass capacitor CB. CS has particular influence on the THD+N in the high frequency region (above 7 kHz) and an indirect influence on power supply disturbances. With 1 μF, you can expect similar THD+N performances to those shown in the datasheet. In the high frequency region, if CS is lower than 1 μF, it increases THD+N and disturbances on the power supply rail are less filtered. On the other hand, if CS is higher than 1 μF, those disturbances on the power supply rail are more filtered. CB has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region). If CB is lower than 1 μF, THD+N increases at lower frequencies and PSRR worsens. If CB is higher than 1 μF, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial. Note: that CIN has a non-negligible effect on PSRR at lower frequencies. The lower the value of CIN, the higher the PSRR. 5.6 Wake-up time: TWU When standby is released to put the device ON, the bypass capacitor CB will not be charged immediatly. As CB is directly linked to the bias of the amplifier, the bias will not work properly until the CB voltage is correct. The time to reach this voltage is called wake-up time or TWU and typically equal to: TWU = 0.15xCB (s) with CB in μF. DS3048 - Rev 5 page 35/47 TS419, TS421 Pop performance Due to process tolerances, the range of the wake-up time is: 0.12xCb < TWU < 0.18xCB (s) with CB in μF Note: When the standby command is set, the time to put the device in shutdown mode is a few microseconds. 5.7 Pop performance Pop performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor CB. The size of CIN is dependent on the lower cut-off frequency and PSRR values requested. The size of CB is dependent on THD+N and PSRR values requested at lower frequencies. Moreover, CB determines the speed with which the amplifier turns ON. The slower the speed is, the softer the turn ON noise is. The charge time of CB is directly proportional to the internal generator resistance 150 kΩ. Then, the charge time constant for CB is τB = 150 kΩ x CB (s) As CB is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), CIN must be charged faster than CB. The equivalent charge time constant of CIN is: τIN = (Rin + Rfeed) x CIN (s) Thus we have the relation: τIN < τB (s) Proper respect of this relation allows to minimize the pop noise. Remark : Minimizing CIN and CB benefits both the pop phenomena, and the cost and size of the application. 5.8 Application : Differential inputs BTL power amplifier The schematic on figure 98, shows how to design the TS419/21 to work in a differential input mode. The gain of the amplifier is: R2 GVDIFF = 2 R1 (13) In order to reach optimal performances of the differential function, R1 and R2 should be matched at 1% max. Figure 98. Differential input amplifier configuration Input capacitance C can be calculated by the following formula using the -3 dB lower frequency required. (FL is the lower frequency required). Note : This formula is true only if: is ten times lower than FL. C≈ 1 F 2πR1FL (14) 1 FCB = Hz 942000 × CB (15) The following bill of material is an example of a differential amplifier with a gain of 2 and a -3 dB lower cuttoff frequency of about 80 Hz. DS3048 - Rev 5 page 36/47 TS419, TS421 Application : Differential inputs BTL power amplifier Table 8. Components DS3048 - Rev 5 Designator Part type R1 20 k / 1% R2 20 k / 1% C 100 nF CB = CS 1 µF U1 TS419/21 page 37/47 TS419, TS421 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS3048 - Rev 5 page 38/47 TS419, TS421 MiniSO-8 mechanical data 6.1 MiniSO-8 mechanical data Table 9. MiniSO-8 mechanical data Dim. mm. Min. Typ. A inch. Max. Min. Typ. 1.1 Max. 0.043 A1 0.05 0.10 0.15 0.002 0.004 0.005 A2 0.78 0.86 0.94 0.031 0.031 0.037 b 0.25 0.33 0.4Q 0.010 0.13 0.013 c 0.13 0.16 0.23 0.005 0.007 0.009 D 2.90 3.00 3.10 0.114 0.118 0.122 E 4.75 4.90 5.05 0.187 0.193 0.199 E1 2.90 3.00 3.10 0.114 0.118 0.122 e 0.65 K 0° L 0.40 L1 0.55 0.026 6° 0° 0.70 0.016 0.10 6° 0.022 0.028 0.004 Figure 99. MiniSO-8 drawing DS3048 - Rev 5 page 39/47 TS419, TS421 DFN8 (3x3) mechanical data 6.2 DFN8 (3x3) mechanical data Table 10. DFN8 (3x3) mechanical data Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. 0.80 0.90 1.00 31.5 35.4 39.4 A1 0.02 0.05 0.8 2.0 A2 0.70 27.6 A3 0.20 7.9 A b 0.18 D D2 2.23 7.1 2.38 1.49 1.64 2.48 87.8 0.40 11.8 93.7 97.7 118.1 1.74 58.7 0.50 0.30 9.1 118.1 3.00 e L 0.30 3.00 E E2 0.23 64.6 68.5 19.7 0.50 11.8 15.7 19.7 Figure 100. DFN8 (3x3) drawing DS3048 - Rev 5 page 40/47 TS419, TS421 Ordering information 7 Ordering information Table 11. Order codes Order code TS419IST TS421IQT DS3048 - Rev 5 Temperature range -40°C to 85°C Package miniSO8 DFN8 Packing Tape and reel Marking K19A K21A page 41/47 TS419, TS421 Revision history Table 12. Document revision history DS3048 - Rev 5 Date Revision Changes 06-Feb-2013 4 No history because of migration. 29-May-2019 5 Removed the part numbers TS419IDT, TS421IDT and all its reference throughout the document. page 42/47 TS419, TS421 Contents Contents 1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 6 7 5.1 BTL configuration principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.6 Wake-up time: TWU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.7 Pop performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.8 Application : Differential inputs BTL power amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 6.1 MiniSO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 DFN8 (3x3) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 DS3048 - Rev 5 page 43/47 TS419, TS421 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application components information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics VCC = +5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) . . Electrical characteristics VCC = +3.3 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) . Electrical characteristics VCC = +2.5 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) . Electrical characteristics VCC = +2 V, GND = 0 V, Tamb = 25 °C (unless otherwise specified) . . Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN8 (3x3) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS3048 - Rev 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 . 4 . 5 . 6 . 7 . 8 37 39 40 41 42 page 44/47 TS419, TS421 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. DS3048 - Rev 5 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency Vcc = 2 V . . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency ZL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency RL = 16 Ω, Vcc = 2 V. . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency ZL = 16 Ω, Vcc = 5 V . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency ZL = 16 Ω, Vcc = 2 V . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency RL = 32 Ω, Vcc = 2 V. . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency ZL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . Open loop gain and phase vs. frequency ZL = 32 Ω, Vcc = 2 V . . . . . . . . . . . . . . . . . Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current consumption vs. standby voltage Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . Current consumption vs. standby voltage Vcc = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . Current consumption vs. standby voltage Vcc = 2 V . . . . . . . . . . . . . . . . . . . . . . . . Current consumption vs. standby voltage Vcc = 5 V (TS421) . . . . . . . . . . . . . . . . . . Current consumption vs. standby voltage Vcc = 3.3 V (TS421) . . . . . . . . . . . . . . . . . Current consumption vs. standby voltage Vcc = 2 V (TS421) . . . . . . . . . . . . . . . . . . Output power vs. power supply voltage RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. power supply voltage RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. power supply voltage RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. power supply voltage RL = 64 Ω . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. load resistor Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. load resistor Vcc = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. load resistor Vcc = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output power vs. load resistor Vcc = 2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power dissipation vs. output power Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power dissipation vs. output power Vcc = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Power dissipation vs. output power Vcc = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Power dissipation vs. output power Vcc = 2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output voltage swing for one Amp. vs. power supply voltage . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω, Av = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω, Av = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω, Av = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω, Cb = 1 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω, Cb = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω, Cb = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 8 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal to noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz) . Signal to noise ratio vs. power supply voltage with weighted filter Type A . . . . . . . . . . Noise floor Vcc = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise floor Vcc = 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 9 . 9 . 9 . 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 page 45/47 TS419, TS421 List of figures Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. Figure 99. Figure 100. DS3048 - Rev 5 PSRR vs. bypass capacitor Cb = Cin = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = 4.7 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = 10 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 8 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal-to-noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz) Signal-to-noise ratio vs power supply voltage with weighted filter Type A . . . . . . . . . . Noise floor Vcc = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise floor Vcc = 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = Cin = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = Cin = 4.7 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = Cin = 10 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω, Av = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω, Av = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω, Av = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 8 Ω, Cb = 1 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 16 Ω, Cb = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. output power RL = 32 Ω, Cb = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 8 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD + N vs. frequency RL = 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal to noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz) . Signal to noise ratio vs. power supply voltage with weighted filter Type A . . . . . . . . . . Noise floor Vcc = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise floor Vcc = 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = Cin = 1 µF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = 4.7 µF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. bypass capacitor Cb = 1 μF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input amplifier configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO-8 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFN8 (3x3) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 31 31 31 31 32 32 32 32 33 36 39 40 page 46/47 TS419, TS421 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS3048 - Rev 5 page 47/47
TS421IQT 价格&库存

很抱歉,暂时无法提供与“TS421IQT”相匹配的价格&库存,您可以联系我们找货

免费人工找货