0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMV342IDR

LMV342IDR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
LMV342IDR 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents Reference Design LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 LMV34x Rail-to-Rail Output CMOS Operational Amplifiers With Shutdown 1 Features 3 Description • • • • • • • • • • The LMV34x devices are single, dual, and quad CMOS operational amplifiers, respectively, with low voltage, low power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias current of 1 pA (typical) and an offset voltage of 0.25 mV (typical). The single-supply amplifier is designed specifically for low-voltage (2.7 V to 5 V) operation, with a wide common-mode input voltage range that typically extends from –0.2 V to 0.8 V from the positive supply rail. The LMV341 (single) also offers a shutdown (SHDN) pin that can be used to disable the device. In shutdown mode, the supply current is reduced to 33 nA (typical). Additional features of the family are a 20-nV/√Hz voltage noise at 10 kHz, 1-MHz unity-gain bandwidth, 1-V/μs slew rate, and 100-μA current consumption per channel. 1 • 2.7-V and 5-V Performance Rail-to-Rail Output Swing Input Bias Current:1 pA (Typical) Input Offset Voltage: 0.25 mV (Typical) Low Supply Current: 100 μA (Typical) Low Shutdown Current: 45 pA (Typical) Gain Bandwidth of 1 MHz (Typical) Slew Rate: 1 V/μs (Typical) Turnon Time From Shutdown: 5 μs (Typical) Input Referred Voltage Noise (at 10 kHz): 20 nV/√Hz ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (HBM) – 750-V Charged-device model (CDM) 2 Applications • • • • • • • • • Cordless and Cellular Phones Consumer Electronics (Laptops, PDAs) Audio Preamplifiers for Voice Portable, Battery-Powered Electronic Equipment Supply-Current Monitoring Battery Monitoring Buffers Filters Drivers Offered in both the SOT-23 and smaller SC70 packages, the LMV341 is suitable for the most spaceconstraint applications. The LMV342 dual device is offered in the standard SOIC and VSSOP packages. An extended industrial temperature range from –40°C to 125°C makes these devices suitable in a wide variety of commercial and industrial environments. Device Information(1) PART NUMBER PACKAGE BODY SIZE (NOM) LMV341IDCK SC70 (6) 2.00 mm × 1.25 mm LMV341IDBV SOT-23 (6) 2.90 mm ×1.60 mm LMV342ID SOIC (8) 4.90 mm × 3.91 mm LMV342IDGK VSSOP (8) 3.00 mm × 3.00 mm LMV344ID SOIC (14) 8.65 mm × 3.91 mm LMV344IPW TSSOP (14) 5.00 mm × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Sample-and-Hold Circuit V+ V+ − − + VI VO + C = 200 pF Sample Clock 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 4 5 5 5 5 6 7 7 8 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics: V+ = 2.7 V ........................ Electrical Characteristics: V+ = 5 V ........................... Shutdown Characteristics: V+ = 2.7 V....................... Shutdown Characteristics: V+ = 5 V.......................... Typical Characteristics .............................................. Detailed Description ............................................ 14 7.1 Overview ................................................................. 14 7.2 Functional Block Diagram ....................................... 14 7.3 Feature Description................................................. 14 7.4 Device Functional Modes........................................ 14 8 Application and Implementation ........................ 15 8.1 Application Information............................................ 15 8.2 Typical Application ................................................. 15 9 Power Supply Recommendations...................... 16 10 Layout................................................................... 17 10.1 Layout Guidelines ................................................. 17 10.2 Layout Examples................................................... 17 11 Device and Documentation Support ................. 18 11.1 11.2 11.3 11.4 11.5 Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 18 18 18 18 18 12 Mechanical, Packaging, and Orderable Information ........................................................... 18 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision H (June 2012) to Revision I Page • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ................................................................................................. 1 • Removed Ordering Information table .................................................................................................................................... 1 2 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 5 Pin Configuration and Functions DBV or DCK Package 6-Pin SOT-23 or SC70 Top View IN+ 1 6 V ! + GND 2 5 ¯¯¯¯¯ SHDN IN– 3 4 OUT Pin Functions: LMV341 PIN NAME SOT-23, SC70 I/O DESCRIPTION IN+ 1 I Noninverting input on channel 1 IN– 3 I Inverting input on channel 1 OUT 4 O Output on channel 1 GND 2 — Ground SHDN 5 I Shutdown active low V+ 6 — Positive power supply D or DGK Package 8-Pin SOIC or VSSOP Top View 1OUT 1 8 V   + 1IN– 2 7 2OUT 1IN+ 3 6 2IN– GND 4 5 2IN+ Pin Functions: LMV342 PIN NAME SOIC, VSSOP I/O DESCRIPTION 1IN+ 3 I Noninverting input on channel 1 1IN– 2 I Inverting input on channel 1 1OUT 1 O Output on channel 1 2IN+ 5 I Noninverting input on channel 2 2IN– 6 I Inverting input on channel 2 2OUT 7 O Output on channel 2 GND 4 — Ground V+ 8 — Positive power supply Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 3 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com D or PW Package 14-Pin SOIC or TSSOP Top View 1OUT 1 14 4OUT 1IN– 2 13 4IN– 1IN+ 3 12 4IN+ V   + 4 11 GND 2IN+ 5 10 3IN+ 2IN– 6 9 3IN– 2OUT 7 8 3OUT Pin Functions: LMV344 PIN NAME I/O SOIC, TSSOP DESCRIPTION 1IN+ 3 I Noninverting input on channel 1 1IN– 2 I Inverting input on channel 1 1OUT 1 O Output on channel 1 2IN+ 5 I Noninverting input on channel 2 2IN– 6 I Inverting input on channel 2 2OUT 7 O Output on channel 2 3IN+ 10 I Noninverting input on channel 3 3IN– 9 I Inverting input on channel 3 3OUT 8 O Output on channel 3 4IN+ 12 I Noninverting input on channel 4 4IN– 13 I Inverting input on channel 4 4OUT 14 O Output on channel 4 GND 11 — Ground V+ 4 — Positive power supply 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN (2) V+ Supply voltage VID Differential input voltage (3) VI Input voltage (either input) VO Output voltage TJ Operating virtual junction temperature Tstg Storage temperature (1) (2) (3) 4 –0.3 MAX UNIT 5.5 V ±5.5 V –0.3 5.5 V –0.3 VCC + 0.3 V 150 °C 150 °C –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values (except differential voltages) are with respect to the network GND. Differential voltages are at IN+ with respect to IN−. Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±750 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN MAX V+ Supply voltage (single-supply operation) 2.5 5.5 UNIT V TA Operating free-air temperature –40 125 °C 6.4 Thermal Information LMV342 THERMAL METRIC (1) LMV344 D (SOIC) LMV342 LMV344 DBV (SOT-23) LMV341 DCK (SC70) DGK (VSSOP) PW (TSSOP) UNIT 8 PINS 14 PINS 6 PINS 6 PINS 8 PINS 14 PINS 123.9 88.7 193.4 196.8 192.3 118 °C/W RθJC(top) Junction-to-case (top) thermal resistance 70.2 49 145.6 82.4 78.2 46.9 °C/W RθJB Junction-to-board thermal resistance 64.1 43 44.1 95.2 112.6 59.7 °C/W ψJT Junction-to-top characterization parameter 25 16.9 34.1 1.8 15.2 5.1 °C/W ψJB Junction-to-board characterization parameter 63.6 42.7 43.4 93.2 111.2 59.1 °C/W RθJA (1) (2) (3) Junction-to-ambient thermal resistance (2) (3) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. 6.5 Electrical Characteristics: V+ = 2.7 V V+ = 2.7 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Average temperature coefficient of input offset voltage IIB Input bias current TEST CONDITIONS TA MIN 25°C 0.25 Full range Full range Input offset current 1 –40°C to 125°C 3 6.6 25°C 56 0 ≤ VICR ≤ 1.6 V Full range 50 25°C 65 Full range 60 kSVR Supply-voltage rejection ratio 2.7 V ≤ V+ ≤ 5 V VICR Common-mode input voltage range Lower range, CMRR ≥ 50 dB 25°C Upper range, CMRR ≥ 50 dB 25°C 1.7 1.9 113 RL = 2 kΩ to 1.35 V (1) (2) 25°C 78 Full range 70 25°C 72 Full range 64 pA nA dB 82 –0.2 mV fA 80 Common-mode rejection ratio Large-signal voltage gain (2) 120 250 25°C UNIT μV/°C –40°C to 85°C CMRR AV 4 1.7 0 ≤ VICR ≤ 1.7 V RL = 10 kΩ to 1.35 V MAX 4.5 25°C IIO TYP (1) dB 0 103 V dB Typical values represent the most likely parametric norm. GND + 0.2 V ≤ VO ≤ V+ – 0.2 V Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 5 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com Electrical Characteristics: V+ = 2.7 V (continued) V+ = 2.7 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS Low level RL = 2 kΩ to 1.35 V High level Output swing (delta from supply rails) VO Low level RL = 10 kΩ to 1.35 V High level ICC Output short-circuit current MIN 25°C TYP (1) MAX 24 60 Full range 26 Full range 5 Full range 5.3 30 100 170 Full range LMV344 25°C Sinking (3) 30 mV 40 25°C LMV341, LMV342 60 95 25°C 40 Full range Sourcing UNIT 95 25°C 25°C Supply current (per channel) IOS TA 230 20 32 18 24 15 24 μA mA SR Slew rate RL = 10 kΩ 25°C 1 V/μs GBM Unity-gain bandwidth RL = 10 kΩ, CL = 200 pF 25°C 1 MHz Φm Phase margin RL = 100 kΩ 25°C 72 ° Gm Gain margin RL = 100 kΩ 25°C 20 dB Vn Equivalent input noise voltage f = 1 kHz 25°C 40 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.001 pA/√Hz THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VI = 1 VPP 25°C 0.017% (3) Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates. 6.6 Electrical Characteristics: V+ = 5 V V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Average temperature coefficient of input offset voltage IIB Input bias current IIO Input offset current TEST CONDITIONS TA MIN 25°C TYP (1) MAX 0.25 4 Full range 4.5 Full range 25°C 1 5 25°C 0 ≤ VICR ≤ 4 V 6.6 25°C 56 Full range 50 25°C 65 Full range 60 Common-mode rejection ratio kSVR Supply-voltage rejection ratio 2.7 V ≤ V+ ≤ 5 V VICR Common-mode input voltage range Lower range, CMRR ≥ 50 dB 25°C Upper range, CMRR ≥ 50 dB 25°C 4 4.2 116 RL = 10 kΩ to 2.5 V AV Large-signal voltage gain (2) RL = 2 kΩ to 2.5 V (1) (2) 6 25°C 78 Full range 70 25°C 72 Full range 64 107 nA dB 82 –0.2 pA fA 86 CMRR 0 ≤ VICR ≤ 3.9 V 200 375 –40°C to 125°C mV μV/°C 1.9 –40°C to 85°C UNIT dB 0 V dB Typical values represent the most likely parametric norm. GND + 0.2 V ≤ VO ≤ V+ – 0.2 V Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 Electrical Characteristics: V+ = 5 V (continued) V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS Low level RL = 2 kΩ to 2.5 V High level Output swing (delta from supply rails) VO Low level RL = 10 kΩ to 2.5 V High level ICC MIN 25°C TYP (1) MAX 32 60 Full range 34 Full range Output short-circuit current 7 Full range 7 30 107 200 Full range 40 μA 260 25°C Sinking (3) mV 30 40 25°C LMV341, LMV342 LMV344 60 95 25°C Full range Sourcing UNIT 95 25°C 25°C Supply current (per channel) IOS TA 85 113 85 113 50 75 mA SR Slew rate RL = 10 kΩ 25°C 1 V/μs GBM Unity-gain bandwidth RL = 10 kΩ, CL = 200 pF 25°C 1 MHz Φm Phase margin RL = 100 kΩ 25°C 70 ° Gm Gain margin RL = 100 kΩ 25°C 20 dB Vn Equivalent input noise voltage f = 1 kHz 25°C 39 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.001 pA/√Hz THD Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VI = 1 VPP 25°C 0.012% (3) Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates. 6.7 Shutdown Characteristics: V+ = 2.7 V V+ = 2.7 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS ICC(SHDN) Supply current in shutdown mode t(on) Amplifier turnon time VSD VSD = 0 V TA MIN 25°C Recommended shutdown pin voltage range Shutdown mode MAX 1000 nA 1.5 μA Full range 25°C ON mode TYP 0.045 25°C UNIT μs 5 2.4 2.7 0 0.8 V 6.8 Shutdown Characteristics: V+ = 5 V V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER TEST CONDITIONS ICC(SHDN) Supply current in shutdown mode t(on) Amplifier turnon time VSD VSD = 0 V TA MIN 25°C Recommended shutdown pin voltage range Shutdown mode MAX 1 Full range 1.5 25°C ON mode TYP 0.033 25°C Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 UNIT μA μs 5 4.5 5 0 0.8 Submit Documentation Feedback V 7 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com 6.9 Typical Characteristics 130 1000 V+ = 5 V 120 IIB − Input Bias Current − pA ICC − Supply Current − µA 110 125°C 100 90 85°C 80 25°C 70 60 −40°C 50 100 10 1 40 30 1.5 2 2.5 3 3.5 4 4.5 0.1 −40 −20 5 VCC − Supply Voltage − V 7 RL = 2 kΩ VO − Output Swing From Supply Voltage − mV VO − Output Swing From Supply Voltage − mV 35 30 Negative Swing 25 20 Positive Swing 15 10 2 2.5 3 3.5 4 4.5 RL = 10 kΩ 6.5 6 5 4.5 4 Positive Swing 3.5 3 5 Negative Swing 5.5 1.5 2 2.5 3 3.5 4 4.5 5 VCC − Supply Voltage − V VCC − Supply Voltage − V Figure 3. Output Voltage Swing vs Supply Voltage Figure 4. Output Voltage Swing vs Supply Voltage 1000 1000 V+ = 5 V V+ = 2.7 V IS − Source Current − mA IS − Source Current − mA −40°C 25°C 10 85°C 1 125°C 10 25°C 85°C 1 125°C 0.1 0.1 0.01 0.001 −40°C 100 100 0.01 0.1 1 10 VO − Output Voltage Referenced to V+ (V) Figure 5. Source Current vs Output Voltage 8 140 Figure 2. Input Bias Current vs Temperature Figure 1. Supply Current vs Supply Voltage 1.5 0 20 40 60 80 100 120 TA − Free-Air Temperature − °C Submit Documentation Feedback 0.01 0.001 0.01 0.1 1 10 VO − Output Voltage Referenced to V+ (V) Figure 6. Source Current vs Output Voltage Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 Typical Characteristics (continued) 1000 V+ = 2.7 V V+ = 5 V 100 100 −40°C −40°C IS − Sink Current − mA IS − Sink Current − mA 1000 10 25°C 85°C 1 125°C 0.1 10 25°C 85°C 1 125°C 0.1 0.01 0.001 0.01 0.1 1 0.01 0.001 10 VO − Output Voltage Referenced to V− (V) Figure 7. Sink Current vs Output Voltage 1 0.5 0.5 0 0 VIO − Offset Voltage − mV VIO − Offset Voltage − mV V+ = 2.7 V −0.5 −1 125°C 85°C −2 0.1 1 10 Figure 8. Sink Current vs Output Voltage 1 −1.5 0.01 VO − Output Voltage Referenced to V− (V) 25°C V+ = 5 V −0.5 −1 125°C 85°C −1.5 25°C −2 −40°C −40°C −2.5 −2.5 −3 −0.2 0.8 1.8 −3 −0.2 2.8 VIC − Common-Mode Voltage − V 0.8 1.8 2.8 3.8 4.8 VIC − Common-Mode Voltage − V Figure 9. Offset Voltage vs Common-Mode Voltage Figure 10. Offset Voltage vs Common-Mode Voltage 300 300 V+ /GND = ±1.35 V V+ /GND = ±2.5 V VI − Input Voltage − mV VI − Input Voltage − µV 200 RL = 2 kΩ 100 0 RL = 10 kΩ 200 0 −100 −200 −200 −2 −1 0 1 2 3 RL = 2 kΩ 100 −100 −300 −3 5.8 −300 −1.5 RL = 10 kΩ −1 Figure 11. Input Voltage vs Output Voltage −0.5 0 0.5 1 1.5 VO − Output Voltage − V VO − Output Voltage − V Figure 12. Input Voltage vs Output Voltage Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 9 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com Typical Characteristics (continued) 2.5 1.9 RL = 10 kΩ AV = 1 VI = 2 VPP V+ = 2.7 V 2.3 Falling Edge 1.7 SR − Slew Rate − V/µs SR − Slew Rate − V/µs 2.1 1.5 1.3 Rising Edge 1.1 0.9 0.5 1.5 2 Falling Edge 1.7 1.5 1.3 Rising Edge 1.1 0.9 RL = 10 kΩ AV = 1 VI = 0.8 VPP for V+ < 2.7 V VI = 2 VPP for V+ > 2.7 V 0.7 1.9 0.7 2.5 3 3.5 4 VCC − Supply Voltage − V 4.5 0.5 −40 −20 5 Figure 13. Slew Rate vs Supply Voltage Figure 14. Slew Rate vs Temperature 2.5 100 RL = 10 kΩ AV = 1 VI = 2 VPP V+ = 5 V 2.3 90 1.9 70 Falling Edge 1.7 1.5 1.3 Rising Edge 60 50 2.7 V 40 1.1 30 0.9 20 0.7 10 0.5 −40 −20 5V 80 Gain − dB SR − Slew Rate − V/µs 2.1 VI = V+ /2 RL = 5 kΩ 0 100 1k 0 20 40 60 80 100 120 140 TA – Free-Air Temperature – °C Figure 15. Slew Rate vs Temperature 100 Figure 16. CMRR vs Frequency VI − Input Voltage Noise − nV/ Hz 70 Gain − dB 1M 200 −PSRR (2.7 V) 80 −PSRR (5 V) 50 +PSRR (5 V) 40 30 20 10 0 100 1k 180 160 140 120 100 80 5V 2.7 V 60 40 20 RL = 5 kΩ 0 10k 100k f − Frequency − Hz 1M Submit Documentation Feedback 10M 10 100 1k 10k f − Frequency − Hz Figure 17. PSRR vs Frequency 10 10k 100k f − Frequency − Hz 220 +PSRR (2.7 V) 90 60 0 20 40 60 80 100 120 140 TA – Free-Air Temperature – °C Figure 18. Input Voltage Noise vs Frequency Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 10 RL = 600 Ω VO = 1 VPP for V+ = 2.7 V VO = 2.5 VPP for V+ = 5 V 1 5V AV = 10 2.7 V AV = 10 2.7 V AV = 1 0.01 5V AV = 1 0.001 0.0001 10 100 1k 10k f − Frequency − Hz 100k Figure 19. Total Harmonic Distortion + Noise vs Frequency 140 120 100 120 100 80 100 Gain − dB 120 −40°C Gain 60 80 −40°C 25°C 60 40 125°C 20 −20 40 25°C 125°C 0 Phase Margin − Deg Gain − dB 140 V+ = 5 V RL = 2 kΩ Phase 10k 100k 1M 2.7 V AV = 10 0.1 5V AV = 1 0.01 0.001 0.01 0.1 1 VO − Output Voltage − VPP 120 100 80 RL = 600 Ω 60 RL = 100 kΩ V+ = 5 V Closed-Loop Gain = 60 dB RL = 100 kΩ 40 RL = 2 kΩ 0 10k 100k 10M RL = 2 kΩ RL = 100 kΩ 80 60 40 RL = 100 kΩ CL = 0 pF 100 60 80 40 CL = 500 pF Gain CL = 1000 pF 60 20 0 40 CL = 0 pF 20 40 20 RL = 600 Ω 100k f − Frequency − Hz 1M 0 10M (RL = 600 Ω, 2 kΩ, 100 kΩ) Figure 23. Gain and Phase Margin vs Frequency CL = 500 pF −20 CL = 1000 pF −40 −20 −40 0 RL = 2 kΩ 80 CL = 100 pF Gain − dB Gain 100 Phase V+ = 5 V RL = 600 Ω Closed-Loop Gain = 60 dB 120 Phase Margin − Deg Gain − dB 100 RL = 600 Ω 10k 1M 140 120 1k 20 RL = 600 Ω (RL = 600 Ω, 2 kΩ, 100 kΩ) Figure 22. Gain and Phase Margin vs Frequency 140 80 −20 60 40 f − Frequency − Hz 100 0 80 RL = 2 kΩ Gain 1k 160 20 140 −20 10M 140 60 160 Phase f − Frequency − Hz Phase 10 V+ = 2.7 V Closed-Loop Gain = 60 dB 0 (TA = –40°C, 25°C, 125°C) Figure 21. Gain and Phase Margin vs Frequency 120 2.7 V AV = 1 20 20 0 1k 1 Figure 20. Total Harmonic Distortion + Noise vs Output Voltage 160 140 5V AV = 10 Phase Margin − Deg 0.1 f = 10 kHz RL = 600 Ω Phase Margin − Deg 10 THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % Typical Characteristics (continued) 1k 10k 100k f − Frequency − Hz 1M −60 CL = 100 pF 10M −80 (CL = 0 pF, 100 pF, 500 pF, 1000 pF) Figure 24. Gain and Phase Margin vs Frequency Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 11 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com Typical Characteristics (continued) 0.1 Input 0.1 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 VI − Input Voltage − V VO − Output Voltage − V 0 0.15 VO − Output Voltage − V 0.05 0.2 −0.2 −0.05 2 6 Input 5 1 4 0 −1 3 2 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V 1 −3 0 −4 −5 −1 Output −0.1 4 µs/div Output −0.25 −6 −2 Figure 25. Small-Signal Noninverting Response 4 µs/div Figure 26. Large-Signal Noninverting Response 0.1 0.25 −2 VI − Input Voltage − V 0.25 2 6 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 VO − Output Voltage − V 0 0.15 VI − Input Voltage − V VO − Output Voltage − V 1 4 0 0.05 0.2 0.1 5 2 −1 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V −2 1 −3 0 −4 −1 −0.2 −0.05 3 VI − Input Voltage − V Input Input −5 Output Output −2 −0.25 −6 4 µs/div 4 µs/div Figure 28. Large-Signal Noninverting Response Figure 27. Small-Signal Noninverting Response 0.1 0.25 2 6 Input Input 0.1 TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V 5 1 0 4 0 −0.05 −0.1 0.05 −0.15 0 −0.05 −0.2 VO − Output Voltage − V 0.15 0.05 VI − Input Voltage − V VO − Output Voltage − V 0.2 −1 3 2 TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V 1 −3 0 −4 −5 −1 Output Output −0.1 4 µs/div −0.25 Figure 29. Small-Signal Noninverting Response 12 Submit Documentation Feedback −2 VI − Input Voltage − V −0.1 −2 4 µs/div −6 Figure 30. Large-Signal Noninverting Response Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 Typical Characteristics (continued) 0.1 0.25 6 −0.1 −0.15 0 −0.2 −0.05 1 4 0 3 2 −1 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V −2 1 −3 0 −4 −1 −5 Output Output −0.25 −2 4 µs/div 4 µs/div Figure 32. Large-Signal Inverting Response Figure 31. Small-Signal Inverting Response 6 0.1 0.25 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 −0.2 −0.05 VO − Output Voltage − V 0 0.15 VI − Input Voltage − V 0.05 0.2 VO − Output Voltage − V 2 Input Input 0.1 5 1 4 0 3 2 −1 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V −2 1 −3 0 −4 −1 −5 Output Output −0.25 −0.1 −2 −6 4 ms/div 4 µs/div Figure 33. Small-Signal Inverting Response Figure 34. Large-Signal Inverting Response 0.1 0.25 Input 0 0.15 TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 −0.2 −0.05 VO − Output Voltage − V 0.05 VI − Input Voltage − V VO − Output Voltage − V 2 6 Input 0.2 0.1 −6 VI − Input Voltage − V −0.1 5 1 4 0 −1 3 2 TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V −2 1 −3 0 −4 VI − Input Voltage − V 0.05 5 VI − Input Voltage − V −0.05 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V VO − Output Voltage − V VO − Output Voltage − V 0 0.15 VI − Input Voltage − V 0.05 0.2 0.1 2 Input Input −5 −1 Output Output −0.25 −0.1 −6 −2 4 µs/div 4 µs/div Figure 35. Small-Signal Inverting Response Figure 36. Large-Signal Inverting Response Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 13 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com 7 Detailed Description 7.1 Overview The LMV34x devices are precision operational amplifiers with CMOS inputs for very low input bias current. Output is rail-to-rail and input common-mode includes ground. LMV341 has a shutdown mode for very low supply current. 7.2 Functional Block Diagram 7.3 Feature Description 7.3.1 PMOS Input Stage PMOS Input Stage supports a lower input range that includes ground. Upper range limit is V+ – 1 V. 7.3.2 CMOS Output Stage The CMOS drain output topology allows rail-to-rail output swing. 7.3.3 Shutdown LMV341 includes a shutdown pin. During shutdown, ICC is nearly zero and the output becomes high impedance. The typical turnon time coming out of shutdown is 5 µs. 7.4 Device Functional Modes The LMV34x devices have two modes of operation: • Normal operation when SHDN pin is at V+ level or the SHDN pin is not present • Shutdown mode when SHDN is at GND level; ICC is very low and output is high impedance. 14 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information LMV34x devices have rail-to-rail output and input range from ground to VCC – 1 V. CMOS inputs provide very low input current. Shutdown capability is an option in dual amplifier version. Operation from 2.5-V to 5.5-V is possible. 8.2 Typical Application A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT + VIN VsupCopyright © 2016, Texas Instruments Incorporated Figure 37. Application Schematic 8.2.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ± 2 V is sufficient to accommodate this application. The supplies can power up in any order; however, neither supply can be of opposite polarity relative to ground at any time; otherwise, a large current can flow though the input ESD diodes. To limit current in such an occurrence, TI highly recommends adding a series resistor to the grounded input. Vsup+ must be more positive than Vsup– at all times; otherwise, a large reverse supply current may flow. 8.2.2 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 1 and Equation 2. (1) (2) Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kΩ range is desirable because the amplifier circuit uses currents in the mA range. This ensures the part does not draw too much current. For this example, choose 10 kΩ for RI, which means 36 kΩ is used for RF. This was determined by Equation 3. (3) Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 15 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com Typical Application (continued) 8.2.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 38. Input and Output Voltages of the Inverting Amplifier 9 Power Supply Recommendations CAUTION Supply voltages larger than 5.5 V for a single supply can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. 16 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 LMV341, LMV342, LMV344 www.ti.com SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 10 Layout 10.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, and pay attention to the flow of the ground current. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Examples. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 10.2 Layout Examples Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible RF VS+ NC NC IN1í VCC+ IN1+ OUT VCCí NC Use low-ESR, ceramic bypass capacitor RG GND VIN RIN GND Only needed for dual-supply operation GND VS(or GND for single supply) VOUT Ground (GND) plane on another layer Figure 39. Operational Amplifier Layout for Noninverting Configuration VIN RIN RG + VOUT RF Figure 40. Operational Amplifier Schematic for Noninverting Configuration Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 Submit Documentation Feedback 17 LMV341, LMV342, LMV344 SLOS447I – SEPTEMBER 2004 – REVISED MAY 2016 www.ti.com 11 Device and Documentation Support 11.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY LMV341 Click here Click here Click here Click here Click here LMV342 Click here Click here Click here Click here Click here LMV344 Click here Click here Click here Click here Click here 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 18 Submit Documentation Feedback Copyright © 2004–2016, Texas Instruments Incorporated Product Folder Links: LMV341 LMV342 LMV344 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LMV341IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 (RC9A, RC9E, RC9S) Samples LMV341IDBVRE4 ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 (RC9A, RC9E, RC9S) Samples LMV341IDBVRG4 ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 (RC9A, RC9E, RC9S) Samples LMV341IDCKR ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 (R4A, R4E) Samples LMV342ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV342I Samples LMV342IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 RPA Samples LMV342IDGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 RPA Samples LMV342IDGKT PREVIEW VSSOP DGK 8 250 TBD Call TI Call TI -40 to 125 LMV342IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV342I Samples LMV342IDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV342I Samples LMV344ID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LMV344I Samples LMV344IDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LMV344I Samples LMV344IPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV344I Samples LMV344IPWG4 ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV344I Samples LMV344IPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV344I Samples LMV344IPWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 MV344I Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LMV342IDR 价格&库存

很抱歉,暂时无法提供与“LMV342IDR”相匹配的价格&库存,您可以联系我们找货

免费人工找货