0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LTC2175IUKG-14#TRPBF

LTC2175IUKG-14#TRPBF

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFQFN52

  • 描述:

    IC ADC 14BIT PIPELINED 52QFN

  • 数据手册
  • 价格&库存
LTC2175IUKG-14#TRPBF 数据手册
LTC2175-14/ LTC2174-14/LTC2173-14 14-Bit, 125Msps/105Msps/ 80Msps Low Power Quad ADCs Features n n n n n n n n n n n n Description 4-Channel Simultaneous Sampling ADC 73.1dB SNR 88dB SFDR Low Power: 558mW/450mW/376mW Total, 140mW/113mW/94mW per Channel Single 1.8V Supply Serial LVDS Outputs: 1 or 2 Bits per Channel Selectable Input Ranges: 1VP-P to 2VP-P 800MHz Full Power Bandwidth S/H Shutdown and Nap Modes Serial SPI Port for Configuration Pin Compatible 14-Bit and 12-Bit Versions 52-Pin (7mm × 8mm) QFN Package The LTC®2175-14/LTC2174-14/LTC2173-14 are 4-channel, simultaneous sampling 14-bit A/D converters designed for digitizing high frequency, wide dynamic range signals. They are perfect for demanding communications applications with AC performance that includes 73.1dB SNR and 88dB spurious free dynamic range (SFDR). Ultralow jitter of 0.15psRMS allows undersampling of IF frequencies with excellent noise performance. DC specs include ±1LSB INL (typ), ±0.3LSB DNL (typ) and no missing codes over temperature. The transition noise is a low 1.2LSBRMS. The digital outputs are serial LVDS to minimize the number of data lines. Each channel outputs two bits at a time (2-lane mode). At lower sampling rates there is a one bit per channel option (1-lane mode). The LVDS drivers have optional internal termination and adjustable output levels to ensure clean signal integrity. Applications Communications Cellular Base Stations n Software Defined Radios n Portable Medical Imaging n Multichannel Data Acquisition n Nondestructive Testing n n L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. The ENC+ and ENC– inputs may be driven differentially or single-ended with a sine wave, PECL, LVDS, TTL, or CMOS inputs. An internal clock duty cycle stabilizer allows high performance at full speed for a wide range of clock duty cycles. Typical Application 1.8V VDD CHANNEL 1 ANALOG INPUT LTC2175-14, 125Msps, 2-Tone FFT, fIN = 70MHz and 75MHz 1.8V OVDD S/H 14-BIT ADC CORE OUT1A 0 OUT1B –10 CHANNEL 2 ANALOG INPUT S/H 14-BIT ADC CORE OUT2A CHANNEL 3 ANALOG INPUT S/H 14-BIT ADC CORE S/H 14-BIT ADC CORE CHANNEL 4 ANALOG INPUT ENCODE INPUT –20 OUT3A OUT3B OUT4A OUT4B DATA CLOCK OUT PLL FRAME SERIALIZED LVDS OUTPUTS AMPLITUDE (dBFS) DATA SERIALIZER –30 OUT2B –40 –50 –60 –70 –80 –90 –100 –110 –120 0 10 20 30 40 FREQUENCY (MHz) 50 60 217514 TA01b GND OGND 217514 TA01 21754314fa 1 LTC2175-14/ LTC2174-14/LTC2173-14 Absolute Maximum Ratings Pin ConfigurationS (Notes 1, 2) OUT1B– OUT1B+ OUT1A– OUT1A+ GND SDO PAR/SER VREF GND SENSE VDD TOP VIEW VDD Supply Voltages VDD, OVDD................................................. –0.3V to 2V Analog Input Voltage (AIN+, AIN –, PAR/SER, SENSE) (Note 3)........... –0.3V to (VDD + 0.2V) Digital Input Voltage (ENC+, ENC–, CS, SDI, SCK) (Note 4)..................................... –0.3V to 3.9V SDO (Note 4).............................................. –0.3V to 3.9V Digital Output Voltage................. –0.3V to (OVDD + 0.3V) Operating Temperature Range LTC2175C, 2174C, 2173C.......................... 0°C to 70°C LTC2175I, 2174I, 2173I.........................–40°C to 85°C Storage Temperature Range................... –65°C to 150°C 52 51 50 49 48 47 46 45 44 43 42 41 AIN1+ 1 40 OUT2A+ – 2 39 OUT2A– VCM12 3 38 OUT2B+ AIN1 + 4 37 OUT2B– – 5 36 DCO+ REFH 6 35 DCO– AIN2 AIN2 REFH 7 34 OVDD 53 GND REFL 8 33 OGND REFL 9 32 FR+ AIN3+ 10 31 FR– AIN3– 11 30 OUT3A+ VCM34 12 29 OUT3A– AIN4+ 13 28 OUT3B+ – 27 OUT3B– AIN4 14 OUT4A+ OUT4A– OUT4B+ OUT4B– GND SDI SCK CS ENC– ENC+ VDD VDD 15 16 17 18 19 20 21 22 23 24 25 26 UKG PACKAGE 52-LEAD (7mm × 8mm) PLASTIC QFN TJMAX = 150°C, θJA = 28°C/W EXPOSED PAD (PIN 53) IS GND, MUST BE SOLDERED TO PCB Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE LTC2175CUKG-14#PBF LTC2175CUKG-14#TRPBF LTC2175UKG-14 52-Lead (7mm × 8mm) Plastic QFN 0°C to 70°C LTC2175IUKG-14#PBF LTC2175IUKG-14#TRPBF LTC2175UKG-14 52-Lead (7mm × 8mm) Plastic QFN –40°C to 85°C LTC2174CUKG-14#PBF LTC2174CUKG-14#TRPBF LTC2174UKG-14 52-Lead (7mm × 8mm) Plastic QFN 0°C to 70°C LTC2174IUKG-14#PBF LTC2174IUKG-14#TRPBF LTC2174UKG-14 52-Lead (7mm × 8mm) Plastic QFN –40°C to 85°C LTC2173CUKG-14#PBF LTC2173CUKG-14#TRPBF LTC2173UKG-14 52-Lead (7mm × 8mm) Plastic QFN 0°C to 70°C LTC2173IUKG-14#PBF LTC2173IUKG-14#TRPBF LTC2173UKG-14 52-Lead (7mm × 8mm) Plastic QFN –40°C to 85°C Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ 21754314fa 2 LTC2175-14/ LTC2174-14/LTC2173-14 Converter Characteristics l denotes the specifications which apply over the full operating The temperature range, otherwise specifications are at TA = 25°C. (Note 5) LTC2175-14 PARAMETER CONDITIONS Resolution (No Missing Codes) MIN l LTC2174-14 TYP MAX MIN 14 LTC2173-14 TYP MAX MIN 14 TYP MAX UNITS 14 Bits Integral Linearity Error Differential Analog Input (Note 6) l –4.1 ±1.2 4.1 –3.25 ±1 3.25 –2.75 ±1 2.75 LSB Differential Linearity Error Differential Analog Input l –0.9 ±0.3 0.9 –0.8 ±0.3 0.8 –0.8 ±0.3 0.8 LSB Offset Error (Note 7) l –12 ±3 12 –12 ±3 12 –12 ±3 12 mV Gain Error Internal Reference External Reference –2.6 –1.3 –1.3 –2.6 –1.3 –1.3 –2.6 –1.3 –1.3 0 %FS %FS l Offset Drift 0 0 ±20 ±20 ±20 µV/°C Full-Scale Drift Internal Reference External Reference ±35 ±25 ±35 ±25 ±35 ±25 ppm/°C ppm/°C Gain Matching External Reference ±0.2 ±0.2 ±0.2 %FS ±3 ±3 ±3 mV External Reference 1.2 1.2 1.2 LSBRMS Offset Matching Transition Noise Analog Input The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS VIN(CM) Analog Input Range (AIN+ – AIN–) Analog Input Common Mode (AIN+ + AIN–)/2 VSENSE External Voltage Reference Applied to SENSE External Reference Mode IINCM Analog Input Common Mode Current Per Pin, 125Msps Per Pin, 105Msps Per Pin, 80Msps IIN1 Analog Input Leakage Current No Encode 0 < AIN+, AIN– < VDD, l –1 1 µA IIN2 PAR/SER Input Leakage Current 0 < PAR/SER < VDD l –3 3 µA IIN3 SENSE Input Leakage Current 0.625 < SENSE < 1.3V l –6 6 µA tAP Sample-and-Hold Acquisition Delay Time 0 tJITTER Sample-and-Hold Acquisition Delay Jitter 0.15 CMRR Analog Input Common Mode Rejection Ratio BW-3B Full-Power Bandwidth VIN 1.7V < VDD < 1.9V l Differential Analog Input (Note 8) l VCM – 100mV VCM VCM + 100mV V l 0.625 1.250 1.300 V Figure 6 Test Circuit 1 to 2 VP-P 155 130 100 µA µA µA ns psRMS 80 dB 800 MHz 21754314fa 3 LTC2175-14/ LTC2174-14/LTC2173-14 Dynamic Accuracy The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5) LTC2175-14 SYMBOL PARAMETER CONDITIONS SNR Signal-to-Noise Ratio 5MHz Input 70MHz Input 140MHz Input SFDR S/(N+D) MAX LTC2174-14 MAX LTC2173-14 MIN TYP MIN TYP MIN TYP l 71.1 73.1 73 72.6 70.7 73 72.9 72.6 70.9 73 72.9 72.5 MAX UNITS dBFS dBFS dBFS Spurious Free Dynamic Range 5MHz Input 2nd or 3rd Harmonic 70MHz Input 140MHz Input l 75 88 85 82 75 88 85 82 77 88 85 82 dBFS dBFS dBFS Spurious Free Dynamic Range 5MHz Input 4th Harmonic or Higher 70MHz Input 140MHz Input l 84 90 90 90 84 90 90 90 85 90 90 90 dBFS dBFS dBFS l 69.6 73 72.6 72 70.2 73 72.6 72 70.4 72.9 72.6 72 dBFS dBFS dBFS Signal-to-Noise Plus Distortion Ratio 5MHz Input 70MHz Input 140MHz Input Crosstalk, Near Channel 10MHz Input (Note 12) –90 –90 –90 dBc Crosstalk, Far Channel 10MHz Input (Note 12) –105 –105 –105 dBc Internal Reference Characteristics l denotes the specifications which apply over the The full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5) PARAMETER CONDITIONS VCM Output Voltage IOUT = 0 MIN TYP MAX 0.5 • VDD – 25mV 0.5 • VDD 0.5 • VDD + 25mV VCM Output Temperature Drift ±25 VCM Output Resistance –600µA < IOUT < 1mA VREF Output Voltage IOUT = 0 VREF Output Temperature Drift 1.250 ±25 VREF Output Resistance –400µA < IOUT < 1mA VREF Line Regulation 1.7V < VDD < 1.9V 7 0.6 V ppm/°C 4 1.225 UNITS Ω 1.275 V ppm/°C Ω mV/V 21754314fa 4 LTC2175-14/ LTC2174-14/LTC2173-14 Digital Inputs and Outputs l denotes the specifications which apply over the full operating The temperature range, otherwise specifications are at TA = 25°C. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS ENCODE INPUTS (ENC+, ENC–  ) Differential Encode Mode (ENC– Not Tied to GND) VID Differential Input Voltage (Note 8) l 0.2 VICM Common Mode Input Voltage Internally Set Externally Set (Note 8) l 1.1 l 0.2 VIN Input Voltage Range ENC+, ENC– to GND RIN Input Resistance (See Figure 10) CIN Input Capacitance V 1.2 1.6 V V 3.6 V 10 kΩ 3.5 pF Single-Ended Encode Mode (ENC– Tied to GND) VIH High Level Input Voltage VDD = 1.8V l VIL Low Level Input Voltage VDD = 1.8V l VIN Input Voltage Range ENC+ to GND l RIN Input Resistance (See Figure 11) CIN Input Capacitance 1.2 V 0.6 0 3.6 V V 30 kΩ 3.5 pF DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode) VIH High Level Input Voltage VDD = 1.8V l VIL Low Level Input Voltage VDD = 1.8V l IIN Input Current VIN = 0V to 3.6V l CIN Input Capacitance 1.3 V –10 0.6 V 10 µA 3 pF 200 Ω SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2kΩ Pull-Up Resistor if SDO is Used) ROL Logic Low Output Resistance to GND VDD = 1.8V, SDO = 0V IOH Logic High Output Leakage Current SDO = 0V to 3.6V COUT Output Capacitance l –10 10 3 µA pF DIGITAL DATA OUTPUTS VOD Differential Output Voltage 100Ω Differential Load, 3.5mA Mode 100Ω Differential Load, 1.75mA Mode l l 247 125 350 175 454 250 VOS Common Mode Output Voltage 100Ω Differential Load, 3.5mA Mode 100Ω Differential Load, 1.75mA Mode l l 1.125 1.125 1.250 1.250 1.375 1.375 RTERM On-Chip Termination Resistance Termination Enabled, OVDD = 1.8V 100 mV mV V V Ω 21754314fa 5 LTC2175-14/ LTC2174-14/LTC2173-14 Power Requirements l denotes the specifications which apply over the full operating temperature The range, otherwise specifications are at TA = 25°C. (Note 9) LTC2175-14 SYMBOL PARAMETER LTC2173-14 MIN TYP MAX MIN TYP MAX MIN TYP (Note 10) l 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 Output Supply Voltage (Note 10) l 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 V Analog Supply Current Sine Wave Input l 283 305 224 243 184 200 mA IOVDD Digital Supply Current 2-Lane Mode, 1.75mA Mode 2-Lane Mode, 3.5mA Mode l l 27 49 31 54 26 48 31 53 25 47 29 52 mA mA PDISS Power Dissipation 2-Lane Mode, 1.75mA Mode 2-Lane Mode, 3.5mA Mode l l 558 598 605 646 450 490 493 533 376 416 412 454 mW mW PSLEEP Sleep Mode Power 1 1 1 mW PNAP Nap Mode Power 85 85 85 mW PDIFFCLK Power Increase With Differential Encode Mode Enabled (No Increase for Sleep Mode) 20 20 20 mW VDD Analog Supply Voltage OVDD IVDD CONDITIONS LTC2174-14 MAX UNITS 1.9 V Timing Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) LTC2175-14 SYMBOL PARAMETER CONDITIONS fS Sampling Frequency (Notes 10,11) l MIN 5 tENCL ENC Low Time (Note 8) Duty Cycle Stabilizer Off Duty Cycle Stabilizer On l l 3.8 2 tENCH ENC High Time (Note 8) Duty Cycle Stabilizer Off Duty Cycle Stabilizer On l l 3.8 2 tAP Sample-and-Hold Acquisition Delay Time SYMBOL PARAMETER TYP LTC2174-14 MAX MIN 125 5 4 4 100 100 4.52 2 4 4 100 100 4.52 2 0 TYP LTC2173-14 MAX MIN 105 5 4.76 4.76 100 100 5.93 2 4.76 4.76 100 100 5.93 2 0 CONDITIONS MIN TYP MAX MHz 6.25 6.25 100 100 ns ns 6.25 6.25 100 100 ns ns 0 TYP UNITS 80 ns MAX UNITS Digital Data Outputs (RTERM = 100Ω Differential, CL = 2pF to GND on Each Output) 1/(8 • fS) 1/(7 • fS) 1/(6 • fS) 1/(16 • fS) 1/(14 • fS) 1/(12 • fS) s s s s s s tSER Serial Data Bit Period 2-Lanes, 16-Bit Serialization 2-Lanes, 14-Bit Serialization 2-Lanes, 12-Bit Serialization 1-Lane, 16-Bit Serialization 1-Lane, 14-Bit Serialization 1-Lane, 12-Bit Serialization tFRAME FR to DCO Delay (Note 8) l 0.35 • tSER 0.5 • tSER 0.65 • tSER s tDATA DATA to DCO Delay (Note 8) l 0.35 • tSER 0.5 • tSER 0.65 • tSER s tPD Propagation Delay (Note 8) l tR Output Rise Time tF Output Fall Time DCO Cycle-Cycle Jitter tSER = 1ns Pipeline Latency 0.7n + 2 • tSER 1.1n + 2 • tSER 1.5n + 2 • tSER s Data, DCO, FR, 20% to 80% 0.17 ns Data, DCO, FR, 20% to 80% 0.17 ns 60 psP-P 6 Cycles 21754314fa 6 LTC2175-14/ LTC2174-14/LTC2173-14 timing characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS SPI Port Timing (Note 8) tSCK SCK Period tS Write Mode Readback Mode, CSDO = 20pF, RPULLUP = 2k l l 40 250 ns ns CS to SCK Setup Time l 5 ns tH SCK to CS Setup Time l 5 ns tDS SDI Setup Time l 5 ns tDH SDI Hold Time l 5 ns tDO SCK Falling to SDO Valid Readback Mode, CSDO = 20pF, RPULLUP = 2k Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: All voltage values are with respect to GND with GND and OGND shorted (unless otherwise noted). Note 3: When these pin voltages are taken below GND or above VDD, they will be clamped by internal diodes. This product can handle input currents of greater than 100mA below GND or above VDD without latchup. Note 4: When these pin voltages are taken below GND they will be clamped by internal diodes. When these pin voltages are taken above VDD they will not be clamped by internal diodes. This product can handle input currents of greater than 100mA below GND without latchup. Note 5: VDD = OVDD = 1.8V, fSAMPLE = 125MHz (LTC2175), 105MHz (LTC2174), or 80MHz (LTC2173), 2-lane output mode, differential ENC+/ ENC– = 2VP-P sine wave, input range = 2VP-P with differential drive, unless otherwise noted. Note 6: Integral nonlinearity is defined as the deviation of a code from a best fit straight line to the transfer curve. The deviation is measured from the center of the quantization band. l 125 ns Note 7: Offset error is the offset voltage measured from –0.5 LSB when the output code flickers between 00 0000 0000 0000 and 11 1111 1111 1111 in 2’s complement output mode. Note 8: Guaranteed by design, not subject to test. Note 9: VDD = OVDD = 1.8V, fSAMPLE = 125MHz (LTC2175), 105MHz (LTC2174), or 80MHz (LTC2173), 2-lane output mode, ENC+ = singleended 1.8V square wave, ENC– = 0V, input range = 2VP-P with differential drive, unless otherwise noted. The supply current and power dissipation specifications are totals for the entire chip, not per channel. Note 10: Recommended operating conditions. Note 11: The maximum sampling frequency depends on the speed grade of the part and also which serialization mode is used. The maximum serial data rate is 1000Mbps so tSER must be greater than or equal to 1ns. Note 12: Near-channel crosstalk refers to Ch. 1 to Ch.2, and Ch.3 to Ch.4. Far-channel crosstalk refers to Ch.1 to Ch.3, Ch.1 to Ch.4, Ch.2 to Ch.3, and Ch.2 to Ch.4. 21754314fa 7 LTC2175-14/ LTC2174-14/LTC2173-14 Timing Diagrams 2-Lane Output Mode, 16-Bit Serialization* tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ tDATA tSER tPD OUT#A– OUT#A+ OUT#B– OUT#B+ tSER D5 D3 D1 0 D13 D11 D9 D7 D5 D3 D1 0 D13 D11 D9 D4 D2 D0 0 D12 D10 D8 D6 D4 D2 D0 0 D12 D10 D8 SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 217514 TD01 *SEE THE DIGITAL OUTPUTS SECTION 2-Lane Output Mode, 14-Bit Serialization tAP ANALOG INPUT N+2 N tENCH ENC– N+1 tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ OUT#B– OUT#B+ tDATA tSER tPD tSER D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 SAMPLE N-3 217514 TD02 NOTE THAT IN THIS MODE FR+/FR– HAS TWO TIMES THE PERIOD OF ENC+/ENC– 21754314fa 8 LTC2175-14/ LTC2174-14/LTC2173-14 timing DIAGRAMS 2-Lane Output Mode, 12-Bit Serialization tAP ANALOG INPUT N N+1 tENCH ENC– tENCL ENC+ tSER DCO– DCO+ FR+ tFRAME tDATA tPD tSER FR– OUT#A– OUT#A+ OUT#B– OUT#B+ tSER D9 D7 D5 D3 D13 D11 D9 D7 D5 D3 D13 D11 D9 D8 D6 D4 D2 D12 D10 D8 D6 D4 D2 D12 D10 D8 SAMPLE N-6 SAMPLE N-5 SAMPLE N-4 217514 TD03 1-Lane Output Mode, 16-Bit Serialization tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ tDATA tSER tPD D1 D0 SAMPLE N-6 0 tSER 0 D13 D12 D11 D10 D9 SAMPLE N-5 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 D13 D12 D11 D10 SAMPLE N-4 217514 TD05 OUT#B+, OUT#B– ARE DISABLED 21754314fa 9 LTC2175-14/ LTC2174-14/LTC2173-14 timing DIAGRAMS One-Lane Output Mode, 14-Bit Serialization tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ tDATA tSER tPD D3 D2 tSER D1 D0 D13 D12 D11 D10 D9 SAMPLE N-6 D8 D7 D6 D5 D4 D3 D2 D1 D0 D13 D12 D11 D10 SAMPLE N-5 SAMPLE N-4 217514 TD06 OUT#B+, OUT#B– ARE DISABLED One-Lane Output Mode, 12-Bit Serialization tAP ANALOG INPUT N+1 N tENCH ENC– tENCL ENC+ tSER DCO– DCO+ tFRAME FR– FR+ OUT#A– OUT#A+ tDATA tSER tPD D5 D4 D3 tSER D2 D13 D12 D11 D10 D9 SAMPLE N-6 D8 D7 D6 D5 D4 D3 D2 D13 D12 D11 SAMPLE N-5 SAMPLE N-4 217514 TD07 OUT#B+, OUT#B– ARE DISABLED SPI Port Timing (Readback Mode) tDS tS tDH tSCK tH CS SCK tDO SDI SDO R/W A6 A5 A4 A3 A2 A1 A0 XX D7 HIGH IMPEDANCE XX D6 XX D5 XX D4 XX D3 XX D2 XX XX D1 D0 SPI Port Timing (Write Mode) CS SCK SDI SDO R/W HIGH IMPEDANCE A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 217514 TD04 21754314fa 10 LTC2175-14/ LTC2174-14/LTC2173-14 Typical Performance Characteristics LTC2175-14: Integral Nonlinearity (INL) LTC2175-14: Differential Nonlinearity (DNL) 2.0 1.0 0 1.5 0.8 –10 0 –0.5 –1.0 –30 0.4 AMPLITUDE (dBFS) DNL ERROR (LSB) 0.5 0.2 0 –0.2 –0.4 –0.8 0 4096 8192 12288 OUTPUT CODE –1.0 16384 0 4096 8192 12288 OUTPUT CODE 217514 G01 –60 –70 –80 –110 –120 16384 LTC2175-14: 8k Point FFT, fIN = 70MHz –1dBFS, 125Msps –20 –20 –20 –30 –30 –30 –70 –80 AMPLITUDE (dBFS) 0 –10 AMPLITUDE (dBFS) 0 –10 –60 –40 –50 –60 –70 –80 –60 –70 –80 –90 –100 –110 –120 –110 –120 –110 –120 20 30 40 FREQUENCY (MHz) 50 60 0 10 20 30 40 FREQUENCY (MHz) 50 60 LTC2175-14: 8k Point 2-Tone FFT, fIN = 70MHz, 75MHz, –1dBFS, 125Msps 60 73 5000 72 –50 SNR (dBFS) 4000 –40 COUNT AMPLITUDE (dBFS) 50 74 –30 3000 –60 –70 –80 2000 –90 –100 1000 –110 –120 20 30 40 FREQUENCY (MHz) LTC2175-14: SNR vs Input Frequency, –1dB, 2V Range, 125Msps LTC2175-14: Shorted Input Histogram –10 –20 10 217514 G06 6000 0 0 217514 G05 217514 G04 60 –40 –90 –100 10 50 –50 –90 –100 0 20 30 40 FREQUENCY (MHz) LTC2175-14: 8k Point FFT, fIN = 140MHz –1dBFS, 125Msps 0 –50 10 217514 G03 –10 –40 0 217514 G02 LTC2175-14: 8k Point FFT, fIN = 30MHz –1dBFS, 125Msps AMPLITUDE (dBFS) –40 –50 –90 –100 –0.6 –1.5 –2.0 –20 0.6 1.0 INL ERROR (LSB) LTC2175-14: 8k Point FFT, fIN = 5MHz –1dBFS, 125Msps 71 70 69 68 0 10 20 30 40 FREQUENCY (MHz) 50 60 217514 G07 0 8178 67 8180 8182 8184 OUTPUT CODE 8186 217514 G08 66 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 350 217514 G09 21754314fa 11 LTC2175-14/ LTC2174-14/LTC2173-14 Typical Performance Characteristics LTC2175-14: SFDR vs Input Frequency, –1dB, 2V Range, 125Msps 110 95 90 80 dBFS 100 75 80 70 dBc 60 60 SNR (dBc AND dBFS) SFDR (dBc AND dBFS) 80 50 40 30 40 30 20 10 10 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 0 –80 –70 –60 –50 –40 –30 –20 –10 INPUT LEVEL (dBFS) 350 217514 G10 280 73 40 270 IOVDD (mA) 230 72 1-LANE, 3.5mA 30 71 2-LANE, 1.75mA 20 70 69 1-LANE, 1.75mA 10 68 220 210 67 0 25 50 75 100 SAMPLE RATE (Msps) 0 125 0 25 50 75 100 SAMPLE RATE (Msps) LTC2174-14: Integral Nonlinearity (INL) 0.6 1.0 0 1.5 0.8 –10 –1.0 0.2 0 –0.2 –0.4 –0.8 0 4096 8192 12288 OUTPUT CODE 16384 217514 G14 –1.0 1.3 –40 –50 –60 –70 –80 –90 –100 –0.6 –1.5 1.2 –30 0.4 AMPLITUDE (dBFS) DNL ERROR (LSB) –0.5 0.9 1 1.1 SENSE PIN (V) –20 0.6 0 0.8 LTC2174-14: 8k Point FFT, fIN = 5MHz –1dBFS, 105Msps 2.0 0.5 0.7 217514 G12 LTC2174-14: Differential Nonlinearity (DNL) 1.0 INL ERROR (LSB) 66 125 217514 G51 217514 G53 –2.0 0 74 2-LANE, 3.5mA 240 –10 LTC2175-14: SNR vs SENSE, fIN = 5MHz, –1dB 50 250 –40 –30 –20 INPUT LEVEL (dBFS) 217514 G50 IOVDD vs Sample Rate, 5MHz Sine Wave Input, –1dB 290 260 –50 217514 G11 LTC2175-14: IVDD vs Sample Rate, 5MHz Sine Wave Input, –1dB IVDD (mA) 0 –60 0 SNR (dBFS) 65 dBc 50 20 70 dBFS 70 90 85 SFDR (dBFS) LTC2175-14: SNR vs Input Level, fIN = 70MHz, 2V Range, 125Msps LTC2175-14: SFDR vs Input Level, fIN = 70MHz, 2V Range, 125Msps 0 4096 8192 12288 OUTPUT CODE 16384 217514 G15 –110 –120 0 10 20 30 40 FREQUENCY (MHz) 50 217514 G16 21754314fa 12 LTC2175-14/ LTC2174-14/LTC2173-14 Typical Performance Characteristics LTC2174-14: 8k Point FFT, fIN = 70MHz –1dBFS, 105Msps LTC2174-14: 8k Point FFT, fIN = 140MHz –1dBFS, 105Msps 0 0 –10 –10 –20 –20 –20 –30 –30 –30 –40 –50 –60 –70 –80 AMPLITUDE (dBFS) 0 –10 AMPLITUDE (dBFS) AMPLITUDE (dBFS) LTC2174-14: 8k Point FFT, fIN = 30MHz –1dBFS, 105Msps –40 –50 –60 –70 –80 –40 –50 –60 –70 –80 –90 –100 –90 –100 –90 –100 –110 –120 –110 –120 –110 –120 0 10 20 30 40 FREQUENCY (MHz) 50 0 10 20 30 40 FREQUENCY (MHz) 50 217514 G18 217514 G17 LTC2174-14: 8k Point 2-Tone FFT, fIN = 70MHz, 75MHz, –1dBFS, 105Msps 6000 73 72 –50 SNR (dBFS) 4000 –40 COUNT 3000 –60 –70 –80 2000 –90 –100 1000 0 10 20 30 40 FREQUENCY (MHz) 70 69 67 0 8195 50 8197 8199 8201 OUTPUT CODE 66 8203 95 110 100 90 SFDR (dBc AND dBFS) 75 220 80 70 60 210 dBc 50 40 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 350 217514 G23 200 190 180 30 170 10 0 350 230 dBFS 20 70 100 150 200 250 300 INPUT FREQUENCY (MHz) LTC2174-14: IVDD vs Sample Rate, 5MHz Sine Wave Input, –1dB 90 80 50 217514 G22 LTC2174-14: SFDR vs Input Level, fIN = 70MHz, 2V Range, 105Msps 85 0 217514 G21 217514 G20 LTC2174-14: SFDR vs Input Frequency, –1dB, 2V Range, 105Msps SFDR (dBFS) 71 68 IVDD (mA) AMPLITUDE (dBFS) –30 65 50 74 5000 –20 20 30 40 FREQUENCY (MHz) 217514 G19 LTC2174-14: Shorted Input Histogram 0 10 LTC2174-14: SNR vs Input Frequency, –1dB, 2V Range, 105Msps –10 –110 –120 0 0 –80 –70 –60 –50 –40 –30 –20 –10 INPUT LEVEL (dBFS) 0 217514 G24 160 0 25 50 75 SAMPLE RATE (Msps) 100 217514 G54 21754314fa 13 LTC2175-14/ LTC2174-14/LTC2173-14 Typical Performance Characteristics LTC2174-14: SNR vs SENSE, fIN = 5MHz, –1dB LTC2173-14: Integral Nonlinearity (INL) 2.0 1.0 73 1.5 0.8 72 1.0 SNR (dBFS) 70 69 0.5 0 –0.5 68 –1.0 67 –1.5 66 –2.0 0.6 0.7 0.8 0.9 1 1.1 SENSE PIN (V) 1.2 1.3 0.6 DNL ERROR (LSB) INL ERROR (LSB) 74 71 0.4 0.2 0 –0.2 –0.4 –0.6 –0.8 0 4096 8192 12288 OUTPUT CODE 217514 G25 –1.0 16384 LTC2173-14: 8k Point FFT, fIN = 30MHz –1dBFS, 80Msps –20 –20 –20 –30 –30 –30 –70 –80 AMPLITUDE (dBFS) 0 –10 AMPLITUDE (dBFS) 0 –10 –60 –40 –50 –60 –70 –80 –40 –60 –70 –80 –90 –100 –90 –100 –110 –120 –110 –120 –110 –120 10 20 30 FREQUENCY (MHz) 40 0 10 20 30 FREQUENCY (MHz) 0 –10 –20 –20 –30 –30 –70 6000 5000 –40 4000 –50 –60 3000 –70 –80 2000 –90 –100 1000 –110 –120 –110 –120 0 10 20 30 FREQUENCY (MHz) 40 217514 G31 40 LTC2173-14: Shorted Input Histogram –90 –100 –80 20 30 FREQUENCY (MHz) COUNT AMPLITUDE (dBFS) AMPLITUDE (dBFS) 0 –10 –60 10 217514 G30 LTC2173-14: 8k Point 2-Tone FFT, fIN = 70MHz, 75MHz, –1dBFS, 80Msps LTC2173-14: 8k Point FFT, fIN = 140MHz –1dBFS, 80Msps –40 0 217514 G29 217514 G28 –50 40 16384 –50 –90 –100 0 8192 12288 OUTPUT CODE LTC2173-14: 8k Point FFT, fIN = 70MHz –1dBFS, 80Msps 0 –50 4096 217514 G27 –10 –40 0 217514 G26 LTC2173-14: 8k Point FFT, fIN = 5MHz –1dBFS, 80Msps AMPLITUDE (dBFS) LTC2173-14: Differential Nonlinearity (DNL) 0 10 20 30 FREQUENCY (MHz) 40 217514 G32 0 8184 8186 8188 8190 OUTPUT CODE 8192 217514 G33 21754314fa 14 LTC2175-14/ LTC2174-14/LTC2173-14 Typical Performance Characteristics LTC2173-14: SNR vs Input Frequency, –1dB, 2V Range, 80Msps LTC2173-14: SFDR vs Input Frequency, –1dB, 2V Range, 80Msps LTC2173-14: SFDR vs Input Level, fIN = 70MHz, 2V Range, 80Msps 95 74 73 110 100 90 70 69 SFDR (dBc AND dBFS) SFDR (dBFS) SNR (dBFS) 72 71 85 80 75 68 66 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) 350 dBc 60 50 40 30 0 50 100 150 200 250 300 INPUT FREQUENCY (MHz) DCO Cycle-Cycle Jitter vs Serial Data Rate 74 350 73 300 PEAK-TO-PEAK JITTER (ps) 180 72 SNR (dBFS) 160 71 70 69 68 150 20 40 60 SAMPLE RATE (Msps) 80 217514 G55 66 250 200 150 100 50 67 0 0 217514 G36 LTC2173-14: SNR vs SENSE, fIN = 5MHz, –1dB 190 170 0 –80 –70 –60 –50 –40 –30 –20 –10 INPUT LEVEL (dBFS) 350 217514 G35 LTC2173-14: IVDD vs Sample Rate, 5MHz Sine Wave Input, –1dB IVDD (mA) 70 10 65 217514 G34 140 80 20 70 67 dBFS 90 0.6 0.7 0.8 0.9 1 1.1 SENSE PIN (V) 1.2 1.3 217514 G37 0 0 200 400 600 800 SERIAL DATA RATE (Mbps) 1000 217514 G52 21754314fa 15 LTC2175-14/ LTC2174-14/LTC2173-14 Pin Functions AIN1+ (Pin 1): Channel 1 Positive Differential Analog Input. AIN1– (Pin 2): Channel 1 Negative Differential Analog Input. VCM12 (Pin 3): Common Mode Bias Output, Nominally Equal to VDD/2. VCM should be used to bias the common mode of the analog inputs of channels 1 and 2. Bypass to ground with a 0.1µF ceramic capacitor. AIN2+ (Pin 4): Channel 2 Positive Differential Analog Input. AIN2– (Pin 5): Channel 2 Negative Differential Analog Input. REFH (Pins 6,7): ADC High Reference. Bypass to pins 8, 9 with a 2.2µF ceramic capacitor and to ground with a 0.1µF ceramic capacitor. REFL (Pins 8,9): ADC Low Reference. Bypass to pins 6, 7 with a 2.2µF ceramic capacitor and to ground with a 0.1µF ceramic capacitor. AIN3+ (Pin 10): Channel 3 Positive Differential Analog Input. AIN3– (Pin 11): Channel 3 Negative Differential Analog Input. VCM34 (Pin 12): Common Mode Bias Output, Nominally Equal to VDD/2. VCM should be used to bias the common mode of the analog inputs of channels 3 and 4. Bypass to ground with a 0.1µF ceramic capacitor. AIN4+ (Pin 13): Channel 4 Positive Differential Analog Input. AIN4– (Pin 14): Channel 4 Negative Differential Analog Input. VDD (Pins 15, 16, 51, 52): 1.8V Analog Power Supply. Bypass to ground with 0.1µF ceramic capacitors. Adjacent pins can share a bypass capacitor. ENC+ (Pin 17): Encode Input. Conversion starts on the rising edge. ENC– (Pin 18): Encode Complement Input. Conversion starts on the falling edge. CS (Pin 19): In serial programming mode, (PAR/SER = 0V), CS is the serial interface chip select input. When CS is low, SCK is enabled for shifting data on SDI into the mode control registers. In the parallel programming mode (PAR/ SER = VDD), CS selects 2-lane or 1-lane output mode. CS can be driven with 1.8V to 3.3V logic. SCK (Pin 20): In serial programming mode, (PAR/SER = 0V), SCK is the serial interface clock input. In the parallel programming mode (PAR/SER = VDD), SCK selects 3.5mA or 1.75mA LVDS output currents. SCK can be driven with 1.8V to 3.3V logic. SDI (Pin 21): In serial programming mode, (PAR/SER = 0V), SDI is the serial interface data Input. Data on SDI is clocked into the mode control registers on the rising edge of SCK. In the parallel programming mode (PAR/SER = VDD), SDI can be used to power down the part. SDI can be driven with 1.8V to 3.3V logic. GND (Pins 22, 45, 49): ADC Power Ground. OGND (Pin 33): Output Driver Ground. Must be shorted to the ground plane by a very low inductance path. Use multiple vias close to the pin. OVDD (Pin 34): Output Driver Supply. Bypass to ground with a 0.1µF ceramic capacitor. SDO (Pin 46): In serial programming mode, (PAR/SER = 0V), SDO is the optional serial interface data output. Data on SDO is read back from the mode control registers and can be latched on the falling edge of SCK. SDO is an open-drain NMOS output that requires an external 2k pull-up resistor to 1.8V – 3.3V. If read back from the mode control registers is not needed, the pull-up resistor is not necessary and SDO can be left unconnected. In the parallel programming mode (PAR/SER = VDD), SDO is an input that enables internal 100Ω termination resistors on the digital outputs. When used as an input, SDO can be driven with 1.8V to 3.3V logic through a 1k series resistor. PAR/SER (Pin 47): Programming Mode Selection Pin. Connect to ground to enable the serial programming mode. CS, SCK, SDI, SDO become a serial interface that control the A/D operating modes. Connect to VDD to enable the parallel programming mode where CS, SCK, SDI, SDO become parallel logic inputs that control a reduced set of the A/D operating modes. PAR/SER should be connected directly to ground or the VDD of the part and not be driven by a logic signal. VREF (Pin 48): Reference Voltage Output. Bypass to ground with a 1µF ceramic capacitor, nominally 1.25V. 21754314fa 16 LTC2175-14/ LTC2174-14/LTC2173-14 Pin Functions SENSE (Pin 50): Reference Programming Pin. Connecting SENSE to VDD selects the internal reference and a ±1V input range. Connecting SENSE to ground selects the internal reference and a ±0.5V input range. An external reference between 0.625V and 1.3V applied to SENSE selects an input range of ±0.8 • VSENSE. Exposed Pad (Pin 53): Ground. The Exposed Pad must be soldered to the PCB ground. LVDS Outputs All pins in this section are differential LVDS outputs. The output current level is programmable. There is an optional internal 100Ω termination resistor between the pins of each LVDS output pair. OUT3B–/OUT3B+, OUT3A–/OUT3A+ (Pins 27/28, 29/30): Serial data outputs for Channel 3. In 1-lane output mode only OUT3A–/OUT3A+ are used. FR–/FR+ (Pins 31/32): Frame Start Outputs. DCO–/DCO+ (Pins 35/36): Data Clock Outputs. OUT2B–/OUT2B+, OUT2A–/OUT2A+ (Pins 37/38, 39/40): Serial data outputs for Channel 2. In 1-lane output mode only OUT2A–/OUT2A+ are used. OUT1B–/OUT1B+, OUT1A–/OUT1A+ (Pins 41/42, 43/44): Serial data outputs for Channel 1. In 1-lane output mode only OUT1A–/OUT1A+ are used. OUT4B–/OUT4B+, OUT4A–/OUT4A+ (Pins 23/24, 25/26): Serial data outputs for Channel 4. In 1-lane output mode only OUT4A–/OUT4A+ are used. 21754314fa 17 LTC2175-14/ LTC2174-14/LTC2173-14 Functional Block Diagram 1.8V ENC+ ENC– VDD CH 1 ANALOG INPUT 1.8V OVDD OUT1A 14-BIT ADC CORE S/H OUT1B PLL OUT2A CH 2 ANALOG INPUT DATA SERIALIZER 14-BIT ADC CORE S/H OUT2B OUT3A OUT3B CH 3 ANALOG INPUT 14-BIT ADC CORE S/H OUT4A OUT4B CH 4 ANALOG INPUT VREF 1µF DATA CLOCK OUT 14-BIT ADC CORE S/H FRAME 1.25V REFERENCE OGND RANGE SELECT SENSE REFH REF BUF REFL VDD/2 DIFF REF AMP GND MODE CONTROL REGISTERS REFH 0.1µF REFL 0.1µF 2.2µF 0.1µF VCM12 217514 F01 VCM34 0.1µF PAR/SER CS SCK SDI SDO 0.1µF Figure 1. Functional Block Diagram 21754314fa 18 LTC2175-14/ LTC2174-14/LTC2173-14 Applications Information CONVERTER OPERATION The LTC2175-14/LTC2174-14/LTC2173-14 are low power, 4-channel, 14-bit, 125Msps/105Msps/80Msps A/D converters that are powered by a single 1.8V supply. The analog inputs should be driven differentially. The encode input can be driven differentially for optimal jitter performance, or single-ended for lower power consumption. The digital outputs are serial LVDS to minimize the number of data lines. Each channel outputs two bits at a time (2-lane mode). At lower sampling rates there is a one bit per channel option (1-lane mode). Many additional features can be chosen by programming the mode control registers through a serial SPI port. ANALOG INPUT The analog inputs are differential CMOS sample-and-hold circuits (Figure 2). The inputs should be driven differentially around a common mode voltage set by the VCM12 or VCM34 output pins, which are nominally VDD/2. For the LTC2175-14 VDD AIN+ RON 25Ω 10Ω AIN– INPUT DRIVE CIRCUITS Input Filtering If possible, there should be an RC low pass filter right at the analog inputs. This lowpass filter isolates the drive circuitry from the A/D sample-and-hold switching, and also limits wideband noise from the drive circuitry. Figure 3 shows an example of an input RC filter. The RC component values should be chosen based on the application’s input frequency. Transformer Coupled Circuits Figure 3 shows the analog input being driven by an RF transformer with a center-tapped secondary. The center 50Ω VCM 0.1µF 0.1µF RON 25Ω 10Ω The four channels are simultaneously sampled by a shared encode circuit (Figure 2). CSAMPLE 3.5pF CPARASITIC 1.8pF VDD 2V input range, the inputs should swing from VCM – 0.5V to VCM + 0.5V. There should be 180° phase difference between the inputs. CSAMPLE 3.5pF ANALOG INPUT T1 1:1 25Ω 25Ω AIN+ LTC2175-14 0.1µF 12pF CPARASITIC 1.8pF 25Ω VDD 25Ω T1: MA/COM MABAES0060 RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE AIN– 217514 F03 1.2V Figure 3. Analog Input Circuit Using a Transformer. Recommended for Input Frequencies from 5MHz to 70MHz. 10k ENC+ ENC– 10k 1.2V 217514 F02 Figure 2. Equivalent Input Circuit. Only One of the Four Analog Channels is Shown. 21754314fa 19 LTC2175-14/ LTC2174-14/LTC2173-14 Applications Information tap is biased with VCM, setting the A/D input at its optimal DC level. At higher input frequencies a transmission line balun transformer (Figures 4 to 6) has better balance, resulting in lower A/D distortion. Amplifier Circuits Figure 7 shows the analog input being driven by a high speed differential amplifier. The output of the amplifier is AC-coupled to the A/D so the amplifier’s output common mode voltage can be optimally set to minimize distortion. 50Ω At very high frequencies an RF gain block will often have lower distortion than a differential amplifier. If the gain block is single-ended, then a transformer circuit (Figures 4 to 6) should convert the signal to differential before driving the A/D. Reference The LTC2175-14/LTC2174-14/LTC2173-14 has an internal 1.25V voltage reference. For a 2V input range using the internal reference, connect SENSE to VDD. For a 1V input range using the internal reference, connect SENSE to 50Ω VCM 0.1µF 0.1µF 0.1µF ANALOG INPUT T1 0.1µF AIN+ T2 25Ω LTC2175-14 0.1µF 25Ω HIGH SPEED DIFFERENTIAL 0.1µF AMPLIFIER AIN+ 25Ω LTC2175-14 0.1µF 1.8pF 0.1µF 25Ω AIN– 217514 F06 VCM VCM 0.1µF T1 2.7nH Figure 6. Recommended Front End Circuit for Input Frequencies Above 300MHz Figure 4. Recommended Front End Circuit for Input Frequencies from 70MHz to 170MHz T2 25Ω T1: MA/COM ETC1-1-13 RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE T1: MA/COM MABA-007159-000000 T2: MA/COM MABAES0060 RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE 0.1µF LTC2175-14 T1 217514 F04 ANALOG INPUT AIN+ 0.1µF 25Ω 0.1µF AIN– 50Ω 2.7nH ANALOG INPUT 4.7pF 0.1µF VCM AIN– ANALOG INPUT + + – – 200Ω 200Ω 25Ω 0.1µF AIN+ LTC2175-14 12pF 0.1µF 25Ω AIN– 217514 F07 217514 F05 T1: MA/COM MABA-007159-000000 T2: COILCRAFT WBC1-1LB RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE Figure 7. Front End Circuit Using a High Speed Differential Amplifier Figure 5. Recommended Front End Circuit for Input Frequencies from 170MHz to 300MHz 21754314fa 20 LTC2175-14/ LTC2174-14/LTC2173-14 Applications Information ground. For a 2V input range with an external reference, apply a 1.25V reference voltage to SENSE (Figure 9). and REFL should be as close to the pins as possible (not on the backside of the circuit board). The input range can be adjusted by applying a voltage to SENSE that is between 0.625V and 1.30V. The input range will then be 1.6 • VSENSE. Encode Input The reference is shared by all four ADC channels, so it is not possible to independently adjust the input range of individual channels. The VREF, REFH and REFL pins should be bypassed as shown in Figure 8. The 0.1µF capacitor between REFH The signal quality of the encode inputs strongly affects the A/D noise performance. The encode inputs should be treated as analog signals—do not route them next to digital traces on the circuit board. There are two modes of operation for the encode inputs: the differential encode mode (Figure 10), and the single-ended encode mode (Figure 11). LTC2175-14 LTC2175-14 VREF 1.25V 5Ω 1.25V BANDGAP REFERENCE 1µF VDD DIFFERENTIAL COMPARATOR VDD 0.625V 15k TIE TO VDD FOR 2V RANGE; TIE TO GND FOR 1V RANGE; RANGE = 1.6 • VSENSE FOR 0.65V < VSENSE < 1.300V RANGE DETECT AND CONTROL ENC+ ENC– SENSE 30k BUFFER INTERNAL ADC HIGH REFERENCE 0.1µF 217514 F10 REFH Figure 10. Equivalent Encode Input Circuit for Differential Encode Mode 2.2µF 0.1µF 0.1µF 0.8x DIFF AMP REFL LTC2175-14 INTERNAL ADC LOW REFERENCE 1.8V TO 3.3V 0V 217514 F08 Figure 8. Reference Circuit 1.25V EXTERNAL REFERENCE ENC– 30k CMOS LOGIC BUFFER 217514 F11 Figure 11. Equivalent Encode Input Circuit for Single-Ended Encode Mode VREF 1µF ENC+ LTC2175-14 SENSE 1µF 217514 F09 Figure 9. Using an External 1.25V Reference 21754314fa 21 LTC2175-14/ LTC2174-14/LTC2173-14 Applications Information The differential encode mode is recommended for sinusoidal, PECL, or LVDS encode inputs (Figures 12 and 13). The encode inputs are internally biased to 1.2V through 10k equivalent resistance. The encode inputs can be taken above VDD (up to 3.6V), and the common mode range is from 1.1V to 1.6V. In the differential encode mode, ENC– should stay at least 200mV above ground to avoid falsely triggering the single-ended encode mode. For good jitter performance ENC+ should have fast rise and fall times. The single-ended encode mode should be used with CMOS encode inputs. To select this mode, ENC– is connected to ground and ENC+ is driven with a square wave encode input. ENC+ can be taken above VDD (up to 3.6V) so 1.8V to 3.3V CMOS logic levels can be used. The ENC+ threshold is 0.9V. For good jitter performance ENC+ should have fast rise and fall times. Clock PLL and Duty Cycle Stabilizer The encode clock is multiplied by an internal phase-locked loop (PLL) to generate the serial digital output data. If the encode signal changes frequency or is turned off, the PLL requires 25µs to lock onto the input clock. A clock duty cycle stabilizer circuit allows the duty cycle of the applied encode signal to vary from 30% to 70%. In the serial programming mode it is possible to disable the duty cycle stabilizer, but this is not recommended. In the parallel programming mode the duty cycle stabilizer is always enabled. 0.1µF 0.1µF ENC+ T1 50Ω 0.1µF LTC2175-14 PECL OR LVDS CLOCK 100Ω 50Ω 0.1µF ENC+ LTC2175-14 0.1µF ENC– 217514 F13 ENC– 217514 F12 Figure 13. PECL or LVDS Encode Drive T1 = MA/COM ETC1-1-13 RESISTORS AND CAPACITORS ARE 0402 PACKAGE SIZE Figure 12. Sinusoidal Encode Drive 21754314fa 22 LTC2175-14/ LTC2174-14/LTC2173-14 Applications Information DIGITAL OUTPUTS The digital outputs of the LTC2175-14/LTC2174-14/ LTC2173-14 are serialized LVDS signals. Each channel outputs two bits at a time (2-lane mode). At lower sampling rates there is a one bit per channel option (1-lane mode). The data can be serialized with 16, 14, or 12-bit serialization (see timing diagrams for details). Note that with 12-bit serialization the two LSBs are not available— this mode is included for compatibility with the 12-bit versions of these parts. The output data should be latched on the rising and falling edges of the data clock out (DCO). A data frame output (FR) can be used to determine when the data from a new conversion result begins. In the 2-lane, 14-bit serialization mode, the frequency of the FR output is halved. The maximum serial data rate for the data outputs is 1Gbps, so the maximum sample rate of the ADC will depend on the serialization mode as well as the speed grade of the ADC (see Table 1). The minimum sample rate for all serialization modes is 5Msps. By default the outputs are standard LVDS levels: 3.5mA output current and a 1.25V output common mode voltage. An external 100Ω differential termination resistor is required for each LVDS output pair. The termination resistors should be located as close as possible to the LVDS receiver. The outputs are powered by OVDD and OGND which are isolated from the A/D core power and ground. Programmable LVDS Output Current The default output driver current is 3.5mA. This current can be adjusted by control register A2 in the serial programming mode. Available current levels are 1.75mA, 2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA. In the parallel programming mode the SCK pin can select either 3.5mA or 1.75mA. Optional LVDS Driver Internal Termination In most cases using just an external 100Ω termination resistor will give excellent LVDS signal integrity. In addition, an optional internal 100Ω termination resistor can be enabled by serially programming mode control register A2. The internal termination helps absorb any reflections caused by imperfect termination at the receiver. When the internal termination is enabled, the output driver current is doubled to maintain the same output voltage swing. In the parallel programming mode the SDO pin enables internal termination. Internal termination should only be used with 1.75mA, 2.1mA or 2.5mA LVDS output current modes. Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTC2175-14. The Sampling Frequency for the Slower Speed Grades Cannot Exceed 105MHz (LTC2174-14) or 80MHz (LTC2173-14). SERIALIZATION MODE MAXIMUM SAMPLING FREQUENCY, fS (MHz) DCO FREQUENCY FR FREQUENCY SERIAL DATA RATE 2-Lane 16-Bit Serialization 125 4 • fS fS 8 • fS 2-Lane 14-Bit Serialization 125 3.5 • fS 0.5 • fS 7 • fS 2-Lane 12-Bit Serialization 125 3 • fS fS 6 • fS 1-Lane 16-Bit Serialization 62.5 8 • fS fS 16 • fS 1-Lane 14-Bit Serialization 71.4 7 • fS fS 14 • fS 1-Lane 12-Bit Serialization 83.3 6 • fS fS 12 • fS 21754314fa 23 LTC2175-14/ LTC2174-14/LTC2173-14 Applications Information DATA FORMAT Table 2 shows the relationship between the analog input voltage and the digital data output bits. By default the output data format is offset binary. The 2’s complement format can be selected by serially programming mode control register A1. Table 2. Output Codes vs Input Voltage and all other bits. The FR and DCO outputs are not affected. The output randomizer is enabled by serially programming mode control register A1. Digital Output Test Pattern To allow in-circuit testing of the digital interface to the A/D, there is a test mode that forces the A/D data outputs (D13-D0) of all channels to known values. The digital output test patterns are enabled by serially programming mode control registers A3 and A4. When enabled, the test patterns override all other formatting modes: 2’s complement and randomizer. AIN+ – AIN– (2V RANGE) D13-D0 (OFFSET BINARY) D13-D0 (2’s COMPLEMENT) >1.000000V 11 1111 1111 1111 01 1111 1111 1111 +0.999878V 11 1111 1111 1111 01 1111 1111 1111 +0.999756V 11 1111 1111 1110 01 1111 1111 1110 +0.000122V 10 0000 0000 0001 00 0000 0000 0001 Output Disable +0.000000V 10 0000 0000 0000 00 0000 0000 0000 –0.000122V 01 1111 1111 1111 11 1111 1111 1111 –0.000244V 01 1111 1111 1110 11 1111 1111 1110 –0.999878V 00 0000 0000 0001 10 0000 0000 0001 –1.000000V 00 0000 0000 0000 10 0000 0000 0000
LTC2175IUKG-14#TRPBF 价格&库存

很抱歉,暂时无法提供与“LTC2175IUKG-14#TRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货