0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADUCM310BBCZ

ADUCM310BBCZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    112-TFBGA,CSPBGA

  • 描述:

    ARM® Cortex®-M3 ADuCM Microcontroller IC 32-Bit 80MHz 256KB (128K x 8 x 2) FLASH 112-CSPBGA (6x6)

  • 数据手册
  • 价格&库存
ADUCM310BBCZ 数据手册
Precision Analog Microcontroller, Tunable Optical Control Microcontroller ADuCM310 Data Sheet FEATURES External 16 MHz crystal option External clock source Memory 2× 128 kB Flash/EE memories, 32 kB SRAM In-circuit download, SW-DP-based debugging Software triggered in-circuit reprogrammability On-chip peripherals UART, 2× I2C and 2× SPI serial input/output 28-pin general-purpose input/output (GPIO) port 3 general-purpose timers Wake-up (W/U) timer Watchdog timer (WDT) 32-element programmable logic array (PLA) Vectored interrupt controller Interrupt on edge or level external pin inputs 9× external interrupts Power Multiple supplies 5 V for VDAC6 and VDAC7 3.3 V for digital and analog inputs/outputs 1.8 V to 2.7 V for IDACs −5 V supply for IDAC3 and VDAC2/VDAC3 Package and temperature range 6 mm × 6 mm, 112-ball CSP_BGA package Fully specified for −40°C to +85°C ambient operation Tools QuickStart™ development system Full third party support Analog input/output 22-channel, 14-bit, 800 kSPS analog-to-digital converter (ADC) 10 external channels 1 on-chip die temperature monitor 6 current output digital-to-analog converter (IDAC) monitor channels 3 power monitor channels 2 buffered reference output channels Fully differential and single-ended modes 0 V to 2.5 V analog input range 6 low noise, 12-/14-bit IDAC outputs 1× 250 mA, 1× 200 mA, 2× 100 mA, and 2× 20 mA Semiconductor optical amplifier (SOA) IDAC pull-down to −3.0 V for fast current sink Eight 12-bit voltage output DACs (VDACs) Channel 0 and Channel 1: 0 V to 3 V, 75 Ω load Channel 2 and Channel 3: −5 V to 0 V, 500 Ω load Channel 4 and Channel 5: 0 V to 3 V, 300 Ω load Channel 6: 0 V to 5 V, 500 Ω load Channel 7: 0 V to 5 V, 100 Ω load 2.5 V, on-chip voltage reference 2 buffered 2.5 V outputs Microcontroller ARM Cortex-M3 processor, 32-bit RISC architecture Serial wire port supports code download and debugging Clocking options Trimmed on-chip oscillator (±3%) 80 MHz phase-locked loop (PLL) APPLICATIONS Optical modules—tunable laser modules FUNCTIONAL BLOCK DIAGRAM AIN0 BUF 32.786kHz 16MHz OSC 80MHz PLL POR AIN9 INTERNAL CHANNELS, IDACs, TEMPERATURE, SUPPLIES 2.5V BAND GAP VREF VREF_1.2 BUF_VREF2.5A MEMORY 256k FLASH 32k SRAM BUF_VREF2.5B VDAC0 ARM CORTEX-M3 PROCESSOR VDAC VDAC7 VDAC IDAC0 IDAC IDAC5 IDAC ON-CHIP 1.8V LDO GPIO PORTS UART PORT 2 × SPI PORT 2 × I2C PORT EXT IRQs DMA NVIC 3 × GP TIMER WD TIMER W/U TIMER PWM PLA 32 × ELEMENTS SERIAL WIRE RESET IOVDDx PVDD_IDACx AVDDx DGNDx PGND GENERALPURPOSE I/O PORTS ADuCM310 SWDIO SWCLK 13040-001 MUX 14-BIT SAR ADC Figure 1. Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADuCM310 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Thermal Resistance .................................................................... 17 Applications ....................................................................................... 1 ESD Caution................................................................................ 17 Functional Block Diagram .............................................................. 1 Pin Configuration and Function Descriptions........................... 18 Revision History ............................................................................... 2 Typical Performance Characteristics ........................................... 22 General Description ......................................................................... 3 Recommended Circuit and Component Values ........................ 25 Specifications..................................................................................... 4 Outline Dimensions ....................................................................... 27 Timing Specifications ................................................................ 12 Ordering Guide .......................................................................... 27 Absolute Maximum Ratings.......................................................... 17 REVISION HISTORY 2/2019—Rev. B to Rev. C Changes to IDAC0 and IDAC1 Parameter, Table 1 ..................... 7 Added Allowed Power-Up Time for DVDD Supply Parameter, Table 1 .............................................................................................. 10 Changes to Ordering Guide .......................................................... 27 7/2017—Rev. A to Rev. B Change to Features ........................................................................... 1 Change to General Description ...................................................... 3 Changes to Specifications Section and Table 1 ............................. 4 Added Endnote 1, Table 1; Renumbered Sequentially .............. 12 11/2015—Rev. 0 to Rev. A Change to Features Section ..............................................................1 Changes to Specifications Section and Table 1 ..............................4 Changes to Table 6 and Figure 5 ................................................... 15 Changes to Table 7 and Figure 6 ................................................... 16 Changes to Figure 7 ........................................................................ 18 5/2015—Revision 0: Initial Version Rev. C | Page 2 of 27 Data Sheet ADuCM310 GENERAL DESCRIPTION The ADuCM310 is a multidie stack, on-chip system designed for diagnostic control of tunable laser optical module applications. The ADuCM310 features a 16-bit (14-bit accurate) multichannel successive approximation register (SAR) ADC, an ARM Cortex™-M3 processor, eight voltage DACs (VDACs), six current output DACs, and Flash/EE memory packaged in a 6 mm × 6 mm, 112-ball CSP_BGA package. The bottom die in the stack supports the bulk of the low voltage analog circuitry and is the largest of the three die. It contains the ADC, VDACs, main IDAC circuits, as well as other analog support circuits, such as the low drift precision 2.5 V voltage reference source. The middle die in the stack supports the bulk of the digital circuitry, including the ARM Cortex-M3 processor, the flash and SRAM blocks, and all of the digital communication peripherals. In addition, this die provides the clock sources for the whole chip. A 16 MHz internal oscillator is the source of the internal PLL that outputs an 80 MHz system clock. The top die, which is the smallest die, was developed on a high voltage process, and this die supports the −5 V and +5 V VDAC outputs. It also implements the SOA IDAC current sink circuit that allows the external SOA diode to pull to a −3.0 V level to implement the fast shutdown of the laser output. Regarding the individual blocks, the ADC is capable of operating at conversion rates up to 800 kSPS. There are 10 external inputs to the ADC, which can be single ended or differential. Several internal channels are included, such as the supply monitor channels, an on-chip temperature sensor, and internal voltage reference monitors. The VDACs are 12-bit string DACs with output buffers capable of sourcing between 10 mA and 50 mA, and these DACs are all capable of driving 10 nF capacitive loads. The low drift current DACs have 14-bit resolution and varied full-scale output ranges from 0 mA to 20 mA to 0 mA to 250 mA on the SOA IDAC (IDAC3). The SOA IDAC also comes with a 0 mA to −80 mA current sink capability. A precision 2.5 V on-chip reference source is available. The internal ADC, IDACs, and VDAC circuits use this on-chip reference source to ensure low drift performance for all of these peripherals The ADuCM310 also provides 2× buffered reference outputs capable of sourcing up to 1.2 mA. These outputs can be used externally to the chip. The ADuCM310 integrates an 80 MHz ARM Cortex-M3 processor. It is a 32-bit reduced instruction set computer (RISC) machine, offering up to 100 DMIPS peak performance. The ARM Cortex-M3 processor also has a flexible 14-channel direct memory access (DMA) controller supporting serial peripheral interface (SPI), UART, and I2C communication peripherals. The ADuCM310 has 256 kB of nonvolatile Flash/EE memory and 32 kB of SRAM integrated on-chip. A 16 MHz on-chip oscillator generates the 80 MHz system clock. This clock internally divides to allow the processor to operate at lower frequency, thus saving power. A low power internal 32 kHz oscillator is available and can clock the timers. The ADuCM310 includes three general-purpose timers, a wake-up timer (which can be used as a general-purpose timer), and a system watchdog timer. A range of communication peripherals can be configured as required in a specific application. These peripherals include UART, 2 × I2C, 2 × SPI, GPIO ports, and pulse-width modulation (PWM). On-chip factory firmware supports in-circuit serial download via the UART, while nonintrusive emulation and program download are supported via the serial wire debug port (SW-DP) interface. These features are supported on the EVAL-ADuCM310QSPZ development system. The ADuCM310 operates from 2.9 V to 3.6 V and is specified over a temperature range of −40°C to +85°C. Note that, throughout this data sheet, multifunction pins, such as P1.0/SIN/ECLKIN/PLAI[4], are referred to either by the entire pin name or by a single function of the pin, for example, P1.0, when only that function is relevant. For additional information on the ADuCM310, see the ADuCM310 reference manual, How to Set Up and Use the ADuCM310. Rev. C | Page 3 of 27 ADuCM310 Data Sheet SPECIFICATIONS AVDD = IOVDD = DVDD = 2.9 V to 3.6 V (the input supply voltages). The difference between AVDD, IOVDD, and DVDD must be ≤0.3 V. AVNEG (the supply voltage) = −5.5 V to −4.65 V. VDACVDD (the VDAC supply voltage) = 3.07 V to 5.35 V (for VDAC6 and VDAC7), and VDACVDD must be ≥ AVDD. PVDD (the IDAC supply voltage) for the IDACs = 1.8 V to 2.7 V. AVDD ≥ PVDD + 0.4V. VREF = 2.5 V internal reference, fCORE = 80 MHz, TA = −40°C to +85°C, unless otherwise noted. For power sequencing, connect the AGND, DGND, PGND, and IOGND pins to ground before applying power to the AVNEG or VDACVDD pins. For register and bit information, see the ADuCM310 reference manual, How to Set Up and Use the ADuCM310. Table 1. Parameter ADC CHANNEL SPECIFICATIONS ADC Power-Up Time DC Accuracy Resolution Integral Nonlinearity Input Buffer Disabled Min Internal Channels Gain Error Drift2 Test Conditions/Comments All measurements in single-ended mode, unless otherwise stated fSAMPLE ≥500 kSPS Bits −0.99 ±2 ±1.51 ±2.5 ±2 ±1.51 ±0.7 +1.51 LSB LSB LSB LSB LSB LSB −0.99 ±0.7 +2.0 LSB ±3 ±5 LSB 2.5 V internal reference 2.5 V internal reference External reference External reference 2.5 V external reference; no missing codes 2.5 V external reference; no missing codes ADC input voltage = 1.25 V dc ADC update rate up to 800 kSPS −0.8 ±0.2 +0.8 mV −0.61 ±0.2 +0.61 mV Offset Error Drift2 Buffer On or Buffer Off Full-Scale Error Buffer On or Buffer Off Unit μs 14 DC Code Distribution ENDPOINT ERRORS Offset Error (All Channels Except the Internal Channels) Buffer On or Buffer Off Max 5 Enabled Disabled Differential Nonlinearity Typ −0.75 −0.71 ±3.2 μV/°C ±2.51 μV/°C ±0.2 ±0.2 ±0.2 +0.75 +0.61 +1 mV mV % of full scale ±0.2 ±0.61 % of full scale 0.75 2 % of full scale 0.75 1.51 % of full scale 2 μV/°C Rev. C | Page 4 of 27 Buffer on, chop mode on and automatic zero or buffer off Buffer on, chop mode on and automatic zero or buffer off Buffer on, chop mode on and automatic zero or buffer off Buffer on, chop mode on and automatic zero or buffer off ADC update rate up to 800 kSPS Excluding internal channels Excluding internal channels Input buffer on; AVDD/2, IOVDD/2, PVDD voltage on PVDD_IDAC2 pin Input buffer on; AVDD/2, IOVDD/2, PVDD voltage on PVDD_IDAC2 pin Input buffer on; IDAC0 to IDAC5; measured with 1.5 V on the IDAC0 to IDAC5 pins Input buffer on; IDAC0 to IDAC5; measured with 1.5 V on the IDAC0 to IDAC5 pins Full-scale error drift minus offset error drift; all modes; internal reference Data Sheet Parameter DYNAMIC PERFORMANCE2 ADuCM310 Min Signal-to-Noise Ratio (SNR) Input Buffer Disabled Enabled Total Harmonic Distortion (THD) Input Buffer Disabled Enabled Peak Harmonic or Spurious Noise Channel-to-Channel Crosstalk ANALOG INPUT Absolute Input Voltage Range Unbuffered Mode Buffered Mode Input Voltage Ranges Differential Mode Common-Mode Voltage Range Single-Ended Mode Input Current3 Buffered Mode AIN0, AIN1, AIN2, and AIN3 Unbuffered Mode Unit Test Conditions/Comments fIN = 665.283 Hz sine wave; fSAMPLE = 100 kSPS; internally unbuffered channels; the filter on the analog inputs is a 15 Ω resistor and a 2 nF capacitor 80 dB 78 74 dB dB Includes distortion and noise components Chop mode on Automatic zero −86 −86 −88 −95 dB dB dB dB Chop mode on and automatic zero Buffer on and off Measured on adjacent channels; fIN = 25 kHz sine wave; buffer on and off AVDD 2.5 V V Voltage level on AINx pin Voltage level on AINx pin −VREF +VREF V Voltage difference between AIN+ (positive input) and AIN− (negative input) 0.9 AGND 1.6 VREF V V +132 +60 +902 nA nA nA pA/°C −102 −40 −602 ±5 ±15 ±25 ±20 ±101 pA/°C ±34 pA/°C ±201 pA/°C −502 −2152 −3502 −11002 ±20 ±50 −90 +750 −1.62 ±1401 ±530 20 +1 Input Current Drift Input Capacitance Input Leakage Current Max AGND AGND + 0.15 Input Current Drift AIN4 to AIN9 Typ +502 +1102 +902 +17002 nA nA nA nA +3.52 pA/°C pA/°C pF nA Rev. C | Page 5 of 27 Voltage difference between AIN+ and AIN− VIN = 0.15 V to 2.5 V ADC sampling rate ≤ 100 kSPS ADC sampling rate ≤ 500 kSPS ADC sampling rate ≤ 800 kSPS Input buffer on, ADC sampling rate ≤ 500 kSPS Input buffer on, ADC sampling rate ≤ 500 kSPS Input buffer on, ADC sampling rate ≤ 800 kSPS Input buffer on, ADC sampling rate ≤ 800 kSPS AIN4 to AIN9 ≤ 100 kSPS ADC sampling rate ≤ 500 kSPS ADC sampling rate ≤ 800 kSPS VIN = 0 V to 2.5 V, all channels, all sampling rates VIN = 1 V VIN = 1 V During ADC acquisition, buffer on ADC off, buffer off or buffer on, AINx connected 2.5 V ADuCM310 Parameter ON-CHIP VOLTAGE REFERENCE Output Voltage Accuracy4 Reference Temperature Coefficient2, 5 Power Supply Rejection Ratio Output Impedance Internal VREF Power-On Time2 EXTERNAL REFERENCE INPUT2 Input Voltage Range2 Data Sheet Min Typ Max 2.505 1.8 Switching Time External to Internal Reference Internal to External Reference BUFFERED VREF OUTPUTS (BUF_VREF2.5x PINS) Output Voltage Accuracy Reference Temperature Coefficient2 50 V mV ppm/°C ppm/°C dB Ω ms 2.5 V ±5 301 44 15 15 70 3 38 2.5 1 Test Conditions/Comments 0.47 μF from VREF_1.2 to AGND TA = 25°C For ADC_CAPP, TA = 25°C Turned on by default ADC maximum reference voltage = 2.5 V ms ms 2.5 ±5 301 15 15 2.5 3 Load Regulation Output Impedance Load Current Power Supply Rejection Ratio IDAC CHANNEL SPECIFICATIONS6, 7 Voltage Compliance Range2 Unit 50 1.2 70 V mV ppm/°C ppm/°C mV/mA Ω mA dB TA = 25°C, load = 0.4 mA 100 nF capacitor required on both outputs TA = 25°C Output voltage compliance; minimum compliance if IDACx set to full scale, see Figure 15 to Figure 20 IDAC0, IDAC1, and IDAC2 0.4 IDAC4 and IDAC5 0.4 IDAC3 0.5 PVDD − 200 mV PVDD – 275 mV PVDD – 200 mV PVDD − 450 mV V V V −3.0 V At −3.5 V, maximum sink current is 80 mA; pin voltage clamped to −3.5 V, tolerance of clamping voltage is ±200 mV 0.38 mA IDAC Reference Current Shutdown Threshold 0.76 mA Temperature Coefficient2, 5 Over Heat Shutdown Resolution IDAC0, IDAC1, IDAC4,and IDAC5 7 135 Using internal reference, 0.1%, ≤5 ppm, 3.16 kΩ external resistor If the external resistor (REXT) value drops below 1.580 kΩ, IDAC output currents disable Using internal reference; Junction temperature −3.7 Reference Current Generator Reference Current 25 ppm/°C °C 14 Bits IDAC2 14 Bits IDAC3 14 Bits IDAC3 8 Bits Rev. C | Page 6 of 27 11-bit MSBs and 5-bit LSBs are guaranteed monotonic 11-bit MSBs and 5-bit LSBs are guaranteed monotonic 0 V to 2 V compliant range, 11-bit MSBs and 5-bit LSBs are guaranteed monotonic −4.5 V to 0 V compliant range Data Sheet Parameter Full-Scale Output IDAC0 and IDAC1 IDAC4 and IDAC5 IDAC2 IDAC3 Integral Nonlinearity ADuCM310 Min Typ Max 100 20 200 250 −90 −801 −3 −2.51 Unit mA mA mA mA ±1.5 ±1.5 +4 +4 LSB LSB Noise Current IDAC0 and IDAC1 IDAC4 and IDAC5 IDAC2 IDAC3 Full-Scale Error IDAC0 and IDAC1 IDAC4 and IDAC 5 IDAC2 IDAC3 1.5 0.3 4 5 −2.31 −3.0 −0.71 −1 −1.751 −1.77 −21 −2.4 μA μA μA μA ±0.25 ±0.25 ±0.25 ±0.25 ±0.25 ±0.25 ±0.25 ±0.25 +11 +1.3 ±0.7 +0.7 ±0.65 ±1.41 +1.6 IDAC2 and IDAC3 IDAC2 and IDAC3 IDAC0 and IDAC1 IDAC0 and IDAC1 Full-Scale Error Drift vs. Time8 IDAC0 Including internal reference drift and 5 ppm external resistor −401 −58 −1451 −205 −100 −12 −12 +55 +40 +551 +90 +40 450 IDAC2 500 IDAC3 2250 IDAC4 and IDAC5 40 Pull-Down Current IDAC4 and IDAC5 Pull-Down Current +301 +58 +1451 +205 +100 −1201 −180 −135 −251 −31 −30 −115 −24 ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C Full temperature range Reduced 25°C to 85°C range Full temperature range Reduced 25°C to 85°C range Long-term stability μA/ 1000 hours μA/ 1000 hours μA/ 1000 hours μA/ 1000 hours μA/ 1000 hours 200 IDAC1 Zero-Scale Error IDAC0 and IDAC1 Current source Current sink Current sink 11-bit 11-bit RMS noise; maximum bandwidth setting, IDACxCON[5:2] = 0000b Measured driving 10 Ω Measured driving 100 Ω Measured driving 5 Ω Measured driving 5 Ω % % % % % % % % Full-Scale Error Drift vs. Temperature IDAC4 and IDAC5 Test Conditions/Comments +751 +115 −100 +15 +15 −22 Rev. C | Page 7 of 27 μA μA μA μA μA μA Pull-down current off Reduced −10°C to +85°C range ADuCM310 Parameter IDAC2 and IDAC3 Pull-Down Current for IDAC2 Zero-Scale Error Drift2 IDAC0 and IDAC1 IDAC4 and IDAC5 Data Sheet Min −3501 −460 −300 Typ −8501 −1400 −120 −120 ±300 ±300 ±50 ±50 ±1 IDAC2 and IDAC3 Settling Time IDAC0, IDAC1, IDAC2, and IDAC3 −288 Max +2801 +300 −160 Unit μA μA μA +12001 +1400 +2051 +230 nA/°C nA/°C nA/°C nA/°C μA/°C 1 ms IDAC4 and IDAC5 IDAC0, IDAC1, IDAC2, and IDAC3 2 250 ms μs IDAC4 and IDAC5 IDAC0, IDAC1, IDAC2, and IDAC3 1.2 50 ms μs IDAC4 and IDAC5 IDAC3 Switching Time2 1.1 1 ms μs Transconductance IDAC0 and IDAC1 IDAC2 IDAC3 IDAC4 and IDAC5 IDAC Shutdown Temperature VDAC CHANNEL SPECIFICATIONS6, 9, 10 DC Accuracy Resolution Relative Accuracy VDAC0, VDAC1, and VDAC2 VDAC4 and VDAC5 VDAC3, VDAC6, and VDAC7 Differential Nonlinearity Offset Error Calculated Actual VDAC0, VDAC1, VDAC4, and VDAC5 VDAC6 and VDAC7 VDAC2 and VDAC3 Full-Scale Error VDAC0, VDAC1, and VDAC72 7.99/100 12.6/100 18.6/100 1.16/100 125 mA/mV mA/mV mA/mV mA/mV °C 12 −6.3 −7.3 −7 −0.99 To 0.1%, IDACxCON[5:2] = 0101b, ±1 mA change in output current To 1%, IDACxCON[5:2] = 0101b, ±1 mA change in output current To 1%, IDACxCON[5:2] = 0000b, ±1 mA change in output current Time to switch from current source to current sink Analog input signal coupled on to CDAMP_IDACx pin via 1 nF capacitor; frequency range = 100 kHz to 1000 kHz; voltage is the peak to peak voltage on the CDAMP_IDACx pin of the associated IDAC; current is peak-to-peak current change Die temperature; enabled via IDACxCON[6] Bits ±1 ±2 ±2 ±0.6 +10 +11 +8.5 +1 ±5 −30 Test Conditions/Comments LSB LSB LSB LSB mV 4 7 mV 15 −20 22 ±0.71 mV mV % of full scale ±0.9 % of full scale ±0.71 ±0.9 % % Rev. C | Page 8 of 27 Guaranteed monotonic 2.5 V internal reference Measured at Code 0 For VDAC2, VDAC3, VDAC4, VDAC5, and VDAC6 For VDAC2, VDAC3, VDAC4, VDAC5, and VDAC6 With 500 Ω load With 500 Ω load Data Sheet Parameter VDAC0 and VDAC1 ADuCM310 Min VDAC7 Gain Mismatch Error Offset Error Drift Calculated VDAC0, VDAC1, VDAC4, and VDAC5 VDAC2, VDAC3, VDAC6, and VDAC7 Actual VDAC0, VDAC1, VDAC4, and VDAC5 VDAC2, VDAC3, VDAC6, and VDAC7 Gain Error Drift VDAC0, VDAC1, VDAC4, and VDAC5 VDAC2, VDAC3, VDAC6, and VDAC7 Output Impedance VDAC0, VDAC1, VDAC4, VDAC5, VDAC6, and VDAC7 VDAC2 and VDAC3 Short-Circuit Current VDAC0 and VDAC1 VDAC2 and VDAC3 VDAC4 and VDAC5 VDAC6 and VDAC7 VDAC Outputs Output Impedance VDAC0, VDAC1, and VDAC4 to VDAC7 VDAC2 and VDAC3 Output Range VDAC0 and VDAC1 VDAC2 and VDAC3 VDAC4 and VDAC5 VDAC6 VDAC7 Typ ±0.5 Max Unit % ±0.5 % 0.1 0.2 0.1 0.35 % % % % ±5 μV/°C ±25 μV/°C ±13 μV/°C ±75 μV/°C 5 ppm/°C 10 ppm/°C 1 Ω 1.5 Ω Test Conditions/Comments With 75 Ω load, over full temperature range With 100 Ω load, over full temperature range VDAC0 relative to VDAC1 VDAC2 relative to VDAC3 VDAC4 relative to VDAC5 VDAC6 relative to VDAC7; both driving a 500 Ω load Measured at Code 0 Excluding internal reference drift Measured with VDAC shorted to ground and to associated power supply ±200 ±170 ±200 ±200 mA mA mA mA Capacitive load up to 0.01 μF 0 + Actual Offset1 AVNEG + 250 mV 0 + Actual Offset1 0 + Actual Offset1 0 + Actual Offset1 1.8 Ω 1.2 Ω AVDD – 600 mV −0.15 V AVDD – 300 mV VDACVDD − 250 mV VDACVDD − 700 mV V Rev. C | Page 9 of 27 V V V Buffer on RL = 75 Ω, 40 mA maximum, VOUT maximum = 3 V RL = 500 Ω, 10 mA maximum, VOUT maximum = −5 V, gain = −2.25 V RL = 300 Ω, 10 mA maximum, VOUT maximum = 3 V RL = 500 Ω, 10 mA maximum, VOUT maximum = 5 V RL = 100 Ω, 50 mA maximum, VOUT maximum = 5 V ADuCM310 Parameter DAC AC CHARACTERISTICS Slew Rate VDAC0, VDAC1, VDAC4, and VDAC5 VDAC2, VDAC3, and VDAC6 Voltage Output Settling Time Data Sheet Min Digital-to-Analog Glitch Energy AC PSRR 100 Hz VDAC0, VDAC1, VDAC4, and VDAC5 VDAC2 and VDAC3 VDAC6 and VDAC7 AC PSRR 1 kHz VDAC0, VDAC1, VDAC4, and VDAC5 VDAC2 and VDAC3 VDAC6 and VDAC7 POWER-ON RESET (POR) POR Trip Level POR Hysteresis Allowed Power-Up Time for DVDD Supply EXTERNAL RESET External Reset Minimum Pulse Width2 2.80 2.74 Typ Max 3 V/μs 1.1 10 0.05 20 V/μs μs ms nV/sec 72 dB 67 64 dB dB 56 dB 53 50 dB dB 2.85 2.79 65 0.2 FLASH/EE MEMORY Endurance Data Retention INTERNAL HIGH POWER OSCILLATOR Accuracy INTERNAL LOW POWER OSCILLATOR Accuracy LOGIC INPUTS Input Low Voltage (VINL) Input High Voltage (VINH) Short-Circuit Current2 LOGIC OUTPUTS Output High Voltage (VOH)11 Output Low Voltage (VOL)11 Short-Circuit Current2 2.9 2.83 100 1.5 1.25 1.37 50 ns 1.494 V 10,000 20 Cycles Years MHz 16 −2.251 −3.0 −121 −22 V V mV ms μs Reset Pin Glitch Immunity2 TEMPERATURE SENSOR Accuracy2 Unit +2.251 +3 32.768 ±8 ±8 +12 +12 0.2 × IOVDD 12 0.4 12 V V mA IOVDD − 0.4 Rev. C | Page 10 of 27 Load =100 pF Load = 0.01 μF 1 LSB change at major carry (DACxDAT register change from 0x07FF0000 to 0x08000000) Refers to voltage at DVDD pin Power-on level Power-down level Minimum pulse width required on external RESET pin to trigger a reset sequence Maximum low pulse width on RESET pin that does not generate a reset Indicates die temperature; ADC measured voltage for temperature sensor channel without calibration, TA = 25°C TJ = 85°C Used as input to PLL to generate 80 MHz clock % % kHz % V V mA 0.7 × IOVDD Test Conditions/Comments ISOURCE = 2 mA ISINK = 2 mA Data Sheet Parameter INPUT LEAKAGE CURRENT Logic 1 Internal Pull-Up Disabled Logic 0 Internal Pull-Up Disabled Pull-Up CRYSTAL INPUTS XCLKI AND XCLKO (16 MHz) Logic Inputs, XCLKI Only Input Low Voltage (VINL) Input High Voltage (VINH) XCLKI Input Capacitance XCLKO Output Capacitance MICROCONTROLLER UNIT CLOCK RATE Using PLL Output2 PROCESSOR START-UP TIME At Power-On2 ADuCM310 Min −22 −22 30 3 +22 +22 72 Test Conditions/Comments μA nA μA nA kΩ VINH = 3.6 V VINH = 0 V If not disabled, disabled at reset; pull-up can be described as an 80 μA (typical) current source V V pF pF 0.05 38 80 MHz 50 ms 1.44 ms 3 to 5 fCLK Includes kernel power-on execution time Includes kernel power-on execution time Measured between AVDDx and AGND Measured between IOVDDx and AGND 3.3 3.6 V 2.9 3.3 3.6 V 6.5 7.2 mA ADC, VDACs, IDACs off 29 2.7 32 5.1 mA mA CLKCON1[2:0] = [000b] All GPIO pull-ups enabled 3.1 3.6 mA ADC Input Buffer2 IDAC2 DAC2 4.1 26.5 2.7 4.8 30 3.1 mA mA mA ADC continuously converting at 100 kSPS Both buffers enabled VDAC2 and VDAC32 −1.7 mA VDAC6 and VDAC72 1 mA Analog Power Supply Currents AVDD Current Digital Power Supply Current Current in Normal Mode DVDD IOVDD Additional Power Supply Currents ADC2 2 80 +6 80 +6 40 Unit 2.9 IOVDD 1 Max 1.1 1.7 8 8 After Reset Event After Processor Power Down Mode 1, Mode 2, or Mode 3 POWER REQUIREMENTS Power Supply Voltage Range AVDD Typ Total for all VDACs driving maximum allowed load with DACxDAT = 0 IDD when VDAC2 and VDAC3 are driving maximum allowed load with DACxDAT set to 0 IDD sourced from the VDACVDD supply when VDAC6 and VDAC7 are driving the maximum allowed load with DACxDAT set to 0 Reduced temperature range of − 10°C to + 85°C. These numbers are not production tested but are guaranteed by design or characterization data at production release. The input current is the total input current including the input pad and mux leakage plus the charge current for the full input circuit. The input current relates to the ADC sampling frequency. Rev. C | Page 11 of 27 ADuCM310 Data Sheet 4 The internal reference calibration and trimming are performed when the processor operates in normal mode with CD = 0, when ADC is enabled and converting, when IDACs are all on, and when VDACs are on. VREF accuracy can vary under other operating conditions. 5 Measured using the following box method: VREF Maximum at Any Temperature   VREF Minimum at Any Temperature  2.5  Temperature Maximum  Temperature Minimum  16 6 VDAC linearity specifications are calculated with following ranges: VDAC0 and VDAC1 = +150 mV to +2.699 V VDAC2 and VDAC3: −150 mV to −4.22 V VDAC4 and VDAC5: +150 mV to +2.98 V VDAC6: +150 mV to +4.747 V VDAC7: +150 mV to +4.297 V 7 Analog Devices, Inc., production IDAC full-scale trimming conditions include PVDD_IDACx pin voltage = 0.7 V, all IDACs on. 8 The long-term stability specifications is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. 9 For all VDAC specifications for VDAC0, VDAC1, VDAC4, and VDAC5, DACxCON[10:9] = 11. 10 VDACx minimum and maximum limits apply to the internal reference only (DACxCON[1:0] = 00b). AVDDx supply valid only with typical specifications. 11 The average current from the GPIO pins must not exceed 3 mA per pin. See Figure 22. TIMING SPECIFICATIONS I2C Timing Table 2. I2C Timing in Standard Mode (100 kHz) Parameter tL tH tSHD tDSU tDHD tRSU tPSU tBUF tR tF tVD;DAT tVD;ACK Description SCLx low pulse width SCLx high pulse width Start condition hold time Data setup time Data hold time (SDAx held internally for 300 ns after falling edge of SCLx) Setup time for repeated start Stop condition setup time Bus free time between a stop condition and a start condition Rise time for both SCLx and SDAx Fall time for both SCLx and SDAx Data valid time Data valid acknowledge time Min 4.7 4.0 4.0 250 0 4.7 4.0 4.7 Slave Typ Max 3.45 15 1 300 3.45 3.45 Unit μs ns μs ns μs μs μs μs μs ns μs μs Table 3. I2C Timing in Fast Mode (400 kHz) Parameter tL tH tSHD tDSU tDHD tRSU tPSU tBUF tR tF tVD;DAT tVD;ACK Description SCLx low pulse width SCLx high pulse width Start condition hold time Data setup time Data hold time (SDAx held internally for 300 ns after falling edge of SCLx) Setup time for repeated start Stop condition setup time Bus free time between a stop condition and a start condition Rise time for both SCLx and SDAx Fall time for both SCLx and SDAx Data valid time Data valid acknowledge time Rev. C | Page 12 of 27 Min 1.3 0.6 0.3 100 0 0.6 0. 3 1.3 20 Slave Typ 15 Max 300 300 0.9 0.9 Unit μs ns μs ns μs μs μs μs ns ns μs μs Data Sheet ADuCM310 tBUF tR MSB LSB tDSU tVD;DAT tSHD 1 SCLx (I) tH 2 TO 7 tDHD tRSU tVD;ACK 8 tR 9 tL S MSB tF tDSU tDHD tPSU P ACK 1 S(R) STOP START CONDITION CONDITION REPEATED START tF 13040-002 SDAx (I/O) Figure 2. I2C Compatible Interface Timing SPI Timing Table 4. SPI Master Mode Timing (Phase Mode = 1) Parameter tSL tSH tDAV tDSU tDHD tDF tDR tSR tSF 2 Min 0 Typ (SPIxDIV1 + 1) × tHCLK2/2 (SPIxDIV1 + 1) × tHCLK2/2 3 ½ SCLKx SCLKx SCLKx 25 25 20 Max For SPI0, x is 0, and for SPI1, x is 1. tHCLK is the divided system clock, UCLK/CLKCON1[2:0]. SCLKx (POLARITY = 0) tSH tSL tSR SCLKx (POLARITY = 1) tDAV tDF MOSIx MISOx MSB MSB IN tSF tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 tDSU LSB LSB IN 13040-003 1 Description SCLKx low pulse width SCLKx high pulse width Data output valid after SCLKx edge Data input setup time before SCLKx edge Data input hold time after SCLKx edge Data output fall time Data output rise time SCLKx rise time SCLKx fall time tDHD Figure 3. SPI Master Mode Timing (Phase Mode = 1) Rev. C | Page 13 of 27 Unit ns ns ns ns ns ns ns ns ns ADuCM310 Data Sheet Table 5. SPI Master Mode Timing (Phase Mode = 0) Parameter tSL tSH tDAV tDOSU tDSU tDHD tDF tDR tSR tSF 2 Min 0 Typ (SPIxDIV1 + 1) × tHCLK2/2 (SPIxDIV1 + 1) × tHCLK2/2 3 ½ SCLKx SCLKx SCLKx 25 25 20 20 Max For SPI0, x is 0, and for SPI1, x is 1. tHCLK is the divided system clock, UCLK/CLKCON1[2:0]. SCLKx (POLARITY = 0) tSH tSL tSR tSF SCLKx (POLARITY = 1) tDAV tDOSU MOSIx MISOx tDF MSB MSB IN tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 LSB LSB IN tDSU 13040-004 1 Description SCLKx low pulse width SCLKx high pulse width Data output valid after SCLKx edge Data output setup before SCLKx edge Data input setup time before SCLKx edge Data input hold time after SCLKx edge Data output fall time Data output rise time SCLKx rise time SCLKx fall time tDHD Figure 4. SPI Master Mode Timing (Phase Mode = 0) Rev. C | Page 14 of 27 Unit ns ns ns ns ns ns ns ns ns ns Data Sheet ADuCM310 Table 6. SPI Slave Mode Timing (Phase Mode = 1) Parameter tCS0/tCS1 Description CS0/CS1 to SCLKx edge Min 10 tCSM CS0/CS1 high time between active periods SCLKx tSL tSH tDAV tDSU tDHD tDF tDR tSR tSF tSFS 2 Max SCLKx low pulse width SCLKx high pulse width Data output valid after SCLKx edge Data input setup time before SCLKx edge Data input hold time after SCLKx edge Data output fall time Data output rise time SCLKx rise time SCLKx fall time CS0/CS1 high after SCLKx edge 2 (SPIxDIV + 1) × tHCLK (SPIxDIV1 + 1) × tHCLK2 20 ns ns ns ns ns ns ns ns ns ns 10 10 25 25 1 1 20 For SPI0, x is 0, and for SPI1, x is 1. tHCLK is the divided system clock, UCLK/CLKCON1[2:0]. tCSM CS0/CS1 tSFS tCS0/tCS1 SCLKx (POLARITY = 0) tSH tSL tSR tSF SCLKx (POLARITY = 1) tDAV MISOx tDF MSB MOSIx MSB IN tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 tDSU tDHD Figure 5. SPI Slave Mode Timing (Phase Mode = 1) Rev. C | Page 15 of 27 Unit ns ns 1 LSB LSB IN 13040-005 1 Typ ADuCM310 Data Sheet Table 7. SPI Slave Mode Timing (Phase Mode = 0) Parameter tCS0/tCS1 Description CS0/CS1 to SCLKx edge Min 10 tCSM CS0/CS1 high time between active periods SCLKx tSL tSH tDAV tDSU tDHD tDF tDR tSR tSF tDOCS tSFS 2 Max SCLKx low pulse width SCLKx high pulse width Data output valid after SCLKx edge Data input setup time before SCLKx edge Data input hold time after SCLKx edge Data output fall time Data output rise time SCLKx rise time SCLKx fall time Data output valid after CS0/CS1 edge CS0/CS1 high after SCLKx edge 2 (SPIxDIV + 1) × tHCLK (SPIxDIV1 + 1) × tHCLK2 20 ns ns ns ns ns ns ns ns ns ns ns 10 10 25 25 1 1 20 10 For SPI0, x is 0, and for SPI1, x is 1 tHCLK is the divided system clock, UCLK/CLKCON1[2:0]. tCSM CS0/CS1 tCS0 /tCS1 tSFS SCLKx (POLARITY = 0) tSH tSL tSF tSR SCLKx (POLARITY = 1) tDAV tDOCS tDF MISOx MOSIx MSB MSB IN tDSU tDR BIT 6 TO BIT 1 BIT 6 TO BIT 1 LSB LSB IN tDHD Figure 6. SPI Slave Mode Timing (Phase Mode = 0) Rev. C | Page 16 of 27 Unit ns ns 1 13040-006 1 Typ Data Sheet ADuCM310 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. THERMAL RESISTANCE Table 8. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Parameter AVDD to AGNDx AVNEG to AGNDx VDACVDD to AGNDx IOVDDx to DGNDx Digital Input Voltage to DGNDx Digital Output Voltage to DGNDx Analog Inputs to AGNDx Total Positive GPIO Pins Current Total Negative GPIO Pins Current IDAC3 Pull-Down Voltage IDAC3 Pull-Down Current Operating Temperature Range Storage Temperature Range Junction Temperature ESD Rating, All Pins Human Body Model (HBM) Field-Induced Charged Device Model (FICDM) Rating −0.3 V to +3.96 V −5.5 V to +0.3 V −0.3 V to +5.5 V −0.3 V to +3.96 V −0.3 V to IOVDDx + 0.3 V −0.3 V to IOVDDx + 0.3 V −0.3 V to AVDD + 0.3 V 0 mA to 30 mA −30 mA to 0 mA AVNEG − 0.3 V −100 mA −40°C to +85°C −65°C to +150°C 150°C Table 9. Thermal Resistance Package Type 112-Ball CSP_BGA ESD CAUTION 1 kV 1.25 kV Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. C | Page 17 of 27 θJA 44.5 θJC 11 Unit °C/W ADuCM310 Data Sheet 1 2 3 4 5 6 7 8 9 10 11 A RESERVED IDAC0 PVDD_ IDAC0 IDAC2 PVDD_ IDAC2 IDAC3 PGND PVDD_ IDAC3 PVDD_ IDAC1 IDAC1 RESERVED A B IDAC4 CDAMP_ IDAC0 CDAMP_ IDAC2 IDAC2 PVDD_ IDAC2 IDAC3 PGND PVDD_ IDAC3 CDAMP_ IDAC3 CDAMP_ IDAC1 IDAC5 B C PVDD_ IDAC4 CDAMP_ IDAC4 P2.3/BM P1.0/ SIN/ ECLKIN/ PLAI[4] P1.2/ PWM0/ PLAI[6] P1.3/ PWM1/ PLAI[7] P1.4/ PWM2/ SCLK1/ PLAO[10] P1.5/ PWM3/ MISO1/ PLAO[11] P1.6/ PWM4/ MOSI1/ PLAO[12] CDAMP_ IDAC5 PVDD_ IDAC5 C D RESERVED RESET P3.2/ PLAI[14] P2.0/IRQ2/ PWMTRIP/ PLACLK2/ PLAI[8] P1.1/SOUT/ PLACLK1/ PLAI[5] RESERVED P2.4/IRQ5/ ADCCONV/ PWM6/ PLAO[18] P2.5/IRQ6/ PWM7/ PLAO[19] P1.7/IRQ1/ PWM5/CS1/ PLAO[13] DGND2 IREF D E IOVDD1 P0.1/ MISO0/ PLAI[1] P0.0/ SCLK0/ PLAI[0] P2.2/IRQ4/ MRST/ CLKOUT/ PLAI[10] P2.1/IRQ3/ PWMSYNC/ PLAI[9] SWDIO SWCLK IOVDD2 E F IOGND1 P0.3/ IRQ0/CS0/ PLAI[3] P0.2/ MOSI0/ PLAI[2] RESERVED RESERVED VDACV DD AVDD_REG1 IOGND2 F G P0.7/ SDA1/ PLAO[5] P0.6/ SCL1/ PLAO[4] P0.5/ SDA0/ PLAO[3] P.04/ SCL0/ PLAO[2] AIN4 AGND2 AVDD_REG2 VREF_1.2 G H P2.6/ IRQ7/ PLAO[20] P2.7/ IRQ8/ PLAO[21] P3.0/ PLAI[12] AGND5 VDAC5 RESERVED AIN1 AIN5 VDAC6 VDAC7 AVDD4 H J P3.4/ PLAO[26] XTALO P3.1/ PLAI[13] VDAC4 DVDD AIN0 AIN2 AIN6 VDAC2 BUF_ VREF2.5A AGND4 J K IOVDD3 XTALI DVDD_REG1 VDAC1 AGND1 AVNEG AIN3 AIN7 VDAC3 ADC_CAPN BUF_ VREF2.5B K L IOGND3 DGND1 DVDD_REG2 VDAC0 AVDD3 AGND3 AGND6 AIN8 AIN9 ADC_CAPN ADC_CAPP L 1 2 3 4 5 6 7 8 9 10 11 IDAC RELATED ADuCM310 TOP VIEW (Not to Scale) DIGITAL PINS ANALOG PINS RESERVED 13040-007 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 7. Pin Configuration Table 10. Pin Function Descriptions Pin No. D2 E3 Mnemonic RESET P0.0/SCLK0/PLAI[0] Type1 I I/O E2 P0.1/MISO0/PLAI[1] I/O F3 P0.2/MOSI0/PLAI[2] I/O F2 P0.3/IRQ0/CS0/PLAI[3] I/O G4 P0.4/SCL0/PLAO[2] I/O Description Reset Input (Active Low). An internal pull-up is included on this pin. General-Purpose Input and Output Port 0.0/SPI0 Clock/Input to PLA Element 0. This pin defaults as an input with the internal pull-up resistor disabled. General-Purpose Input and Output Port 0.1/SPI0 Data Master Input-Slave Output/Input to PLA Element 1. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 0.2/SPI0 Data Master OutputSlave Input/Input of PLA Element 2. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 0.3/External Interrupt Request 0/ SPI0 Chip Select Input/Input of PLA Element 3. This pin defaults as an input with the internal pull-up disabled. If SPI0 is used, configure this pin as CS0. General-Purpose Input and Output Port 0.4/I2C Interface Clock for I2C0/Output of PLA Element 2. This pin defaults as an input with the internal pull-up disabled. Rev. C | Page 18 of 27 Data Sheet ADuCM310 Pin No. G3 Mnemonic P0.5/SDA0/PLAO[3] Type1 I/O G2 P0.6/SCL1/PLAO[4] I/O G1 P0.7/SDA1/PLAO[5] I/O C4 P1.0/SIN/ECLKIN/PLAI[4] I/O D5 P1.1/SOUT/PLACLK1/PLAI[5] I/O C5 P1.2/PWM0/PLAI[6] I/O C6 P1.3/PWM1/PLAI[7] I/O C7 P1.4/PWM2/SCLK1/PLAO[10] I/O C8 P1.5/PWM3/MISO1/PLAO[11] I/O C9 P1.6/PWM4/MOSI1/PLAO[12] I/O D9 P1.7/IRQ1/PWM5/CS1/PLAO[13] I/O D4 P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8] I/O E8 P2.1/IRQ3/PWMSYNC/PLAI[9] I/O E4 P2.2/IRQ4/MRST/CLKOUT/PLAI[10] I/O C3 P2.3/BM I/O D7 P2.4/IRQ5/ADCCONV/PWM6/PLAO[18] I/O D8 P2.5/IRQ6/PWM7/PLAO[19] I/O H1 P2.6/IRQ7/PLAO[20] I/O H2 P2.7/IRQ8/PLAO[21] I/O H3 P3.0/PLAI[12] I/O Description General-Purpose Input and Output Port 0.5/I2C Interface Data for I2C0/Output of PLA Element 3. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 0.6/I2C Interface Clock for I2C1/Output of PLA Element 4. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 0.7/I2C Interface Data for I2C1/Output of PLA Element 5. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.0/UART Input Pin/External Input Clock/Input to PLA Element 4. The ECLKIN pin is used for the UART downloader. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.1/UART Output Pin/PLA Input Clock/Input to PLA Element 5. The PLACLK1 pin is used for the UART downloader. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.2/PWM0 Output/Input to PLA Element 6. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.3/PWM1 Output/Input to PLA Element 7. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.4/PWM2 Output/SPI1 Clock/Output of PLA Element 10. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.5/PWM3 Output/SPI1 Data Master Input-Slave Output/Output of PLA Element 11. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.6/PWM4 Output/SPI1 Data Master Output-Slave Input/Output of PLA Element 12. This pin defaults as an input with internal pull-up disabled. General-Purpose Input and Output Port 1.7/External Interrupt Request 1/ PWM5 Output/SPI1 Chip Select Input/Output of PLA Element 13. This pin defaults as an input with internal pull-up disabled. If SPI1 is used, configure this pin as CS1. General-Purpose Input and Output Port 2.0/External Interrupt Request 2/ PWM Trip Input Source/PLA Input Clock/Input to PLA Element 8. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.1/External Interrupt Request 3/ PWM Sync Input/Input to PLA Element 9. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.2/External Interrupt Request 4/ Reset Out Pin/Clock Output/Input to PLA Element 10. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.3/BM pin. If this pin is low, then the device enters UART download after the next rest sequence. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.4/External Interrupt Request 5/ External Input to Start ADC Conversions/PWM6 Output/Output of PLA Element 18. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.5/External Interrupt Request 6/ PWM7 Output/Output of PLA Element 19. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.6/External Interrupt Request 7/ Output of PLA Element 20. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 2.7/External Interrupt Request 8/ Output of PLA Element 21. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 3.0/Input to PLA Element 12. This pin defaults as an input with the internal pull-up disabled. Rev. C | Page 19 of 27 ADuCM310 Data Sheet Pin No. J3 Mnemonic P3.1/PLAI[13] Type1 I/O D3 P3.2/PLAI[14] I/O J1 P3.4/PLAO[26] I/O E10 E9 G11 SWCLK SWDIO VREF_1.2 I I/O AO D11 IREF AI J6 H7 J7 K7 G8 AIN0 AIN1 AIN2 AIN3 AIN4 AI AI AI AI AI H8 J8 K8 L8 L9 L4 K4 J9 K9 J4 H5 H9 H10 A2 A3 B2 A10 A9 B10 B11 C11 C10 B1 C1 C2 A4, B4 A5, B5 B3 A6, B6 A8, B8 B9 A7, B7 K5, G9, L6, J11, H4, L7 AIN5 AIN6 AIN7 AIN8 AIN9 VDAC0 VDAC1 VDAC2 VDAC3 VDAC4 VDAC5 VDAC6 VDAC7 IDAC0 PVDD_IDAC0 CDAMP_IDAC0 IDAC1 PVDD_IDAC1 CDAMP_IDAC1 IDAC5 PVDD_IDAC5 CDAMP_IDAC5 IDAC4 PVDD_IDAC4 CDAMP_IDAC4 IDAC2 PVDD_IDAC2 CDAMP_IDAC2 IDAC3 PVDD_IDAC3 CDAMP_IDAC3 PGND AGND1, AGND2, AGND3, AGND4, AGND5, AGND6 AI AI AI AI AI AO AO AO AO AO AO AO AO AO S AI AO S AI AO S AI AO S AI AO S AI AO S AI S S Description General-Purpose Input and Output Port 3.1/Input to PLA Element 13. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 3.2/Input to PLA Element 14. This pin defaults as an input with the internal pull-up disabled. General-Purpose Input and Output Port 3.4/Output of PLA Element 26. This pin defaults as an input with the internal pull-up disabled. Serial Wire Debug Clock Input Pin. Serial Wire Debug Data Input/Output Input Pin. 1.2 V Reference Output. This pin cannot be used to source current externally. Connect this pin to AGND via a 470 nF capacitor. This pin generates the reference current for the IDACs. Connect this pin to analog ground via a 5 ppm, 3.16 kΩ external resistor (REXT). Single-Ended or Differential Analog Input 0. Single-Ended or Differential Analog Input 1. Single-Ended or Differential Analog Input 2. Single-Ended or Differential Analog Input 3. Single-Ended or Differential Analog Input 4. This is also the input for the digital comparator. Single-Ended or Differential Analog Input 5. Single-Ended or Differential Analog Input 6. Single-Ended or Differential Analog Input 7. Single-Ended or Differential Analog Input 8. Single-Ended or Differential Analog Input 9. 12-Bit VDAC Output 0, 0 V to 3 V Range. 12-Bit VDAC Output 1, 0 V to 3 V Range. 12-Bit VDAC Output 2, −5 V to 0 V Range. 12-Bit VDAC Output 3, −5 V to 0 V Range. 12-Bit VDAC Output 4, 0 V to 3 V Range. 12-Bit VDAC Output 5, 0 V to 3 V Range. 12-Bit VDAC Output 6, 0 V to 5 V Range. 12-Bit VDAC Output 7, 0 V to 5 V Range. IDAC0 (100 mA). Power for IDAC0. Damping Capacitor Pin for IDAC0. Connect this pin to the PVDD supply. IDAC1 (100 mA). Power for IDAC1. Damping capacitor pin for IDAC1. Connect this pin to the PVDD supply. IDAC5 (20 mA). Power for IDAC5. Damping capacitor pin for IDAC5. Connect this pin to the PVDD supply. IDAC4 (20 mA). Power for IDAC4. Damping capacitor pin for IDAC4. Connect this pin to the PVDD supply. IDAC2 (200 mA). Power for IDAC2. Damping Capacitor for IDAC2. Connect this pin to the PVDD supply. IDAC3 (250 mA). Power for IDAC3. Damping Capacitor Pin for IDAC3. Connect this pin to the PVDD supply. Power Supply Ground of the IDACs. Analog Ground Pins. Rev. C | Page 20 of 27 Data Sheet ADuCM310 Pin No. J5 Mnemonic DVDD Type1 S F9 L5, H11 K3 VDACVDD AVDD3, AVDD4 DVDD_REG1 S S S L3 DVDD_REG2 S F10 AVDD_REG1 S G10 AVDD_REG2 S K6 E1 L2, D10 E11, K1 F1, F11, L1 J2 AVNEG IOVDD1 DGND1, DGND2 IOVDD2, IOVDD3 IOGND1, IOGND2, IOGND3 S S S S S XTALO DO K2 XTALI DI J10 BUF_VREF2.5A AO K11 BUF_VREF2.5B AO K10, L10 ADC_CAPN S L11 ADC_CAPP S A1, A11, D1, F4, F8, D6, H6 RESERVED 1 Description Digital Supply Pin. This pin is the supply for the 16 MHz oscillator, PLL, POR, and digital core, including the flash that requires a regulated 1.8 V supply and a 3 V supply. 5 V Analog Supply Pin. Analog Supply Pin (3.3 V). Output of 2.5 V on Chip Low Dropout (LDO) Regulator. Connect a 470 nF capacitor to this pin and DGND. This regulator supplies the inter-die digital interface. Output of 1.8 V on chip LDO regulator. Connect a 470 nF capacitor to this pin and DGND. This regulator supplies flash and the Cortex-M3 processor. Output of 2.5 V on chip LDO regulator. Connect a 470 nF capacitor to this pin and DGND. This regulator supplies the ADC. Output of 2.5 V on chip LDO regulator. Connect a 470 nF capacitor to this pin and DGND. This regulator supplies the IDACs. −5 V Supply Pin. 3.3 V GPIO Supply Pin. Digital Ground Pins. 3.3 V GPIO Supply Pins. GPIO Ground Pins. Output from the Crystal Oscillator Inverter. If an external crystal is not used, leave this pin unconnected. Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits. If an external crystal is not used, connect this pin to the DGND system ground. Buffered 2.5 V Bias, Maximum Load = 1.2 mA. Connect this pin to AGND via a 100 nF capacitor. Buffered 2.5 V Bias, Maximum Load = 1.2 mA. Connect this pin to AGND via a 100 nF capacitor. Decoupling Capacitor Connection for ADC Reference Buffer. Connect this pin to AGND. Decoupling Capacitor Connection for ADC Reference Buffer. Connect this pin to a 4.7 μF capacitor and connect the other side of the capacitor to the AGND and the ADC_CAPN pins. Reserved. Do not connect to this pin. I is input, I/O is input/output, AO is analog output, AI is analog input, S is supply, DO is digital output, and DI is digital input. Rev. C | Page 21 of 27 ADuCM310 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 600 450 400 HEADROOM VOLTAGE (mV) HEADROOM VOLTAGE (mV) 500 400 300 HEADROOM 125°C 200 HEADROOM 25°C 100 350 300 250 200 HEADROOM 125°C 150 100 HEADROOM 25°C 100 200 300 400 500 600 700 800 900 1000 LOAD RESISTANCE (Ω) 600 500 HEADROOM VOLTAGE (mV) 600 500 400 300 HEADROOM 125°C 200 0 100 200 300 400 500 600 700 LOAD RESISTANCE (Ω) 800 900 1000 200 300 400 500 600 700 800 900 1000 400 300 HEADROOM 125°C 200 100 HEADROOM 25°C 0 13040-009 0 100 LOAD RESISTANCE (Ω) 700 100 Figure 9. Typical Headroom Voltage vs. Load Resistance for VDAC7, VDACVDD = 5 V; Headroom = VDACVDD − VDAC Output Voltage HEADROOM 25°C 0 200 400 600 800 1000 1200 LOAD RESISTANCE (Ω) Figure 12. Typical Headroom Voltage vs. Load Resistance for VDAC4, AVDD = 3 V; Headroom = AVDD − VDAC Output Voltage 1000 0.8 900 0.6 800 0.4 600 500 HEADROOM 25°C 400 300 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 AIN9 0 –0.2 –0.4 200 –0.6 100 0 100 200 300 400 500 600 700 LOAD RESISTANCE (Ω) 800 900 1000 –0.8 13040-010 0 0.2 Figure 10. Typical Headroom Voltage vs. Load Resistance for VDAC2, AVNEG = −5 V; Headroom = AVNEG − VDAC Output Voltage 0 0.5 1.0 1.5 VIN (V) 2.0 2.5 3.0 13040-013 HEADROOM 125°C 700 INPUT CURRENT (µA) HEADROOM VOLTAGE (mV) 0 Figure 11. Typical Headroom Voltage vs. Load Resistance for VDAC0, AVDD = 3 V; Headroom = AVDD − VDAC Output Voltage Figure 8. Typical Headroom Voltage vs. Load Resistance for VDAC7, VDACVDD = 3 V; Headroom = VDACVDD − VDAC Output Voltage HEADROOM VOLTAGE (mV) 0 13040-012 0 13040-008 0 13040-011 50 Figure 13. Input Current vs. VIN, VDD = 3.3 V, TA = 25°C, Unbuffered Mode, 100 kSPS Rev. C | Page 22 of 27 Data Sheet ADuCM310 250 15 +115°C 10 200 +85°C HEADROOM (mV) 0 –5 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 AIN9 –15 –20 –25 –30 –35 0 0.5 1.0 1.5 2.0 2.5 3.0 VIN (V) +25°C 150 –40°C 100 50 0 75 100 125 150 175 200 225 IDAC OUTPUT CURRENT (mA) 13040-017 –10 13040-014 INPUT CURRENT (µA) 5 Figure 17. Typical IDAC2 PVDD_IDAC2 Pin Voltage Headroom vs. Output Current for Different Temperatures; PVDD = 1.8 V Figure 14. Input Current vs. VIN, VDD = 3.3 V, TA = 25°C, Buffered Mode, 100 kSPS 250 600 +115°C 500 +115°C +85°C +85°C 150 HEADROOM (mV) +25°C –40°C 100 50 +25°C 300 –40°C 200 50.0 62.5 75.0 87.5 100.0 112.5 IDAC OUTPUT CURRENT (mA) 0 100 125 150 175 200 225 Figure 15. Typical IDAC0 PVDD_IDAC0 Pin Voltage Headroom vs. Output Current for Different Temperatures; PVDD = 1.8 V 275 Figure 18. Typical IDAC3 PVDD_IDAC3 Pin Voltage Headroom vs. Output Current for Different Temperatures; PVDD = 1.8 V 250 160 +115°C +115°C 140 200 HEADROOM (mV) 150 +85°C 120 +85°C +25°C –40°C 100 100 +25°C 80 –40°C 60 40 50 20 0 37.5 50.0 62.5 75.0 87.5 100.0 112.5 IDAC OUTPUT CURRENT (mA) 13040-016 HEADROOM (mV) 250 IDAC OUTPUT CURRENT (mA) 13040-018 100 13040-015 0 37.5 400 Figure 16. Typical IDAC1 PVDD_IDAC1 Pin Voltage Headroom vs. Output Current for Different Temperatures; PVDD = 1.8 V 0 5 10 15 25 25 IDAC OUTPUT CURRENT (mA) Figure 19. Typical IDAC4 PVDD_IDAC4 Pin Voltage Headroom vs. Output Current for Different Temperatures; PVDD = 1.8 V Rev. C | Page 23 of 27 13040-019 HEADROOM (mV) 200 ADuCM310 Data Sheet 160 3.0 140 2.5 100 OUTPUT VOLTAGE (V) +115°C 80 +85°C +25°C 60 40 2.0 VOH MIN 1.5 1.0 VOH MAX –40°C 0.5 20 7 9 11 13 15 17 19 0 13040-020 5 21 IDAC OUTPUT CURRENT (mA) 0 2 4 6 8 10 12 14 16 LOAD CURRENT (mA) 13040-022 HEADROOM (mV) 120 0 VOL MAX VOL MIN Figure 22. Typical Output Voltage vs. Load Current Figure 20. Typical IDAC5 PVDD_IDAC5 Pin Voltage Headroom vs. Output Current for Different Temperatures, PVDD = 1.8 V 90 80 77.2 77.6 78.2 3.60 80 70 61.9 AFTER 50ms DVDD MUST STAY ABOVE 2.85V INCLUDING NOISE EXCURSIONS DVDD (V) 50 46.2 40 20 2.90 2.85 30 50ms min 20 DVDD MUST BE ABOVE 2.9V FOR AT LEAST 50ms TO COMPLETE POR 0 1.30 1.45 1.50 1.60 1.80 2.00 2.50 EXT VREF (V) Figure 21. ADC SNR vs. External Reference Voltage (EXT VREF) TIME (Not to Scale) Figure 23. DVDD Power-On Requirements Rev. C | Page 24 of 27 13040-024 10 13040-021 SNR (dB) 60 Data Sheet ADuCM310 RECOMMENDED CIRCUIT AND COMPONENT VALUES Figure 24 shows a typical connection diagram for the ADuCM310. There are four digital supply balls: IOVDD1, IOVDD2, IOVDD3, and DVDD. Decouple these balls with a 0.1 μF capacitor placed as close as possible to each of the four balls and a 10 μF capacitor at the supply source. Similarly, the analog supply pins, AVDD3 and AVDD4, each require a 0.1 μF capacitor placed as close as possible to each ball with a 10 μF capacitor at the supply source. The IDACs source their output currents from the PVDD supply balls, PVDD_IDACx. Connect a 100 nF capacitor close to each PVDD supply ball. Place at least one 10 μF capacitor at the source of the PVDD supply (PVDD_IDACx balls). The IDAC output filters depend on a 10 nF capacitor placed between the CDAMP_IDACx ball and the PVDD_IDACx ball. The ADC reference requires a 4.7 μF capacitor between the ADC_CAPN and ADC_CAPP balls. Directly connect ADC_CAPN to the analog ground (AGND). The ADuCM310 contains four internal regulators. These regulators require external decoupling capacitors. The DVDD_REG1 and DVDD_REG2 balls each requires a 0.47 μF capacitor to the digital ground (DGND). The AVDD_REG1 and AVDD_REG2 balls each requires a decoupling capacitor to the AGND. To generate an accurate and low drift reference current, connect the IREF ball to the analog ground via a low parts per million (ppm) 3.16 kΩ resistor. Connect the VREF_1.2 ball to AGND via a 0.47 μF capacitor. See Figure 24 for more details. Rev. C | Page 25 of 27 ADuCM310 Data Sheet IOVDD 0.1µF 0.1µF DVDD 0.47µF 0.47µF 0.1µF 0.1µF DGND J5 K3 L3 L2 D10 DVDD DVDD_ REG1 DVDD_REG2 DGND1 DGND2 10KΩ D2 RESET 100nF 100nF 100nF K2 XTALI J2 XTALO F1 F11 L1 IOGND3 K1 IOGND2 E11 IOGND1 E1 IOVDD1 IOVDD3 DVDD PVDD IOVDD2 DGND ADuCM310 10KΩ P2.3/BM C3 A8 PVDD_IDAC3 P1.0/SIN/ECLKIN/PLAI[4]C4 B8 PVDD_IDAC3 SWCLK E10 C1 PVDD_IDAC4 C11 PVDD_IDAC5 100nF AGND DVDD B5 PVDD_IDAC2 100nF –0.1µF AVNEG K6 A5 PVDD_IDAC2 100nF AGND –5V A3 PVDD_IDAC0 100nF 0.1µF VDACVDD F9 A9 PVDD_IDAC1 100nF +5V P1.1/SOUT/PLACLK1/PLAI[5]D5 B2 CDAMP_IDAC0 SWDIO E9 B10 CDAMP_IDAC1 10nF PGND A7 B3 CDAMP_IDAC2 10nF B9 CDAMP_IDAC3 L11 L10 K10 G10 AGND4 D11 AGND3 ADC_CAPP G11 AGND1 IREF H11 AGND2 VREF_1.2 10nF ADC_CAPN AVDD4 10nF ADC_CAPN AVDD3 L5 C10 CDAMP_IDAC5 AVDD_REG1 PGND B7 C2 CDAMP_IDAC4 10nF AVDD_REG2 10nF F10 K5 G9 L6 J11 AVDD 0.47µF 0.47µF 0.47µF 3.16kΩ 4.7µF 0.1µF 0.1µF INTERFACE BOARD CONNECTOR AGND RESET RESET GND DGND SWDIO Tx SWCLK Rx NO CONNECT DVDD DVDD 1.6Ω 10µF DGND DGND1 VIN IOVDD ADP7102ARDZ-3.3-R7 10µF AGND1 AVDD 1.6Ω VIN VOUT 0.1µF 0.1µF 0.1µF SENSE 0.1µF 10kΩ EN PG 10µF 0.1µF 10µF DGND GND AGND AGND ADP1741ACPZ +2.5V V IN VIN VOUT 30k Ω 10µF EN ADJ 10k Ω EP GND PGND 0.1µF 10µF SS –5V ADP3605 PVDD 0.1µF AGND 10µF PGND + – VSENSE CP+ 10µF GND AGND Figure 24. Typical Connection Diagram Rev. C | Page 26 of 27 0.1µF 0.1µF – + 0.1µF – + 31.6kΩ CP– SD PGND V OUT 13040-023 +5V Data Sheet ADuCM310 OUTLINE DIMENSIONS A1 BALL CORNER 6.10 6.00 SQ 5.90 A1 BALL CORNER 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L 5.00 REF SQ 0.50 BSC 1.200 1.083 1.000 BOTTOM VIEW 0.50 REF 0.26 REF DETAIL A DETAIL A 0.223 NOM 0.173 MIN SEATING PLANE 0.35 0.30 0.25 BALL DIAMETER 0.93 0.86 0.79 COPLANARITY 0.08 COMPLIANT TO JEDEC STANDARDS MO-195-AC WITH THE EXCEPTION TO BALL COUNT 04-02-2013-A TOP VIEW Figure 25. 112-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-112-4) Dimensions shown in millimeters ORDERING GUIDE Model1 ADuCM310BBCZ ADuCM310BBCZ-RL EVAL-ADuCM310QSPZ 1 Temperature Range −40°C to +85°C −40°C to +85°C Package Description 112-Ball Chip Scale Package Ball Grid Array [CSP_BGA] 112-Ball Chip Scale Package Ball Grid Array [CSP_BGA] Evaluation Board with QuickStart Development System Z = RoHS Compliant Part. I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). ©2015–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13040-0-2/19(C) Rev. C | Page 27 of 27 Package Option BC-112-4 BC-112-4
ADUCM310BBCZ 价格&库存

很抱歉,暂时无法提供与“ADUCM310BBCZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货