0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD797BRZ-REEL7

AD797BRZ-REEL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOICN8_150MIL

  • 描述:

    IC OPAMP GP 1 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
AD797BRZ-REEL7 数据手册
Ultralow Distortion, Ultralow Noise Op Amp AD797 Data Sheet FEATURES GENERAL DESCRIPTION Low noise 0.9 nV/√Hz typical (1.2 nV/√Hz maximum) input voltage noise at 1 kHz 50 nV p-p input voltage noise, 0.1 Hz to 10 Hz Low distortion −120 dB total harmonic distortion at 20 kHz Excellent ac characteristics 800 ns settling time to 16 bits (10 V step) 110 MHz gain bandwidth (G = 1000) 8 MHz bandwidth (G = 10) 280 kHz full power bandwidth at 20 V p-p 20 V/μs slew rate Excellent dc precision 80 μV maximum input offset voltage 1.0 μV/°C VOS drift Specified for ±5 V and ±15 V power supplies High output drive current of 50 mA The AD797 is a very low noise, low distortion operational amplifier ideal for use as a preamplifier. The low noise of 0.9 nV/√Hz and low total harmonic distortion of −120 dB in audio bandwidths give the AD797 the wide dynamic range necessary for preamps in microphones and mixing consoles. APPLICATIONS Furthermore, the AD797 has an excellent slew rate of 20 V/μs and a 110 MHz gain bandwidth, which makes it highly suitable for low frequency ultrasound applications. The AD797 is also useful in infrared (IR) and sonar imaging applications, where the widest dynamic range is necessary. The low distortion and 16-bit settling time of the AD797 make it ideal for buffering the inputs to Σ-Δ ADCs or the outputs of high resolution DACs, especially when the device is used in critical applications such as seismic detection or in spectrum analyzers. Key features such as a 50 mA output current drive and the specified power supply voltage range of ±5 V to ±15 V make the AD797 an excellent general-purpose amplifier. 5 4 3 2 1 0 10 100 1k 10k 100k 10M 1M FREQUENCY (Hz) 00846-002 INPUT VOLTAGE NOISE (nV/√Hz) Professional audio preamplifiers IR, CCD, and sonar imaging systems Spectrum analyzers Ultrasound preamplifiers Seismic detectors Σ-Δ ADC/DAC buffers Figure 1. AD797 Voltage Noise Spectral Density Table 1. Low Noise Op Amps Voltage Noise Single Dual Quad Rev. K 0.9 nV AD797 1.1 nV AD8597 AD8599 1.8 nV ADA4004-1 ADA4004-2 ADA4004-4 2.8 nV AD8675/ADA4075-2 AD8676 3.2 nV OP27 OP270 OP470 3.8 nV AD8671 AD8672 AD8674 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1992–2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD797 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Noise and Source Impedance Considerations ........................... 12  Applications ....................................................................................... 1  Low Frequency Noise ................................................................ 12  General Description ......................................................................... 1  Wideband Noise ......................................................................... 12  Revision History ............................................................................... 2  Bypassing Considerations ......................................................... 13  Specifications..................................................................................... 3  The Noninverting Configuration ............................................. 13  Absolute Maximum Ratings............................................................ 5  The Inverting Configuration .................................................... 14  Pin Configuration ............................................................................. 5  Driving Capacitive Loads .......................................................... 14  Thermal Resistance ...................................................................... 5  Settling Time ............................................................................... 14  ESD Caution .................................................................................. 5  Distortion Reduction ................................................................. 15  Typical Performance Characteristics ............................................. 6  Outline Dimensions ....................................................................... 18  Theory of Operation ...................................................................... 11  Ordering Guide .......................................................................... 19  REVISION HISTORY 3/15—Rev. J to Rev. K Changes to Figure 35 ...................................................................... 12 Changes to Ordering Guide .......................................................... 19 2/14—Rev. I to Rev. J Changes to Power Supply Rejection Parameter, Table 2 ............. 3 3/13—Rev. H to Rev. I Added Figure 18................................................................................ 8 6/10—Rev. G to Rev. H Added Table 1; Renumbered Sequentially .................................... 1 Moved Figure 1 to Absolute Maximum Ratings Section; Renumbered Sequentially................................................................ 5 Changes to Table 3 ............................................................................ 5 Added Thermal Resistance Section and Table 4 .......................... 5 Moved Figure 3 to Typical Performance Characteristics Section .............................................................................................. 10 Change to Noise and Source Impedance Considerations Section .............................................................................................. 12 Changes to Ordering Guide .......................................................... 19 7/05—Rev. D to Rev. E Updated Figure 1 Caption ................................................................1 Deleted Metallization Photo ............................................................6 Changes to Equation 1 ................................................................... 12 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 20 10/02—Rev. C to Rev. D Deleted 8-Lead CERDIP Package (Q-8) ......................... Universal Edits to Specifications .......................................................................2 Edits to Absolute Maximum Ratings ..............................................3 Edits to Ordering Guide ...................................................................3 Edits to Table I ...................................................................................9 Deleted Operational Amplifiers Graphic .................................... 15 Updated Outline Dimensions ....................................................... 15 9/08—Rev. F to Rev. G Changes to Input Common-Mode Voltage Range Parameter, Table 1 ................................................................................................ 3 1/08—Rev. E to Rev. F Changes to Absolute Maximum Ratings ....................................... 5 Change to Equation 1 ..................................................................... 12 Changes to the Noninverting Configuration Section ................ 13 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 20 Rev. K | Page 2 of 19 Data Sheet AD797 SPECIFICATIONS TA = 25°C and VS = ±15 V dc, unless otherwise noted. Table 2. AD797A Parameter INPUT OFFSET VOLTAGE Conditions Supply Voltage (V) ±5 V, ±15 V Min TMIN to TMAX Offset Voltage Drift INPUT BIAS CURRENT ±5 V, ±15 V ±5 V, ±15 V TMIN to TMAX INPUT OFFSET CURRENT OPEN-LOOP GAIN DYNAMIC PERFORMANCE Gain Bandwidth Product –3 dB Bandwidth Full Power Bandwidth1 Slew Rate Settling Time to 0.0015% COMMON-MODE REJECTION POWER SUPPLY REJECTION INPUT VOLTAGE NOISE INPUT CURRENT NOISE INPUT COMMON-MODE VOLTAGE RANGE OUTPUT VOLTAGE SWING Short-Circuit Current Output Current3 TOTAL HARMONIC DISTORTION ±5 V, ±15 V TMIN to TMAX VOUT = ±10 V RLOAD = 2 kΩ TMIN to TMAX RLOAD = 600 Ω TMIN to TMAX At 20 kHz1 G = 1000 G = 10002 G = 10 VOUT = 20 V p-p, RLOAD = 1 kΩ RLOAD = 1 kΩ 10 V step VCM = CMVR TMIN to TMAX VS = ±5 V to ±18 V TMIN to TMAX f = 0.1 Hz to 10 Hz f = 10 Hz f = 1 kHz f = 10 Hz to 1 MHz f = 1 kHz RLOAD = 2 kΩ RLOAD = 600 Ω RLOAD = 600 Ω RLOAD = 1 kΩ, CN = 50 pF, f = 250 kHz, 3 V rms RLOAD = 1 kΩ, f = 20 kHz, 3 V rms ±15 V 1 1 1 1 14,000 ±15 V 15 V ±15 V ±15 V ±15 V ±15 V ±5 V, ±15 V ±15 V ±15 V ±15 V ±15 V ±15 V ±15 V ±5 V ±15 V ±15 V ±5 V ±5 V, ±15 V ±5 V, ±15 V ±15 V 12.5 114 110 114 110 ±11 ±2.5 ±12 ±11 ±2.5 30 ±15 V Rev. K | Page 3 of 19 Typ 25 50 0.2 0.25 0.5 100 120 20 6 15 5 20,000 AD797B Max 80 125/180 1.0 1.5 3.0 400 600/700 Min 2 2 2 2 14,000 110 450 8 280 110 450 8 20 800 130 120 130 120 50 1.7 0.9 1.0 2.0 ±12 12.5 ±3 ±13 ±13 ±3 80 50 −98 −120 1200 120 114 120 114 1.2 1.3 ±11 ±2.5 ±12 ±11 ±2.5 Typ 10 30 0.2 0.25 0.25 80 120 20 10 15 7 20,000 Max 40 60 0.6 0.9 2.0 200 300 Unit μV μV μV/°C μA μA nA nA V/μV V/μV V/μV V/μV V/V 280 MHz MHz MHz kHz 20 800 130 120 130 120 50 1.7 0.9 1.0 2.0 ±12 V/μs ns dB dB dB dB nV p-p nV/√Hz nV/√Hz μV rms pA/√Hz V 1200 2.5 1.2 1.2 −90 ±3 ±13 ±13 ±3 80 50 −98 −90 V V V V mA mA dB −110 −120 −110 dB 30 AD797 Data Sheet AD797A Parameter INPUT CHARACTERISTICS Input Resistance Differential Common Mode Input Capacitance Differential4 Common Mode OUTPUT RESISTANCE POWER SUPPLY Operating Range Quiescent Current Conditions Supply Voltage (V) Min AV = 1, f = 1 kHz Typ 1 Max 3 Rev. K | Page 4 of 19 Typ Max Unit 7.5 100 kΩ MΩ 20 5 3 20 5 3 pF pF mΩ ±18 10.5 V mA 8.2 ±18 10.5 Full power bandwidth = slew rate/2π VPEAK. Specified using external decompensation capacitor. Output current for |VS − VOUT| > 4 V, AOL > 200 kΩ. 4 Differential input capacitance consists of 1.5 pF package capacitance and 18.5 pF from the input differential pair. 2 Min 7.5 100 ±5 ±5 V, ±15 V AD797B ±5 8.2 Data Sheet AD797 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range (N, R Suffix) Operating Temperature Range Lead Temperature (Soldering 60 sec) 1 Ratings ±18 V ±VS ±0.7 V Indefinite within maximum internal power dissipation −65°C to +125°C –IN 2 DECOMPENSATION AND DISTORTION NEUTRALIZATION 7 +VS +IN 3 6 OUTPUT –VS 4 5 OFFSET NULL OFFSET NULL 1 AD797 TOP VIEW 8 00846-001 Table 3. Figure 2. 8-Lead Plastic Dual In-Line Package [PDIP] and 8-Lead Standard Small Outline Package [SOIC] THERMAL RESISTANCE θJA is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow for the SOIC package, and a 2-layer JEDEC standard printed circuit board (PCB) with zero airflow for the PDIP package. −40°C to +85°C 300°C The AD797 inputs are protected by back-to-back diodes. To achieve low noise, internal current-limiting resistors are not incorporated into the design of this amplifier. If the differential input voltage exceeds ±0.7 V, the input current should be limited to less than 25 mA by series protection resistors. Note, however, that this degrades the low noise performance of the device. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Table 4. Thermal Resistance Package Type 8-Lead SOIC (R-8) 8-Lead PDIP (N-8) ESD CAUTION Rev. K | Page 5 of 19 θJA 120 103 θJC 43 50 Unit °C/W °C/W AD797 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 10 5 0 5 10 15 20 SUPPLY VOLTAGE (±V) HORIZONTAL SCALE (5sec/DIV) Figure 3. Input Common-Mode Voltage Range vs. Supply Voltage Figure 6. 0.1 Hz to 10 Hz Noise 0 INPUT BIAS CURRENT (µA) 15 10 +VOUT –VOUT 5 0 0 5 10 15 20 SUPPLY VOLTAGE (±V) –0.5 –1.0 –1.5 –2.0 –60 00846-005 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 4. Output Voltage Swing vs. Supply Voltage Figure 7. Input Bias Current vs. Temperature 30 140 SHORT-CIRCUIT CURRENT (mA) VS = ± 15V 20 10 VS = ±5 120 100 SOURCE CURRENT SINK CURRENT 80 60 0 10 100 1k LOAD RESISTANCE (Ω) 10k 40 –60 00846-006 OUTPUT VOLTAGE SWING (V p-p) –40 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 5. Output Voltage Swing vs. Load Resistance Figure 8. Short-Circuit Current vs. Temperature Rev. K | Page 6 of 19 140 00846-009 OUTPUT VOLTAGE SWING (±V) 20 00846-008 0 00846-007 VERTICAL SCALE (0.01µV/DIV) 15 00846-004 INPUT COMMON-MODE RANGE (±V) 20 Data Sheet AD797 +125°C 9 +25°C 8 7 5 15 10 20 SUPPLY VOLTAGE (±V) Figure 9. Quiescent Supply Current vs. Supply Voltage 125 CMR 60 100 40 75 20 1 10 100 1k 10k 100k FREQUENCY (Hz) –60 f = 1kHz RL = 600Ω G = +10 RL = 600Ω G = +10 f = 10kHz NOISE BW = 100kHz THD + NOISE (dB) 9 6 –80 VS = ±5V –100 3 0 ±5 ±10 ±15 ±20 SUPPLY VOLTAGE (±V) –120 0.01 0.1 1 10 OUTPUT LEVEL (V) Figure 10. Output Voltage vs. Supply Voltage for 0.01% Distortion 00846-014 VS = ±15V 00846-011 0 50 1M Figure 12. Power Supply and Common-Mode Rejection vs. Frequency 12 OUTPUT VOLTAGE (V rms) 150 80 00846-010 0 PSR +SUPPLY PSR –SUPPLY 100 –55°C 6 175 120 00846-013 10 COMMON MODE REJECTION (dB) 200 140 POWER SUPPLY REJECTION (dB) QUIESCENT SUPPLY CURRENT (mA) 11 Figure 13. Total Harmonic Distortion (THD) + Noise vs. Output Level 30 1.0 OUTPUT VOLTAGE (V p-p) ±15V SUPPLIES 0.0015% 0.6 0.01% 0.4 RL = 600Ω 20 10 ±5V SUPPLIES 0 0 2 4 6 8 STEP SIZE (V) 10 0 10k 100k 1M FREQUENCY (Hz) Figure 14. Large-Signal Frequency Response Figure 11. Settling Time vs. Step Size (±) Rev. K | Page 7 of 19 10M 00846-015 0.2 00846-012 SETTLING TIME (µs) 0.8 AD797 Data Sheet 100 3 2 1 0 1k 10k 100k 1M 10M FREQUENCY (Hz) 1 1 10 100 1k 10k FREQUENCY (Hz) Figure 18. Current Noise Density VS = ±15 V Figure 15. Input Voltage Noise Spectral Density 120 120 35 100 PHASE MARGIN 80 60 40 GAIN 20 40 *RS = 100 WITHOUT RS* 20 *SEE FIGURE 26. 0 100 1k SLEW RATE RISING EDGE 25 100 SLEW RATE FALLING EDGE 90 20 0 WITH RS* 10k 100k 1M FREQUENCY (Hz) 10M 100M 15 –60 –40 –20 0 20 40 60 80 100 120 80 140 TEMPERATURE (°C) Figure 16. Open-Loop Gain and Phase Margin vs. Frequency Figure 19. Slew Rate and Gain/Bandwidth Product vs. Temperature 160 300 OVERCOMPENSATED OPEN-LOOP GAIN (dB) 150 0 140 120 –150 –300 –60 100 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) 120 140 100 1k LOAD RESISTANCE (Ω) Figure 20. Open-Loop Gain vs. Load Resistance Figure 17. Input Offset Current vs. Temperature Rev. K | Page 8 of 19 10k 00846-020 UNDER COMPENSATED 00846-018 INPUT OFFSET CURRENT (nA) 110 30 SLEW RATE (V/µs) 80 60 GAIN/BANDWIDTH PRODUCT PHASE MARGIN (Degrees) WITHOUT RS* WITH RS* 00846-017 OPEN-LOOP GAIN (dB) 100 GAIN/BANDWIDTH PRODUCT (MHz (G = 1000)) 100 00846-019 10 10 00846-055 CURRENT NOISE DENSITY (pA/√Hz) 4 00846-016 INPUT VOLTAGE NOISE (nV/√Hz) 5 Data Sheet AD797 50mV 100ns 100 90 10 1 WITHOUT CN* 0.1 10 100 1k 10k 100k 1M FREQUENCY (Hz) 00846-024 0% 00846-021 0.01 10 WITH CN* *SEE FIGURE 33. Figure 21. Magnitude of Output Impedance vs. Frequency Figure 24. Inverter Small-Signal Pulse Response 20pF 100Ω +VS 1kΩ 1kΩ 2 7 AD797 3 VIN VOUT 6 RS* 7 AD797 3 VOUT 6 600Ω 4 ** 4 –VS * *VALUE OF SOURCE RESISTANCE (SEE THE NOISE AND SOURCE IMPEDANCE CONSIDERATIONS SECTION). **SEE FIGURE 36. –VS *SEE FIGURE 36. Figure 22. Inverter Connection Figure 25. Follower Connection 1µs 5V 100 100 90 90 10 0% 5V 00846-023 10 0% Figure 23. Inverter Large-Signal Pulse Response 1µs 00846-026 VIN 2 * ** 00846-025 +VS 00846-022 MAGNITUDE OF OUTPUT IMPEDANCE (Ω) 100 Figure 26. Follower Large-Signal Pulse Response Rev. K | Page 9 of 19 AD797 Data Sheet 50mV 100ns 100 100 90 90 10 0% 00846-027 10 0% 500ns 00846-029 50mV Figure 29. 16-Bit Settling Time Negative Input Pulse Figure 27. Follower Small-Signal Pulse Response –90 500ns 100 THD (dB) 90 –100 0.001 –110 0.0003 –120 0.0001 THD (%) 50mV 00846-028 –130 100 300 1k 3k 10k 30k FREQUENCY (Hz) Figure 28. 16-Bit Settling Time Positive Input Pulse Figure 30. THD vs. Frequency Rev. K | Page 10 of 19 100k 300k 00846-003 MEASUREMENT LIMIT 10 0% Data Sheet AD797 THEORY OF OPERATION The architecture of the AD797 was developed to overcome inherent limitations in previous amplifier designs. Previous precision amplifiers used three stages to ensure high open-loop gain (see Figure 31) at the expense of additional frequency compensation components. Slew rate and settling performance are usually compromised, and dynamic performance is not adequate beyond audio frequencies. As can be seen in Figure 31, the first stage gain is rolled off at high frequencies by the compensation network. Second stage noise and distortion then appears at the input and degrade performance. The AD797, on the other hand, uses a single ultrahigh gain stage to achieve dc as well as dynamic precision. As shown in the simplified schematic (Figure 32), Node A, Node B, and Node C track the input voltage, forcing the operating points of all pairs of devices in the signal path to match. By exploiting the inherent matching of devices fabricated on the same IC chip, high open-loop gain, CMRR, PSRR, and low VOS are guaranteed by pairwise device matching (that is, NPN to NPN and PNP to PNP), not by an absolute parameter such as beta and the early voltage. VOUT BUFFER gm RL C1 R1 GAIN = gm × R1 × 5 × 106 The elimination of second-stage noise effects has the additional benefit of making the low noise of the AD797 (5 × 106 and VOS < 80 μV, while at the same time providing a THD + noise of less than −120 dB and true 16-bit settling in less than 800 ns. Rev. K | Page 11 of 19 Figure 33. AD797 Block Diagram 00846-032 R1 gm C CN j  C N j  C j A A When CN is equal to CC, the ideal single-pole op amp response is attained: a. gm  AD797 Data Sheet NOISE AND SOURCE IMPEDANCE CONSIDERATIONS LOW FREQUENCY NOISE The AD797 ultralow voltage noise of 0.9 nV/√Hz is achieved with special input transistors running at nearly 1 mA of collector current. Therefore, it is important to consider the total inputreferred noise (eNtotal), which includes contributions from voltage noise (eN), current noise (iN), and resistor noise (√4 kTRS). Analog Devices specifies low frequency noise as a peak-to-peak quantity in a 0.1 Hz to 10 Hz bandwidth. Several techniques can be used to make this measurement. The usual technique involves amplifying, filtering, and measuring the amplifier noise for a predetermined test time. The noise bandwidth of the filter is corrected for, and the test time is carefully controlled because the measurement time acts as an additional low frequency roll-off. e N total  [e N 2  4 kTR S  (i N  R S ) 2 ]1 / 2 (1) where RS is the total input source resistance. This equation is plotted for the AD797 in Figure 34. Because optimum dc performance is obtained with matched source resistances, this case is considered even though it is clear from Equation 1 that eliminating the balancing source resistance lowers the total noise by reducing the total RS by a factor of 2. At very low source resistance (RS < 50 Ω), the voltage noise of the amplifier dominates. As source resistance increases, the Johnson noise of RS dominates until a higher resistance of RS > 2 kΩ is achieved; the current noise component is larger than the resistor noise. 100 The plot in Figure 6 uses a slightly different technique: an FFTbased instrument (Figure 35) is used to generate a 10 Hz brickwall filter. A low frequency pole at 0.1 Hz is generated with an external ac coupling capacitor, which is also the instrument being dc coupled. Several precautions are necessary to attain optimum low frequency noise performance:    TOTAL NOISE NOISE (nV/√Hz) 10  RESISTOR NOISE ONLY 1 Care must be used to account for the effects of RS. Even a 10 Ω resistor has 0.4 nV/√Hz of noise (an error of 9% when root sum squared with 0.9 nV/√Hz). The test setup must be fully warmed up to prevent eOS drift from erroneously contributing to input noise. Circuitry must be shielded from air currents. Heat flow out of the package through its leads creates the opportunity for a thermoelectric potential at every junction of different metals. Selective heating and cooling of these by random air currents appears as 1/f noise and obscures the true device noise. The results must be interpreted using valid statistical techniques. 100kΩ +VS * 100 1000 10000 SOURCE RESISTANCE (Ω) 2 7 AD797 Figure 34. Noise vs. Source Resistance 3 1.5µF 6 4 VOUT HP 3465 DYNAMIC SIGNAL ANALYZER (10Hz) * The AD797 is the optimum choice for low noise performance if the source resistance is kept
AD797BRZ-REEL7 价格&库存

很抱歉,暂时无法提供与“AD797BRZ-REEL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD797BRZ-REEL7
  •  国内价格 香港价格
  • 1+205.091681+24.82172
  • 10+189.1410610+22.89125
  • 25+180.6512125+21.86375
  • 100+161.51536100+19.54779
  • 250+154.07909250+18.64779
  • 750+138.27548750+16.73512

库存:301