0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VNH3ASP30-E

VNH3ASP30-E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    MPSO30

  • 描述:

    IC MTR DRV 5.5-16V MULTIPWRSO-30

  • 数据手册
  • 价格&库存
VNH3ASP30-E 数据手册
VNH3ASP30-E Automotive fully integrated H-bridge motor driver Datasheet - production data side switches. The HSD switch is designed using STMicroelectronics proprietary VIPower™ M0 technology that efficiently integrates a true Power MOSFET with an intelligent signal/protection circuit on the same die. MultiPowerSO-30™ Features Type RDS(on) Iout Vccmax VNH3ASP30-E 42 mmax per leg) 30 A 41 V  AEC-100 qualified  5 V logic level compatible inputs  Undervoltage and overvoltage shutdown  Overvoltage clamp  Thermal shut down  Cross-conduction protection  Linear current limiter  Very low standby power consumption  PWM operation up to 20 kHz  Protection against loss of ground and loss of VCC The low-side switches are vertical MOSFETs manufactured using STMicroelectronics proprietary EHD (“STripFET™”) process.The three circuits are assembled in a MultiPowerSO-30 package on electrically isolated lead frames. This package, specifically designed for the harsh automotive environment, offers improved thermal performance thanks to exposed die pads. Moreover, its fully symmetrical mechanical design provides superior manufacturability at board level. The input signals INA and INB can directly interface with the microcontroller to select the motor direction and the brake condition. Pins DIAGA/ENA or DIAGB/ENB, when connected to an external pullup resistor, enable one leg of the bridge. They also provide a feedback digital diagnostic signal. The normal condition operation is explained in the truth table. The CS pin monitors the motor current by delivering a current proportional to its value. The speed of the motor can be controlled in all possible conditions by the PWM up to 20 kHz. In all cases, a low level state on the PWM pin will turn off both the LSA and LSB switches. When PWM rises to a high level, LSA or LSB turn on again depending on the input pin state. Table 1. Device summary  Current-sense output proportional to motor current Order code Package  Package: ECOPACK® Tape & reel MultiPowerSO-30 Description VNH3ASP30TR-E The VNH3ASP30-E is a full-bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver (HSD) and two low- January 2017 This is information on a product in full production. DocID10833 Rev 7 1/34 www.st.com Contents VNH3ASP30-E Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 5 6 2/34 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 MultiPowerSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 Thermal calculation in clockwise and anti-clockwise operation in Steady-state mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.2 Thermal resistances definition (values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.3 Thermal calculation in Transient mode . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.4 Single pulse thermal impedance definition (values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.1 MultiPowerSO-30 package information . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID10833 Rev 7 VNH3ASP30-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin functions description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic inputs (INA, INB, ENA, ENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Switching (VCC = 13V, RLOAD = 1 W ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current sense (9V < VCC < 16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 26 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID10833 Rev 7 3/34 34 List of figures VNH3ASP30-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. 4/34 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Definition of the low-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Definition of the high-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 13 On state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Off state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input high-level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input low-level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 High-level enable pin current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Delay time during change of operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Enable clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 High-level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Low-level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PWM high-level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PWM low-level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PWM high-level current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Current limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 On state high-side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 On state low-side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 On state high-side resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 On state low-side resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output voltage rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output voltage fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Typical application circuit for DC to 20 kHz PWM operation short circuit protection . . . . . 20 Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multi-motor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Waveforms in full-bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Waveforms in full-bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Auto and mutual RthJA vs PCB copper area in open box free air condition. . . . . . . . . . . . 26 MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 27 MultiPowerSO-30 LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . 28 Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 28 MultiPowerSO-30 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID10833 Rev 7 VNH3ASP30-E 1 Block diagram and pin description Block diagram and pin description Figure 1. Block diagram VCC OVERTEMPERATURE A OV + UV OVERTEMPERATURE B CLAMP HSA HSA CLAMP HSB DRIVER HSA CURRENT LIMITATION B CURRENT LIMITATION A OUTA 1/K 1/K CLAMP LSA LSA GNDA HSB DRIVER HSB LOGIC OUTB CLAMP LSB DRIVER LSB DRIVER LSA DIAGA/ENA INA CS PWM INB DIAGB/ENB LSB GNDB Table 2. Block description Name Description Logic control Allows the turn-on and the turn-off of the high-side and the low-side switches according to the truth table Overvoltage + undervoltage Shuts down the device outside the range [5.5V..16V] for the battery voltage High-side and lowside clamp voltage Protect the high-side and the low-side switches from the high voltage on the battery line in all configurations for the motor High-side and lowside driver Drives the gate of the concerned switch to allow a good RDS(on) for the leg of the bridge Linear current limiter Limits the motor current by reducing the high-side switch gate source voltage when short-circuit to ground occurs Overtemperature protection In case of short-circuit with the increase of the junction’s temperature, shuts down the concerned high side to prevent its degradation and to protect the die Fault detection Signals an abnormal behavior of the switches in the half-bridge A or B by pulling low the concerned ENx/DIAGx pin DocID10833 Rev 7 5/34 34 Block diagram and pin description VNH3ASP30-E Figure 2. Configuration diagram (top view) OUTA Nc VCC Nc 1 30 OUTA Heat Slug3 INA ENA/DIAGA Nc PWM GNDA OUTA Nc VCC VCC Heat Slug1 CS ENB/DIAGB INB Nc VCC Nc OUTB OUTA Nc GNDA GNDA Nc OUTB OUTB Heat Slug2 15 16 GNDB GNDB GNDB Nc OUTB Table 3. Pin definitions and functions Pin No. 1, 25, 30 Symbol Function OUTA, Heat Slug3 Source of high-side switch A / Drain of low-side switch A 2, 4, 7, 12, 14, NC 17, 22, 24, 29 Not connected 3, 13, 23 VCC, Heat Slug1 Drain of high-side switches and power supply voltage 5 INA Clockwise input 6 ENA/DIAGA Status of high-side and low-side switches A; open drain output 8 PWM PWM input 9 CS Output of current sense 10 ENB/DIAGB Status of high-side and low-side switches B; open drain output 11 INB Counter clockwise input 15, 16, 21 OUTB, Heat Slug2 Source of high-side switch B / Drain of low-side switch B 26, 27, 28 GNDA Source of low-side switch A(1) 18, 19, 20 GNDB Source of low-side switch B(1) 1. GNDA and GNDB must be externally connected together. 6/34 DocID10833 Rev 7 VNH3ASP30-E Block diagram and pin description Table 4. Pin functions description Name VCC Description Battery connection GNDA, GNDB Power grounds; must always be externally connected together OUTA, OUTB Power connections to the motor INA, INB Voltage controlled input pins with hysteresis, CMOS compatible: These two pins control the state of the bridge in normal operation according to the truth table (brake to VCC, brake to GND, clockwise and counterclockwise). PWM Voltage controlled input pin with hysteresis, CMOS compatible: Gates of low-side FETs are modulated by the PWM signal during their ON phase allowing speed control of the motor. ENA/DIAGA, ENB/DIAGB Open drain bidirectional logic pins. These pins must be connected to an external pull up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a high-side FET or excessive ON state voltage drop across a low-side FET), these pins are pulled low by the device (see truth table in fault condition). CS Analog current-sense output. This output sources a current proportional to the motor current. The information can be read back as an analog voltage across an external resistor. DocID10833 Rev 7 7/34 34 Electrical specifications 2 VNH3ASP30-E Electrical specifications Figure 3. Current and voltage conventions IS VCC IINA VCC INA IINB INB IENA OUTB DIAGB/ENB VINA PWM VINB VENA CS DIAGA/ENA IENB IOUTB VOUTA ISENSE VSENSE VOUTB GNDA GNDB Ipw GND VENB Vpw 2.1 IOUTA OUTA IGND Absolute maximum ratings Table 5. Absolute maximum ratings Symbol 8/34 Parameter Value Unit V VCC Supply voltage +41 Imax Maximum output current (continuous) 30 IR Reverse output current (continuous) -30 IIN Input current (INA and INB pins) 10 IEN Enable input current (DIAGA/ENA and DIAGB/ENB pins) 10 IPW PWM input current 10 VCS Current-sense maximum voltage VESD Electrostatic discharge (R = 1.5k, C = 100pF) – CS pin – logic pins – output pins: OUTA, OUTB, VCC mA -3/+15 V 2 4 5 kV kV kV TJ Junction operating temperature TC Case operating temperature -40 to 150 Tstg Storage temperature -55 to 150 DocID10833 Rev 7 A Internally limited °C VNH3ASP30-E 2.2 Electrical specifications Electrical characteristics VCC = 9V up to 16 V; -40°C < TJ < 150°C, unless otherwise specified. Table 6. Power section Symbol VCC IS Parameter Test conditions Operating supply voltage Min Typ Max Unit 5.5 16 V 30 60 µA µA On state: INA or INB = 5V, no PWM 10 mA Off state: INA = INB = PWM = 0; TJ = 25°C; VCC = 13V INA = INB = PWM = 0; Supply current 12 RONHS Static high-side resistance IOUT = 12A; TJ = 25°C IOUT = 12A; TJ = -40 to 150°C 30 60 m RONLS Static low-side resistance IOUT = 12A TJ = 25°C IOUT = 12A; TJ = -40 to 150°C 12 24 m Vf High-side freewheeling diode forward voltage If = 12A 1.1 V High-side off-state output current (per channel) TJ = 25°C; VOUTX = ENX = 0V; VCC = 13V 3 IL(off) TJ = 125°C; VOUTX = ENX = 0V; VCC = 13V 5 IRM Dynamic crossconduction current IOUT = 12A (see Figure 7) 0.8 1.7 µA A Table 7. Logic inputs (INA, INB, ENA, ENB) Symbol Parameter Test conditions Min Typ Max Unit VIL Input low-level voltage VIH Input high-level voltage VIhys Input hysteresis voltage VICL Input clamp voltage IINL Input low current VIN = 1.25 V IINH Input high current VIN = 3.25V 10 Enable output low-level voltage Fault operation (DIAGX/ENX pin acts as an output pin); IEN = 1mA 0.4 VDIAG 1.25 Normal operation (DIAGX/ENX pin acts as an input pin) 3.25 0.5 V IIN = 1mA 5.5 IIN = -1mA -1.0 -0.7 -0.3 DocID10833 Rev 7 6.3 7.5 1 µA V 9/34 34 Electrical specifications VNH3ASP30-E Table 8. PWM Symbol Parameter Test conditions VPWL PWM low-level voltage IPWL PWM low-level pin current VPWH PWM high-level voltage IPWH PWM high-level pin current Min Vpw = 1.25 V Typ PWM hysteresis voltage VPWCL PWM clamp voltage CINPW PWM pin input capacitance Unit 1.25 V 1 µA 3.25 V Vpw = 3.25V VPWhys Max 10 µA V 0.5 Ipw = 1mA VCC + 0.3 VCC + 0.7 VCC + 1.0 Ipw = -1mA -6.0 -4.5 -3.0 VIN = 2.5V 25 pF Table 9. Switching (VCC = 13V, RLOAD = 1  ) Symbol Parameter Test conditions Min Typ Max Unit 20 kHz fPW PWM frequency td(on) Turn-on delay time Input rise time < 1µs (see Figure 6) 250 td(off) Turn-off delay time Input rise time < 1µs (see Figure 6) 250 tr Rise time (see Figure 5) 1 1.6 tf Fall time (see Figure 5) 1 2.4 Delay time during change of operating mode (see Figure 4) 600 1800 High-side freewheeling diode reverse recovery time (see Figure 7) tDEL trr 0 300 110 µs ns Table 10. Protection and diagnostic Symbol VUV(sd) Parameter Test conditions Min Undervoltage shutdown ILIM 10/34 Max Unit 5.5 VUV(reset) Undervoltage reset VOV(sd) Typ V 4.7 Overvoltage shutdown 16 19 22 High-side current limitation 30 50 70 A V VCLP Total clamp voltage (VCC to GND) IOUT = 12A 43 48 54 Tth(sd) Thermal shutdown temperature VIN = 3.25V 150 175 200 Th(reset) Thermal reset temperature Tth(hys) Thermal hysteresis 135 7 DocID10833 Rev 7 °C 15 VNH3ASP30-E Electrical specifications Table 11. Current sense (9V < VCC < 16V) Symbol Parameter Test conditions Min Typ Max K1 IOUT/ISENSE IOUT = 30A; RSENSE = 700; TJ = -40 to 150°C 4000 4700 5400 K2 IOUT/ISENSE IOUT = 8A; RSENSE = 700; TJ = -40 to 150°C 3750 4700 5650 dK1/K1(1) = 30A; RSENSE = 700; I Analog sense current drift OUT TJ = -40 to 150°C -8 +8 dK2/K2(1) = 8A; RSENSE = 700; I Analog sense current drift OUT TJ = -40 to 150°C -10 +10 ISENSEO Analog sense leakage current 0 70 IOUT = 0A; VSENSE = 0V; TJ = -40 to 150°C Unit % µA 1. Analog sense current drift is deviation of factor K for a given device over (-40°C to 150°C and 9V < VCC < 16V) with respect to its value measured at TJ = 25°C, VCC = 13V DocID10833 Rev 7 11/34 34 Electrical specifications VNH3ASP30-E Figure 4. Definition of the delay times measurement VINA t VINB t PWM t ILOAD tDEL tDEL t Figure 5. Definition of the low-side switching times PWM t VOUTA, B 90% tf 12/34 80% 20% DocID10833 Rev 7 10% tr t VNH3ASP30-E Electrical specifications Figure 6. Definition of the high-side switching times VINA tD(off) tD(on) t VOUTA 90% 10% t Figure 7. Definition of dynamic cross conduction current during a PWM operation INA = 1, INB = 0 PWM t IMOTOR t VOUTB t ICC IRM t trr DocID10833 Rev 7 13/34 34 Electrical specifications VNH3ASP30-E Table 12. Truth table in normal operating conditions INA INB DIAGA/ENA DIAGB/ENB OUTA OUTB 1 1 H 0 1 1 0 1 L H L 0 H L CS High Imp. ISENSE = IOUT/K High Imp. Operating mode Brake to VCC Clockwise (CW) Counterclockwise (CCW) Brake to GND Table 13. Truth table in fault conditions (detected on OUTA) INA 1 0 INB DIAGA/ENA DIAGB/ENB H 0 L 1 1 0 0 0 1 L OPEN 1 Fault Information 14/34 H OPEN 0 Note: OUTB 1 X X OUTA CS High Imp. IOUTB/K High Imp. H IOUTB/K L High Imp. Protection Action Notice that saturation detection on the low side power MOSFET is possible only if the impedance of the short-circuit from the output to the battery is less than 100m when the device is supplied with a battery voltage of 13.5V. DocID10833 Rev 7 VNH3ASP30-E Electrical specifications Table 14. Electrical transient requirements ISO T/R - 7637/1 test pulse Test level 1 Test level II Test level III Test level IV Test level delays and impedance -25V -50V -75V -100V 2ms, 10 2 +25V +50V +75V +100V 0.2ms, 10 3a -25V -50V -100V -150V 3b +25V +50V +75V +100V 4 -4V -5V -6V -7V 100ms, 0.01 5 +26.5V +46.5V +66.5V +86.5V 400ms, 2 ISO T/R - 7637/1 test pulse I Test levels result I 0.1µs, 50 Test levels result II Test levels result III Test levels result IV C C C E E E 1 2 3a 3b C 4 5(1) 1. For load dump exceeding the above value a centralized suppressor must be adopted. Class Contents C All functions of the device performed as designed after exposure to disturbance. E One or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. DocID10833 Rev 7 15/34 34 Electrical specifications 2.3 VNH3ASP30-E Electrical characteristics curves Figure 8. On state supply current IS (mA) Figure 9. Off state supply current IS (µA) 8 50 45 7 VCC = 13V, no PWM IN A or IN B = 5V 6 VCC = 13V 40 35 5 30 25 4 20 3 15 2 10 1 5 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 10. High-level input current IINH (µA) Figure 11. Input clamp voltage VICL (V) 8 8.00 7 7.75 VCC = 9V…16V 6 IIN = 1mA 7.50 VIN = 3.25V 5 7.25 4 7.00 3 6.75 2 6.50 1 6.25 0 6.00 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) 75 100 125 150 175 Tc (°C) Figure 12. Input high-level voltage Figure 13. Input low-level voltage VIL (V) VIH (V) 2.8 3.6 2.6 3.4 VCC = 9V…16V 3.2 VCC = 9V…16V 2.4 2.2 3.0 2.0 2.8 1.8 2.6 1.6 2.4 1.4 2.2 1.2 2.0 1.0 -50 -25 0 25 50 75 100 125 150 175 -50 Tc (°C) 16/34 -25 0 25 50 75 Tc (°C) DocID10833 Rev 7 100 125 150 175 VNH3ASP30-E Electrical specifications Figure 14. Input hysteresis voltage VIHYST (V) Figure 15. High-level enable pin current IENH (µA) 2.0 8 1.8 7 VCC = 9V…16V 1.6 VCC = 8V…24V 6 1.4 VEN = 3.25V 5 1.2 4 1.0 0.8 3 0.6 2 0.4 1 0.2 0 0.0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 16. Delay time during change of operation mode Figure 17. Enable clamp voltage tDEL (µs) VENCL (V) 1000 8.00 900 7.75 800 VCC = 13V 700 RL = 1ohm IEN = 1mA 7.50 7.25 600 500 7.00 400 6.75 300 6.50 200 6.25 100 0 6.00 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) 75 100 125 150 175 Tc (°C) Figure 18. High-level enable voltage Figure 19. Low-level enable voltage VENL (V) VENH (V) 2.8 4.0 3.8 2.6 VCC = 9V…16V 3.6 VCC = 9V…16V 2.4 3.4 2.2 3.2 2.0 3.0 1.8 2.8 1.6 2.6 2.4 1.4 2.2 1.2 2.0 1.0 -50 -25 0 25 50 75 100 125 150 175 -50 Tc (°C) -25 0 25 50 75 100 125 150 175 Tc (°C) DocID10833 Rev 7 17/34 34 Electrical specifications VNH3ASP30-E Figure 20. PWM high-level voltage Figure 21. PWM low-level voltage VPWH (V) VPWL (V) 4.0 2.8 3.8 2.6 VCC = 9V…16V 3.6 VCC = 9V…16V 2.4 3.4 2.2 3.2 2.0 3.0 1.8 2.8 1.6 2.6 1.4 2.4 1.2 2.2 1.0 2.0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 22. PWM high-level current Figure 23. Overvoltage shutdown VOV (V) IPWH (µA) 30 8.0 28 7.0 6.0 VCC = 9V 26 VPW = 3.25V 24 22 5.0 20 4.0 18 16 3.0 14 2.0 12 1.0 10 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 24. Undervoltage shutdown Figure 25. Current limitation VUSD (V) ILIM (A) 80 7.0 75 6.5 70 6.0 VCC = 16V 65 5.5 60 55 5.0 50 4.5 45 4.0 40 3.5 35 30 3.0 -50 -25 0 25 50 75 100 125 150 175 -50 0 25 50 75 Tc (°C) Tc (°C) 18/34 -25 DocID10833 Rev 7 100 125 150 175 VNH3ASP30-E Electrical specifications Figure 26. On state high-side resistance vs Tcase Figure 27. On state low-side resistance vs Tcase RONHS (mOhm) RONLS (mOhm) 80 40 70 35 VCC = 13V 60 VCC = 13V 30 IOUT = 12A 50 25 40 20 30 15 20 10 10 5 0 IOUT = 12A 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 Tc (°C) Figure 28. On state high-side resistance vs VCC Figure 29. On state low-side resistance vs VCC RONHS (mOhm) RONHS (mOhm) 80 40 ILOAD = 12A 70 ILOAD = 12A 35 60 30 Tc = 150°C 50 25 40 20 Tc = 150°C 30 Tc = 25°C 15 20 Tc = -40°C 10 Tc = 25°C 10 Tc = -40°C 5 0 0 8 9 10 11 12 13 14 15 16 17 18 19 20 8 9 10 11 12 13 14 15 16 17 18 19 20 VCC (V) VCC (V) Figure 30. Output voltage rise time Figure 31. Output voltage fall time tR (µs) tF (µs) 1.0 5.0 4.5 0.9 0.8 VCC = 13V 4.0 VCC = 13V RL = 1ohm 3.5 RL = 1ohm 0.7 3.0 0.6 2.5 2.0 0.5 1.5 0.4 1.0 0.3 0.5 0.2 0.0 -50 -25 0 25 50 75 100 125 150 175 -50 Tc (°C) -25 0 25 50 75 100 125 150 175 Tc (°C) DocID10833 Rev 7 19/34 34 Application information 3 VNH3ASP30-E Application information In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the device. This pin must be externally pulled high. PWM pin usage: In all cases, a “0” on the PWM pin will turn off both LSA and LSB switches. When PWM rises back to “1”, LSA or LSB turn on again depending on the input pin state. Figure 32. Typical application circuit for DC to 20 kHz PWM operation short circuit protection VCC Reg 5V +5V + 5V VCC 3.3K 3.3K DIAGB/ENB 1K DIAGA/ENA 1K 1K HSA HSB PWM C OUTA 1K 10K 33nF OUTB INA CS LSA LSB INB M 1K C 1.5K GNDB GNDA S 100K G b) N MOSFET D Note: The value of the blocking capacitor (C) depends on the application conditions and defines voltage and current ripple onto supply line at PWM operation. Stored energy of the motor inductance may fly back into the blocking capacitor, if the bridge driver goes into tristate. This causes a hazardous overvoltage if the capacitor is not big enough. As basic orientation, 500µF per 10A load current is recommended. In case of a fault condition the DIAGX/ENX pin is considered as an output pin by the device. The fault conditions are: overtemperature on one or both high sides short to battery condition on the output (saturation detection on the low-side power MOSFET) Possible origins of fault conditions may be: OUTA is shorted to ground  overtemperature detection on high side A OUTA is shorted to VCC  low-side power MOSFET saturation detection When a fault condition is detected, the user can know which power element is in fault by monitoring the INA, INB, DIAGA/ENA and DIAGB/ENB pins. In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the respective output (OUTX) again, the input signal must rise from low to high level. 20/34 DocID10833 Rev 7 VNH3ASP30-E 3.1 Application information Reverse battery protection Three possible solutions can be considered: a Schottky diode D connected to VCC pin an N-channel MOSFET connected to the GND pin (see Figure 32: Typical application circuit for DC to 20 kHz PWM operation short circuit protection on page 20) a P-channel MOSFET connected to the VCC pin The device sustains no more than -30 A in reverse battery conditions because of the two body diodes of the power MOSFETs. Additionally, in reverse battery condition the I/Os of Root part number 1 are pulled down to the VCC line (approximately -1.5 V). A series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If IRmax is the maximum target reverse current through µC I/Os, the series resistor is: V IOs – V CC R = --------------------------------I Rmax Figure 33. Half-bridge configuration VCC INA INB DIAGA/ENA DIAGB/ENB PWM INA INB DIAGA/ENA DIAGB/ENB PWM OUTA OUTB GNDA Note: M GNDA GNDB OUTB OUTA GNDB The VNH3ASP30-E can be used as a high power half-bridge driver achieving an On resistance per leg of 21 m. DocID10833 Rev 7 21/34 34 Application information VNH3ASP30-E Figure 34. Multi-motor configuration VCC INA INB DIAGA/ENA DIAGB/ENB PWM INA INB DIAGA/ENA DIAGB/ENB PWM OUTA OUTB GNDA M2 GNDA GNDB M1 Note: 22/34 OUTB OUTA GNDB M3 The VNH3ASP30-E can easily be designed in multi-motor driving applications such as seat positioning systems, where only one motor must be driven at a time. The DIAGX/ENX pins allow the unused half-bridges to be put into high impedance. DocID10833 Rev 7 VNH3ASP30-E Application information Figure 35. Waveforms in full-bridge operation NORMAL OPERATION (DIAGA/ENA = 1, DIAGB/ENB = 1) LOAD CONNECTED BETWEEN OUTA, OUTB DIAGA/ENA DIAGB/ENB INA INB PWM OUTA OUTB IOUTA->OUTB CS (*) tDEL (*) CS behavior during PWM mode will depend on PWM frequency and duty cycle. tDEL NORMAL OPERATION (DIAGA/ENA = 1, DIAGB/ENB = 0 and DIAGA/ENA = 0, DIAGB/ENB = 1) LOAD CONNECTED BETWEEN OUTA, OUTB DIAGA/ENA DIAGB/ENB INA INB PWM OUTA OUTB IOUTA->OUTB CS CURRENT LIMITATION/THERMAL SHUTDOWN or OUTA SHORTED TO GROUND INA INB ILIM IOUTA->OUTB TTSD TTR TJ > TTR TJ DIAGA/ENA DIAGB/ENB CS normal operation OUTA shorted to ground DocID10833 Rev 7 normal operation 23/34 34 Application information VNH3ASP30-E Figure 36. Waveforms in full-bridge operation (continued) OUTA shorted to VCC and undervoltage shutdown INA INB undefined OUTA OUTB undefined IOUTA->OUTB DIAGB/ENB DIAGA/ENA CS V < nominal normal operation 24/34 OUTA shorted to VCC DocID10833 Rev 7 normal operation undervoltage shutdown VNH3ASP30-E Package and PCB thermal data 4 Package and PCB thermal data 4.1 MultiPowerSO-30 thermal data Figure 37. MultiPowerSO-30™ PC board Note: Layout condition of Rth and Zth measurements (PCB FR4 area= 58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 µm, Copper areas: from minimum pad lay-out to 16 cm2). Figure 38. Chipset configuration HIGH-SIDE CHIP HSAB LOW-SIDE CHIP A LOW-SIDE CHIP B LSA LSB DocID10833 Rev 7 25/34 34 Package and PCB thermal data VNH3ASP30-E Figure 39. Auto and mutual RthJA vs PCB copper area in open box free air condition °C/W 45 RthA RthB = RthC RthAB = RthAC RthBC 40 35 30 25 20 15 10 5 0 0 4.1.1 52 10 15 cm of Cu Area (refer to PCB layout) 20 Thermal calculation in clockwise and anti-clockwise operation in Steady-state mode Table 15. Thermal calculation in clockwise and anti-clockwise operation in steadystate mode HSA HSB LSA LSB 4.1.2 TJHSAB TJLSA TJLSB ON OFF ON PdHSA x RthHS + PdLSB PdHSA x RthHSLS + x RthHSLS + TA PdLSB x RthLSLS + TA PdHSA x RthHSLS + PdLSB x RthLS + TA OFF ON OFF PdHSB x RthHS + PdLSA PdHSB x RthHSLS + x RthHSLS + TA PdLSA x RthLS + TA PdHSB x RthHSLS + PdLSA x RthLSLS + TA Thermal resistances definition (values according to the PCB heatsink area) RthHS = RthHSA = RthHSB = High-Side Chip Thermal Resistance Junction to Ambient (HSA or HSB in ON state) RthLS = RthLSA = RthLSB = Low-Side Chip Thermal Resistance Junction to Ambient RthHSLS = RthHSALSB = RthHSBLSA = Mutual Thermal Resistance Junction to Ambient between High-Side and Low-Side Chips RthLSLS = RthLSALSB = Mutual Thermal Resistance Junction to Ambient between Low-Side Chips 4.1.3 Thermal calculation in Transient mode(a) TJHSAB = ZthHS x PdHSAB + ZthHSLS x (PdLSA + PdLSB) + TA a. Calculation is valid in any dynamic operating condition. Pd values set by user. 26/34 DocID10833 Rev 7 VNH3ASP30-E Package and PCB thermal data TJLSA = ZthHSLS x PdHSAB + ZthLS x PdLSA + ZthLSLS x PdLSB + TA TJLSB = ZthHSLS x PdHSAB + ZthLSLS x PdLSA + ZthLS x PdLSB + TA Single pulse thermal impedance definition (values according to the PCB heatsink area) ZthHS = High-Side Chip Thermal Impedance Junction to Ambient ZthLS = ZthLSA = ZthLSB = Low-Side Chip Thermal Impedance Junction to Ambient ZthHSLS = ZthHSABLSA = ZthHSABLSB = Mutual Thermal Impedance Junction to Ambient between High-Side and Low-Side Chips ZthLSLS = ZthLSALSB = Mutual Thermal Impedance Junction to Ambient between Low-Side Chips Equation 1: pulse calculation formula Z TH = R TH   + Z THtp  1 –   where  = t p  T Figure 40. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse 100 Footprint 4 cm2 8 cm2 16 cm2 Footprint 4 cm2 8 cm2 16 cm2 10 °C/W 4.1.4 1 0,1 0,001 0,01 0,1 time (sec) 1 DocID10833 Rev 7 10 100 1000 27/34 34 Package and PCB thermal data VNH3ASP30-E Figure 41. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse 100 Footprint 4 cm2 8 cm2 16 cm2 Footprint 4 cm2 8 cm2 16 cm2 °C/W 10 Z ls Z lsls 1 0,1 0,001 0,01 0,1 time (sec) 1 10 100 1000 Figure 42. Thermal fitting model of an H-bridge in MultiPowerSO-30 Table 16. Thermal parameters(1) Area/island (cm2) 28/34 Footprint R1 = R7 (°C/W) 0.05 R2 = R8 (°C/W) 0.3 R3 (°C/W) 0.5 R4 (°C/W) 1.3 R5 (°C/W) 14 R6 (°C/W) 44.7 DocID10833 Rev 7 4 8 16 39.1 31.6 23.7 VNH3ASP30-E Package and PCB thermal data Table 16. Thermal parameters(1) (continued) R9 = R15 (°C/W) 0.11 R10 = R16 (°C/W) 0.21 R11 = R17 (°C/W) 0.42 R12 = R18 (°C/W) 1.5 R13 = R19 (°C/W) 20 R14 = R20 (°C/W) 46.9 R21 = R22 = R23 (°C/W) 0.005 C2 = C8 (W.s/°C) 0.008 C3 0.01 C4 = C13 = C19 (W.s/°C) 0.3 C5 (W.s/°C) 0.6 C9 = C15 (W.s/°C) 30.4 20.8 7 9 11 3.5 4.5 5.5 115 C1 = C7 (W.s/°C) C6 (W.s/°C) 36.1 5 0.0016 C10 = C16 (W.s/°C) 0.0032 C11 = C17 (W.s/°C) 0.0053 C12 = C18 (W.s/°C) 0.075 C14 = C20 (W.s/°C) 2.5 1. The blank space means that the value is the same as the previous one. DocID10833 Rev 7 29/34 34 Package information 5 VNH3ASP30-E Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.1 MultiPowerSO-30 package information Figure 43. MultiPowerSO-30 package outline Table 17. MultiPowerSO-30 mechanical data Symbol Millimeters Min Typ A 2.35 A2 1.85 2.25 A3 0 0.1 B 0.42 0.58 C 0.23 0.32 D 17.1 E 18.85 E1 15.9 e 30/34 Max 17.2 17.3 19.15 16 16.1 1 F1 5.55 6.05 F2 4.6 5.1 DocID10833 Rev 7 VNH3ASP30-E Package information Table 17. MultiPowerSO-30 mechanical data (continued) Symbol Millimeters Min Typ Max F3 9.6 10.1 L 0.8 1.15 N S 10 deg 0 deg 7 deg Figure 44. MultiPowerSO-30 suggested pad layout DocID10833 Rev 7 31/34 34 Package information VNH3ASP30-E 5.2 Packing information Note: The devices are packed in tape and reel shipments (see the Device summary on page 1). Figure 45. MultiPowerSO-30 tape and reel shipment (suffix “TR”) Reel dimensions Dimension mm A (max) B (min) C (± 0.2) D (min) G (+ 2 / -0) N (min) T (max) 330 1.5 13 20.2 32 100 38.4 Tape dimensions According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Description Dimension mm Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.1) 32 4 24 1.5 2 14.2 End Start Top cover tape No components Components No components 500 mm min 500 mm min Empty components pockets User direction of feed 32/34 DocID10833 Rev 7 VNH3ASP30-E 6 Revision history Revision history Table 18. Document revision history Date Revision Sep-2004 1 First issue Dec-2005 2 Resistance per leg modification Figure 33: Half-bridge configuration on page 21 11-Feb-2007 3 Document converted into new ST template. Changed Datasheet - production data on page 1 to add ECOPACK® package Removed Table 7. Thermal Data from page 4 Table 6: Power section on page 9: Changed test conditions and max values for supply current in Off state and On state Table 7: Logic inputs (INA, INB, ENA, ENB) on page 9: Modified parameter descriptions for IINL and IINH Table 8: PWM on page 10: Modified parameter descriptions for IPWL and IPWH Table 10: Protection and diagnostic on page 10: Modified all symbols except ILIM and VCLP Table 11 on page 11: Changed test conditions for K2 analog sense current drift Section Table 13.: Truth table in fault conditions (detected on OUTA) on page 14: Changed first of two fault conditions Figure 6: Definition of the high-side switching times on page 13: Added vertical limitation line to left side of tD(off) arrow Figure 36: Waveforms in full-bridge operation (continued) on page 24: Added dotted vertical limitation lines Added Section 2.3: Electrical characteristics curves on page 16 Added Section 4: Package and PCB thermal data on page 25 Added Section 5: Package information on page 30 Updated disclaimer on last page 01-Jun-2007 4 Document reformatted. Table 6: Power section on page 9: changed test conditions and max values for supply current in Off state 06-Feb-2008 5 Corrected Heat Slug numbers in Table 3: Pin definitions and functions. 23-Sep-2013 6 Updated Disclaimer. 7 – – – – 11-Jan-2017 Changes Removed all information relative to tube packing of the product Modified Section 5: Package information Added AEC-Q100 qualified in the Features section Minor text edits throughout the document DocID10833 Rev 7 33/34 34 VNH3ASP30-E IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 34/34 DocID10833 Rev 7
VNH3ASP30-E 价格&库存

很抱歉,暂时无法提供与“VNH3ASP30-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货