0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCP1640T-I/CHY

MCP1640T-I/CHY

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    SOT23-6

  • 描述:

    IC REG BST ADJ 0.1A SYNC SOT23-6

  • 数据手册
  • 价格&库存
MCP1640T-I/CHY 数据手册
MCP1640/B/C/D 0.65V Start-Up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option Features General Description • Up to 96% Typical Efficiency • 800 mA Typical Peak Input Current Limit: - IOUT > 100 mA @ 1.2V VIN, 3.3V VOUT - IOUT > 350 mA @ 2.4V VIN, 3.3V VOUT - IOUT > 350 mA @ 3.3V VIN, 5.0V VOUT • Low Start-Up Voltage: 0.65V, typical 3.3V VOUT @ 1 mA • Low Operating Input Voltage: 0.35V, typical 3.3VOUT @ 1 mA • Adjustable Output Voltage Range: 2.0V to 5.5V • Maximum Input Voltage  VOUT < 5.5V • Automatic PFM/PWM Operation (MCP1640/C): - PFM Operation Disabled (MCP1640B/D) - PWM Operation: 500 kHz • Low Device Quiescent Current: 19 µA, typical PFM Mode (not switching) • Internal Synchronous Rectifier • Internal Compensation • Inrush Current Limiting and Internal Soft Start • Selectable, Logic Controlled Shutdown States: - True Load Disconnect Option (MCP1640/B) - Input to Output Bypass Option (MCP1640C/D) • Shutdown Current (All States): < 1 µA • Low Noise, Anti-Ringing Control • Overtemperature Protection • Available Packages: - 6-Lead SOT-23 - 8-Lead 2 x 3 mm DFN The MCP1640/B/C/D is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. It provides an easy-to-use power supply solution for applications powered by either single-cell, two-cell, or three-cell alkaline, NiCd, NiMH, and single-cell Li-Ion or Li-Polymer batteries. Low-voltage technology allows the regulator to start-up without high inrush current or output voltage overshoot from a low 0.65V input. High efficiency is accomplished by integrating the low resistance N-Channel Boost switch and synchronous P-Channel switch. All compensation and protection circuitry is integrated to minimize the number of external components. For standby applications, the MCP1640 consumes only 19 µA while operating at no load, and provides a true disconnect from input to output while in Shutdown (EN = GND). Additional device options are available by operating in PWM-Only mode and connecting input to output while the device is in Shutdown. The “true” load disconnect mode provides input-to-output isolation while the device is disabled by removing the normal boost regulator diode path from input-tooutput. The Input-to-Output Bypass mode option connects the input to the output using the integrated low resistance P-Channel MOSFET, which provides a low bias voltage for circuits operating in Deep Sleep mode. Both options consume less than 1 µA of input current. Output voltage is set by a small external resistor divider. Two package options are available, 6-Lead SOT-23 and 8-Lead 2 x 3 mm DFN. Package Types Applications • One, Two and Three Cell Alkaline and NiMH/NiCd Portable Products • Single-Cell Li-Ion to 5V Converters • Li Coin Cell Powered Devices • Personal Medical Products • Wireless Sensors • Handheld Instruments • GPS Receivers • Bluetooth Headsets • +3.3V to +5.0V Distributed Power Supply  2010-2015 Microchip Technology Inc. MCP1640 6-Lead SOT-23 SW 1 GND 2 EN 3 6 VIN 5 VOUT 4 VFB MCP1640 8-Lead 2 x 3 DFN* 8 VIN VFB 1 SGND 2 PGND 3 EN 4 EP 9 7 VOUTS 6 VOUTP 5 SW * Includes Exposed Thermal Pad (EP); see Table 3-1. DS20002234D-page 1 MCP1640/B/C/D Typical Application L1 4.7 µH VIN 0.9V to 1.7V SW V OUT VIN CIN 4.7 µF ALKALINE + VOUT 3.3V @ 100 mA 976 k COUT 10 µF VFB EN 562 k GND - L1 4.7 µH VIN 3.0V to 4.2V SW V OUTS CIN 4.7 µF VIN VOUTP EN VFB LI-ION + VOUT 5.0V @ 300 mA 976 k COUT 10 µF 309 k PGND SGND - Efficiency vs. IOUT for 3.3VOUT 100.0 Efficiency (%) V IN = 2.5V 80.0 V IN = 0.8V V IN = 1.2V 60.0 40.0 0.1 1.0 10.0 100.0 1000.0 Output Current (mA) DS20002234D-page 2  2010-2015 Microchip Technology Inc. MCP1640/B/C/D 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † EN, VFB, VIN, VSW, VOUT - GND ......................... +6.5V EN, VFB .... (GND – 0.3V) Output Short-Circuit Current ...................... Continuous Output Current Bypass Mode........................... 400 mA Power Dissipation ............................ Internally Limited Storage Temperature ......................... -65°C to +150°C Ambient Temp. with Power Applied...... -40°C to +85°C Operating Junction Temperature........ -40°C to +125°C ESD Protection On All Pins: HBM........................................................ 3 kV MM......................................................... 300V † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. DC CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. Parameters Sym. Min. Typ. Max. Units Conditions Minimum Start-Up Voltage VIN — 0.65 0.8 V Note 1 Minimum Input Voltage After Start-Up VIN — 0.35 — V Note 1 Output Voltage Adjust Range VOUT 2.0 5.5 V Maximum Output Current IOUT — 150 — mA 1.2V VIN, 2.0V VOUT — 150 — mA 1.5V VIN, 3.3V VOUT — 350 — mA 3.3V VIN, 5.0V VOUT Input Characteristics VOUT  VIN; Note 2 Feedback Voltage VFB 1.175 1.21 1.245 V Feedback Input Bias Current IVFB — 10 — pA Quiescent Current – PFM Mode IQPFM — 19 30 µA Measured at VOUT = 4.0V; EN = VIN, IOUT = 0 mA; Note 3 Quiescent Current – PWM Mode IQPWM — 220 — µA Measured at VOUT = 4.0V; EN = VIN, IOUT = 0 mA; Note 3 Quiescent Current – Shutdown IQSHDN — 0.7 2.3 µA VOUT = EN = GND; Includes N-Channel and P-Channel Switch Leakage NMOS Switch Leakage INLK — 0.3 — µA VIN = VSW = 5V; VOUT = 5.5V VEN = VFB = GND PMOS Switch Leakage IPLK — 0.05 — µA VIN = VSW = GND; VOUT = 5.5V Note 1: 2: 3: 4: 5: 3.3 k resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQOUT is measured at VOUT; VOUT is externally supplied with a voltage higher than the nominal 3.3V output (device is not switching); no load; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). Peak current limit determined by characterization, not production tested. 220 resistive load, 3.3VOUT (15 mA).  2010-2015 Microchip Technology Inc. DS20002234D-page 3 MCP1640/B/C/D DC CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. Parameters Sym. Min. Typ. Max. Units NMOS Switch On Resistance RDS(ON)N — 0.6 —  VIN = 3.3V, ISW = 100 mA PMOS Switch On Resistance VIN = 3.3V, ISW = 100 mA RDS(ON)P — 0.9 —  NMOS Peak Switch Current Limit IN(MAX) 600 850 — mA VOUT Accuracy VOUT% -3 — +3 % Line Regulation VOUT/VOUT) /VIN| -1 0.01 1 %/V Load Regulation VOUT/VOUT| -1 0.01 1 % Maximum Duty Cycle DCMAX 88 90 — % Switching Frequency fSW 425 500 575 kHz EN Input Logic High VIH 90 — — EN Input Logic Low Conditions Note 4 Includes Line and Load Regulation; VIN = 1.5V VIN = 1.5V to 3V IOUT = 25 mA IOUT = 25 mA to 100 mA; VIN = 1.5V %of VIN IOUT = 1 mA %of VIN IOUT = 1 mA VIL — — 20 IENLK — 0.005 — µA VEN = 5V Soft-Start Time tSS — 750 — µS EN Low-to-High, 90% of VOUT; Note 5 Thermal Shutdown Die Temperature TSD — 150 — C TSDHYS — 10 — C EN Input Leakage Current Die Temperature Hysteresis Note 1: 2: 3: 4: 5: 3.3 k resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQOUT is measured at VOUT; VOUT is externally supplied with a voltage higher than the nominal 3.3V output (device is not switching); no load; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). Peak current limit determined by characterization, not production tested. 220 resistive load, 3.3VOUT (15 mA). TEMPERATURE SPECIFICATIONS Electrical Specifications: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA. Parameters Sym. Min. Typ. Max. Units Operating Junction Temperature Range TJ -40 — +125 °C Storage Temperature Range TA -65 — +150 °C Maximum Junction Temperature TJ — — +150 °C Thermal Resistance, 6LD-SOT-23 JA — 190.5 — °C/W Thermal Resistance, 8LD-2x3 DFN JA — 75 — °C/W Conditions Temperature Ranges Steady State Transient Package Thermal Resistances DS20002234D-page 4  2010-2015 Microchip Technology Inc. MCP1640/B/C/D 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 27.5 100 VIN = 1.2V 90 VOUT = 5.0V 20.0 VOUT = 3.3V 17.5 15.0 VIN = 0.8V 70 60 VIN = 1.2V 50 40 30 VOUT = 2.0V 20 12.5 PWM / PFM PWM Only 10 10.0 -40 -25 -10 5 20 35 50 Ambient Temperature (°C) 65 0 0.01 80 FIGURE 2-1: VOUT IQ vs. Ambient Temperature in PFM Mode. 100 VIN = 1.2V 90 VOUT = 5.0V 250 225 1 10 IOUT (mA) 100 VOUT = 3.3V 200 VIN = 2.5V VOUT = 3.3V 70 VIN = 0.8V 60 VIN = 1.2V 50 40 30 20 175 PWM / PFM PWM Only 10 150 -40 -25 -10 5 20 35 50 65 Ambient Temperature (°C) 0 0.01 80 FIGURE 2-2: VOUT IQ vs. Ambient Temperature in PWM Mode. 100 VOUT = 5.0V 500 90 Efficiency (%) VOUT = 3.3V 400 VOUT = 2.0V 300 0.1 1 10 IOUT (mA) 100 1000 FIGURE 2-5: 3.3V VOUT PFM/PWM Mode Efficiency vs. IOUT. 600 IOUT (mA) 1000 80 Efficiency (%) 275 0.1 FIGURE 2-4: 2.0V VOUT PFM/PWM Mode Efficiency vs. IOUT. 300 IQ PWM Mode (µA) VIN = 1.6V VOUT = 2.0V 80 22.5 Efficiency (%) IQ PFM Mode (µA) 25.0 200 VIN = 3.6V VOUT = 5.0V 80 VIN = 1.2V 70 VIN = 1.8V 60 50 40 30 100 20 PWM / PFM PWM Only 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VIN (V) FIGURE 2-3: Maximum IOUT vs. VIN After Start-Up, VOUT 10% Below Regulation Point.  2010-2015 Microchip Technology Inc. 0 0.01 0.1 1 10 IOUT (mA) 100 1000 FIGURE 2-6: 5.0V VOUT PFM/PWM Mode Efficiency vs. IOUT. DS20002234D-page 5 MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 1.00 3.33 VIN = 1.2V IOUT = 15 mA 3.325 3.32 VIN = 1.8V 3.315 VIN (V) VOUT (V) VOUT = 3.3V 0.85 3.31 3.305 Startup 0.70 0.55 3.3 Shutdown VIN = 0.8V 3.295 0.40 3.29 3.285 0.25 -40 -25 -10 5 20 35 50 65 Ambient Temperature (°C) FIGURE 2-7: Temperature. 80 3.3V VOUT vs. Ambient 0 80 100 525 Switching Frequency (kHz) VIN = 1.5V 3.36 VOUT (V) 40 60 IOUT (mA) FIGURE 2-10: Minimum Start-Up and Shutdown VIN into Resistive Load vs. IOUT. 3.38 3.34 IOUT = 5 mA 3.32 3.30 IOUT = 15 mA 3.28 IOUT = 50 mA 3.26 VOUT = 3.3V 520 515 510 505 500 495 490 485 480 -40 -25 -10 5 20 35 50 65 Ambient Temperature (°C) FIGURE 2-8: Temperature. 80 3.3V VOUT vs. Ambient -40 -25 -10 5 20 35 50 65 Ambient Temperature (°C) FIGURE 2-11: Temperature. 80 FOSC vs. Ambient 4.5 3.40 IOUT = 5 mA TA = +85°C 4 3.36 VOUT = 5.0V 3.5 3 TA = +25°C 3.32 3.28 VIN (V) VOUT (V) 20 TA = -40°C VOUT = 3.3V 2.5 2 VOUT = 2.0V 1.5 1 3.24 0.5 0 3.20 0.8 1.2 FIGURE 2-9: DS20002234D-page 6 1.6 2 VIN (V) 2.4 3.3V VOUT vs. VIN. 2.8 0 1 2 3 4 5 6 IOUT (mA) 7 8 9 10 FIGURE 2-12: PWM Pulse-Skipping Mode Threshold vs. IOUT.  2010-2015 Microchip Technology Inc. MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 10000 IIN (µA) PWM / PFM PWM Only 1000 VOUT = 5.0V VOUT = 3.3V VOUT = 2.0V 100 VOUT = 2.0V VOUT = 5.0V VOUT = 3.3V 10 0.8 1.1 1.4 1.7 FIGURE 2-13: VIN. 2 2.3 2.6 VIN (V) 2.9 3.2 3.5 Input No Load Current vs. FIGURE 2-16: MCP1640 3.3V VOUT PFM Mode Waveforms. Switch Resistance (Ohms) 5 VOUT 20 mV/DIV AC Coupled 4 P - Channel 3 IOUT = 1 mA VSW 2V/DIV 2 1 IL 0.05 mA/DIV N - Channel 0 1 1.5 2 2.5 3 3.5 > VIN or VOUT 4 4.5 5 FIGURE 2-14: N-Channel and P-Channel RDSON vs. > of VIN or VOUT. 1 µs/DIV FIGURE 2-17: MCP1640B 3.3V VOUT PWM Mode Waveforms. 60 IOUT (mA) 50 VOUT = 3.3V VOUT = 5.0V 40 VOUT = 2.0V 30 20 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VIN (V) FIGURE 2-15: Average of PFM/PWM Threshold Current vs. VIN.  2010-2015 Microchip Technology Inc. FIGURE 2-18: Waveforms. MCP1640/B High Load DS20002234D-page 7 MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. MCP1640B PWM Mode Only VOUT 100 mV/DIV AC Coupled VOUT 1V/DIV ISTEP = 1 mA to 75 mA VIN 1V/DIV IOUT 50 mA/DIV VEN 1V/DIV 500 µs/DIV FIGURE 2-19: 100 µs/DIV 3.3V Start-Up After Enable. FIGURE 2-22: MCP1640B 3.3V VOUT Load Transient Waveforms. MCP1640B PWM Mode Only VOUT 1V/DIV VOUT 50 mV/DIV AC Coupled ISTEP = 1 mA to 50 mA VIN 1V/DIV IOUT 50 mA/DIV VEN 1V/DIV 100 µs/DIV 500 µs/DIV FIGURE 2-20: VIN = VENABLE. 3.3V Start-Up when PWM MODE FIGURE 2-23: MCP1640B 2.0V VOUT Load Transient Waveforms. PFM MODE VOUT 50 mV/DIV AC Coupled VOUT 100 mV/DIV AC Coupled ISTEP = 1 mA to 75 mA VIN 1V/DIV IOUT 50 mA/DIV 200 µs/DIV 100 µs/DIV FIGURE 2-21: MCP1640 3.3V VOUT Load Transient Waveforms. DS20002234D-page 8 VSTEP from 1V to 2.5V FIGURE 2-24: Waveforms. 3.3V VOUT Line Transient  2010-2015 Microchip Technology Inc. MCP1640/B/C/D 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE MCP1640/B/C/D MCP1640/B/C/D 2x3 DFN SOT-23 3.1 Symbol Description 1 4 VFB 2 — SGND Feedback Voltage Pin Signal Ground Pin 3 — PGND Power Ground Pin 4 3 EN Enable Control Input Pin 5 1 SW 6 — VOUTP Output Voltage Power Pin Switch Node, Boost Inductor Input Pin 7 — VOUTS Output Voltage Sense Pin 8 6 VIN Input Voltage Pin 9 — EP — 2 GND Ground Pin Exposed Thermal Pad (EP); must be connected to VSS — 5 VOUT Output Voltage Pin Feedback Voltage Pin (VFB) The VFB pin is used to provide output voltage regulation by using a resistor divider. Feedback voltage will be 1.21V typical with the output voltage in regulation. 3.2 Signal Ground Pin (SGND) The signal ground pin is used as a return for the integrated VREF and error amplifier. In the 2x3 DFN package, the SGND and power ground (PGND) pins are connected externally. 3.3 Power Ground Pin (PGND) The power ground pin is used as a return for the high-current N-Channel switch. In the 2x3 DFN package, the PGND and SGND pins are connected externally. 3.4 Enable Pin (EN) The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current while disabled. A logic high (>90% of VIN) will enable the regulator output. A logic low (
MCP1640T-I/CHY 价格&库存

很抱歉,暂时无法提供与“MCP1640T-I/CHY”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MCP1640T-I/CHY
  •  国内价格
  • 1+3.60470
  • 30+3.48040
  • 100+3.23180
  • 500+2.98320
  • 1000+2.85890

库存:0