0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
REF3440IDBVR

REF3440IDBVR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-6

  • 描述:

    IC VREF SERIES 0.05% SOT23-6

  • 数据手册
  • 价格&库存
REF3440IDBVR 数据手册
REF3425, REF3430, REF3433, REF3440, REF3450 ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 REF34xx 低温漂、低功耗、小型串联电压基准 1 特性 3 说明 • • • • • • • • • REF34xx 器件是低温漂 (6ppm/°C)、低功耗、高精度 CMOS 电压基准,具有 ±0.05% 初始精度、低运行电流以及小于 95μA 的功 耗。该器件还提供 3.8μVp-p/V 的超低输出噪声,这使 得它在用于噪声关键型系统中的高分辨率数据转换器时 能 够 保 持 较 高 的 信 号 完 整 性 。 REF34xx 采 用 小 型 SOT-23 封装,具有更高的规格参数并且能够以引脚对 引脚方式替代 MAX607x 和 ADR34xx。REF34xx 系列 与 大 多 数 ADC 和 DAC 兼 容 , 如 ADS1287 、 ADUCM360、ADS1112。 初始精度:±0.05%(最大值) 温度系数:6ppm/°C(最大值) 工作温度范围:−40°C 至 +125°C 输出电流:±10mA 低静态电流:95μA(最大值) 宽输入电压:12V 输出 1/f 噪声(0.1Hz 至 10Hz):3.8µVPP/V 出色的长期稳定性(25ppm/1000 小时) 多个小型 6SOT-23 封装引脚排列:REF34xx 和 REF34xxT 2 应用 数据采集系统 模拟 I/O 模块 现场发送器 实验室和现场仪表 电池测试设备 直流电源、交流电源、电子负载 数字万用表 REF34xx 具有 −40°C 至 +125°C 的较宽额定温度范 围。 器件信息(1) 器件名称 封装 封装尺寸(标称值) REF3425 REF3430 SOT-23 (6) REF3433 2.90mm × 1.60mm REF3440 REF3450 (1) 10 Input Signal + 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录 0.4 10 25°C 125°C -40°C 0.36 124 0.32 ADS1287 1 nF REF VIN CIN 1µF REF34xx COUT 10 µF Dropout Voltage (V) • • • • • • • 该器件的低输出电压迟滞和低长期输出电压漂移可进一 步提高稳定性和系统可靠性。此外,器件的小尺寸和低 运行电流 (95μA) 特性使其非常适合便携式和电池供电 应用。 0.28 0.24 0.2 0.16 0.12 0.08 Copyright © 2017, Texas Instruments Incorporated 简化版原理图 0.04 0 0 5 Load Current (mA) 10 不同温度条件下压降与电流负载间的关系 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SBAS804 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Device Comparison Table...............................................4 6 Pin Configuration and Functions...................................4 7 Specifications.................................................................. 5 7.1 Absolute Maximum Ratings ....................................... 5 7.2 ESD Ratings .............................................................. 5 7.3 Recommended Operating Conditions ........................5 7.4 Thermal Information ...................................................5 7.5 Electrical Characteristics ............................................6 7.6 Typical Characteristics................................................ 8 8 Parameter Measurement Information.......................... 12 8.1 Solder Heat Shift.......................................................12 8.2 Long-Term Stability................................................... 13 8.3 Thermal Hysteresis................................................... 13 8.4 Power Dissipation..................................................... 14 8.5 Noise Performance................................................... 15 9 Detailed Description......................................................16 9.1 Overview................................................................... 16 9.2 Functional Block Diagram......................................... 16 9.3 Feature Description...................................................16 9.4 Device Functional Modes..........................................17 10 Application and Implementation................................ 18 10.1 Application Information........................................... 18 10.2 Typical Application: Basic Voltage Reference Connection.................................................................. 18 11 Power Supply Recommendations..............................20 12 Layout...........................................................................21 12.1 Layout Guidelines................................................... 21 12.2 Layout Example...................................................... 21 13 Device and Documentation Support..........................22 13.1 Documentation Support.......................................... 22 13.2 接收文档更新通知................................................... 22 13.3 支持资源..................................................................22 13.4 Trademarks............................................................. 22 13.5 静电放电警告.......................................................... 22 13.6 术语表..................................................................... 22 14 Mechanical, Packaging, and Orderable Information.................................................................... 22 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision D (February 2021) to Revision E (April 2021) Page • Removed the "Product Preview" note for the REF34xxT package options........................................................ 4 Changes from Revision C (January 2021) to Revision D (February 2021) Page • 更新了说明和图...................................................................................................................................................1 • 将 ENABLE 更改为 EN....................................................................................................................................... 1 • Updated values.................................................................................................................................................12 Changes from Revision B (March 2018) to Revision C (February 2021) • • • • • • • • • • Page 添加了“器件信息”以添加 REF34xxT...............................................................................................................1 添加了指向“应用”的超链接............................................................................................................................. 1 通篇将“VREF”更改为“VOUT”........................................................................................................................ 1 更新了整个文档中的表格、图和交叉参考的编号格式......................................................................................... 1 Added REF34xxT to "Device Comparison Table"...............................................................................................4 Added REF34xxT to "Pin Configuration and Functions".....................................................................................4 Fixed pinout mumbering..................................................................................................................................... 4 Added Configuration Information to "Electrical Characteristics”.......................................................................5 Changed ABS MAX IN MIN to "-0.3V"................................................................................................................5 Added REF34xxT to "Layout Guidelines" and "Layout Example".....................................................................21 Changes from Revision A (December 2017) to Revision B (March 2018) Page • 添加了 2 个新 GPN:REF3440 和 REF3450..................................................................................................... 1 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 • 在节 1 中将“出色的长期稳定性(30ppm/1000 小时)”更改为“出色的长期稳定性(25ppm/1000 小时)”1 • Changed "...typical drift value for the REF34xx is 30 ppm from 0 to 1000 hours" to "...typical drift value for the REF34xx is 25 ppm from 0 to 1000 hours" and changed 图 8-3 in 节 8.2 ....................................................... 13 • Changed "(as shown in Figure 26)" to " as shown in 图 9-1 in last paragraph of 节 10.2.2.2 ..........................19 Changes from Revision * (September 2017) to Revision A (December 2017) Page • 添加了 2 款全新输出电压选项器件 REF3430 和 REF3433 的产品发布............................................................. 1 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 3 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 5 Device Comparison Table PRODUCT VOUT REF3425 REF3425T 2.5 V REF3430 REF3430T 3V REF3433 REF3433T 3.3 V REF3440 REF3440T 4.096 V REF3450 REF3450T 5V 6 Pin Configuration and Functions GND_F 1 6 OUT_F GND_S 2 5 OUT_S EN 3 4 IN Not to scale 图 6-1. REF34xx, DBV Package, 6-Pin SOT-23, Top View NC 1 6 VOUT GND 2 5 NC NC 3 4 IN Not to scale 图 6-2. REF34xxT , DBV Package, 6-Pin SOT-23, Top View 表 6-1. Pin Functions PIN NAME REF34xx (DBV) GND_F 1 GND_S 2 GND EN 3 IN 4 OUT_S 5 OUT_F 6 VOUT NC 4 REF34xxT (DBV) TYPE DESCRIPTION Ground Ground force connection. Ground Ground sense connection. 2 Ground Device ground. 4 Power Input Enable connection. Enables or disables the device. Input supply voltage connection. Input Reference voltage output sense connection. Output Reference voltage output force connection. 6 Output Reference voltage output connection. 1,3,5 - Submit Document Feedback Not connected. Pin can be left floating or connected to voltage within device operating range. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) Input voltage MIN MAX UNIT IN –0.3 13 V EN –0.3 IN + 0.3 V Output voltage VOUT –0.3 5.5 V Output short circuit current ISC 20 mA Operating temperature range TA –55 150 °C Storage temperature range Tstg –65 170 °C (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. These are stress ratings only and functional operation of the device at these or any other conditions beyond those specified in the Electrical Characteristics Table is not implied. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/ JEDEC JS-001(1) ±2500 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM VOUT + VDO (1) MAX IN Input Voltage EN Enable Voltage 0 IN V IL Output Current –10 10 mA TA Operating Temperature –40 125 °C (1) 12 UNIT 25 V VDO = Dropout voltage 7.4 Thermal Information REF34T THERMAL METRIC(1) REF34 DBV DBV 6 PINS 6 PINS UNIT RθJA Junction-to-ambient thermal resistance 185 185 °C/W RθJC(top) Junction-to-case (top) thermal resistance 156 156 °C/W RθJB Junction-to-board thermal resistance 29.6 29.6 °C/W ΨJT Junction-to-top characterization parameter 33.8 33.8 °C/W ΨJB Junction-to-board characterization parameter 29.1 29.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 5 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7.5 Electrical Characteristics At VIN = VOUT + VDO, COUT = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = –40℃ to 125℃; Typical specifications at TA = 25℃ unless otherwise noted PARAMETER TEST CONDITION MIN TYP MAX UNIT 0.05 % ACCURACY AND DRIFT Output voltage accuracy TA = 25℃ Output voltage temperature coefficient (1) –0.05 2.5 6 ppm/°C 2 15 ppm/V Sourcing 20 30 Sinking, REF3425 40 70 Sinking, REF3430 43 75 Sinking, REF3433 48 84 Sinking, REF3440 60 98 Sinking, REF3450 70 140 18 22 –40°C ≤ TA ≤ 125°C LINE & LOAD REGULATION VIN = VOUT + VDO (2) to 12 V ΔVO/ΔVIN Line Regulation IL = 0 mA to 10mA, VIN = VOUT+ VDO (3) ΔVO/ΔIL ISC Load Regulation IL = 0 mA to –10mA, VIN = VOUT+ VDO, TA = 25°C (3) Short circuit current VOUT = 0 V at TA = 25°C ppm/mA mA NOISE enp-p Low frequency noise (4) en Integrated wide band noise en Output voltage noise density 5 0.1Hz ≤ f ≤ 10Hz 0.1Hz ≤ f ≤ 10Hz (REF3440 and REF3450) 3.8 10Hz ≤ f ≤ 10kHz 24 f = 1kHz µVp-p/V µVrms 0.25 f = 1kHz (REF3440 and REF3450) ppm/√Hz 0.2 LONG TERM STABILITY AND HYSTERESIS Long-term stability (5) Output voltage thermal hysteresis (6) DBV Package DBV Package 0 to 1000h at 35°C 25 1000h to 2000h at 35°C 10 25°C, –40°C,125°C, 25°C Cycle 1 30 25°C, –40°C,125°C, 25°C Cycle 2 10 ppm ppm TURN-ON TIME tON Turn-on time 0.1% of output voltage settling, CL = 10 µF 2.5 ms CAPACITIVE LOAD CL Stable output capacitor range –40°C ≤ TA ≤ 125°C 0.1 10 µF VOUT + VDO 12 V –10 10 mA OUTPUT VOLTAGE POWER SUPPLY 6 VIN Input voltage IL Output current capacity VIN = VOUT + VDO to 12 V IQ Quiescent current VEN ENABLE pin voltage Active mode 72 95 Shutdown mode 2.5 3 Voltage reference in active mode (EN = 1) 1.6 Voltage reference in shutdown mode (EN = 0) Submit Document Feedback 0.5 µA V Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7.5 Electrical Characteristics (continued) At VIN = VOUT + VDO, COUT = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = –40℃ to 125℃; Typical specifications at TA = 25℃ unless otherwise noted PARAMETER TEST CONDITION VDO Dropout voltage IEN ENABLE pin leakage current (1) (2) (3) (4) (5) (6) MIN IL = 0 mA TYP MAX 50 100 IL = 10 mA VEN = VIN = 12V 500 1 2 UNIT mV µA Temperature drift is specified according to the box method. See Low Temperature Drift section for more details. VDO for line regulation test is 50 mV. VDO for load regulation test is 500 mV. The peak-to-peak noise measurement is explained in more detail in section Noise Performance. Long-term stability measurement procedure is explained in more detail in section Long–Term Stability. Thermal hysteresis measurement procedure is explained in more detail in section Thermal Hysteresis. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 7 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7.6 Typical Characteristics at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted) 74 Population (%) Quiescent Current (µA) 73 12V 72 71 5V 70 3.3V 69 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 68 -40 3V -15 10 D001 Drift (ppm/°C) (-40°C to 125°C) 35 60 Temperature (°C) 85 110 125 D003 图 7-2. VIN vs IQ over Temperature 75 0.015 74.5 0.01 74 Quiescent Current (µA) Output Voltage Accuracy (%) 图 7-1. Temperature Drift 0.02 0.005 0 -0.005 -0.01 -0.015 -0.02 -50 73.5 73 72.5 72 71.5 -25 0 25 50 Temperature (°C) 75 100 71 -50 125 图 7-3. Output Voltage Accuracy vs Temperature 25 50 Temperature (°C) 75 100 125 D004 0.24 CL = 1uF CL = 10uF 0.23 0.22 -40 Line Regulation (ppm/V) Power Supply Rejection Ratio (dB) 0 图 7-4. Quiescent Current vs Temperature -20 -60 -80 -100 0.21 0.2 0.19 0.18 0.17 0.16 0.15 0.14 -120 10 100 1k Frequency (Hz) 10k 100k 图 7-5. Power-Supply Rejection Ratio vs Frequency 8 -25 D002 Submit Document Feedback D005 0.13 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 D019 图 7-6. Line Regulation Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7.6 Typical Characteristics (continued) 8.7 55 8.4 52.5 Load Regulation Sinking (ppm/mA) Load Regulation Sourcing (ppm/mA) at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted) 8.1 7.8 7.5 7.2 6.9 6.6 6.3 6 5.7 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 50 47.5 45 42.5 40 37.5 35 32.5 30 -40 -20 0 20 D020 40 60 80 Temperature (°C) 120 140 D021 图 7-8. Load Regulation Sinking 图 7-7. Load Regulation Sourcing 800 ILOAD 720 +1mA +1mA 640 Noise (nV/vHz) 100 560 -1mA 480 1mA/div 400 4mV/div 320 VOUT 240 160 80 0 10 100 1k Frequency(Hz) 10k 250µs/div (CL = 1µF, IOUT = 1mA) 100k D009 D010 图 7-10. Load Transient 图 7-9. Noise Performance 10 Hz to 10 kHz ILOAD ILOAD +1mA +10mA +1mA +10mA 10mA/div -10mA -1mA 1mA/div 4mV/div VOUT 100mV/div 250µs/div (CL = 10µF, IOUT = 1mA) 图 7-11. Load Transient VOUT 250µs/div (CL = 1µF, IOUT = 10mA) D010 D010 图 7-12. Load Transient Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 9 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7.6 Typical Characteristics (continued) at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted) ILOAD -10mA +10mA 10mA/div VIN 4V/div +10mA 20mV/div VOUT VOUT 15mV/div 250µs/div (CL = 10µF, IOUT = 10mA) 250µs/div D010 (CL = 1µF) 图 7-13. Load Transient D011 图 7-14. Line Transient Quiescent Current Off (µA) 2.6 VIN 4V/div VOUT 5mV/div 2.5 2.4 2.3 2.2 2.1 2 -40 250µs/div (CL = 10µF) D011 25% 25% 20% 20% 图 7-17. Thermal Hysteresis Distribution (Cycle 1) D016 110 125 D013 Thermal Hysteresis - Cycle 2 (ppm) 40 30 20 10 0 -10 80 60 0 40 0 20 0 -20 5% -40 5% -60 85 10% -20 10% Submit Document Feedback 35 60 Temperature (°C) 15% -30 15% -40 Population (%) 30% Thermal Hysteresis - Cycle 1 (ppm) 10 10 图 7-16. Quiescent Current Shutdown Mode 30% -80 Population (%) 图 7-15. Line Transient -15 D016 图 7-18. Thermal Hysteresis Distribution (Cycle 2) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 7.6 Typical Characteristics (continued) at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted) 50% Population (%) 40% En 30% 1V/div 20% VOUT 0.02 0.01 0 -0.01 0 -0.02 10% 0.5ms/div D017 D018 Solder Heat Shift (%) 图 7-20. Turnon Time (Enable) Refer to 节 8.1 for more information 图 7-19. Solder Heat Shift Distribution 10 2µV/div Output Voltage Stability (ppm) 5 0 -5 -10 -15 -20 -25 -30 -35 -40 Time 1s/div 0 D08_ 图 7-21. 0.1-Hz to 10-Hz Noise (VOUT) 100 200 300 400 500 600 Hours 700 800 900 1000 D022 图 7-22. Long Term Stability - 1000 hours (VOUT) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 11 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 8 Parameter Measurement Information 8.1 Solder Heat Shift The materials used in the manufacture of the REF34xx have differing coefficients of thermal expansion, resulting in stress on the device die when the part is heated. Mechanical and thermal stress on the device die can cause the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is a common cause of this error. In order to illustrate this effect, a total of 32 devices were soldered on 2 printed circuit boards [16 devices on each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow profile. The reflow profile is as shown in 图 8-1. The printed circuit board is comprised of FR4 material. The board thickness is 1.65 mm and the area is 114 mm × 152 mm. 300 Temperature (ƒC) 250 200 150 100 50 0 0 50 100 150 200 250 300 Time (seconds) 350 400 C01 图 8-1. Reflow Profile The reference output voltage is measured before and after the reflow process; the typical shift is displayed in 图 8-2. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are also possible depending on the size, thickness, and material of the printed circuit board. An important note is that the histograms display the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is common on PCBs with surface-mount components on both sides, causes additional shifts in the output bias voltage. If the PCB is exposed to multiple reflows, the device must be soldered in the last pass to minimize its exposure to thermal stress. 50% Population (%) 40% 30% 20% 0.02 0.01 0 -0.01 0 -0.02 10% D017 Solder Heat Shift (%) 图 8-2. Solder Heat Shift Distribution, VOUT (%) 12 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 8.2 Long-Term Stability One of the key parameters of the REF34xx references is long-term stability. Typical characteristic expressed as: curves shows the typical drift value for the REF34xx is 25 ppm from 0 to 1000 hours. This parameter is characterized by measuring 32 units at regular intervals for a period of 1000 hours. It is important to understand that long-term stability is not ensured by design and that the output from the device may shift beyond the typical 25 ppm specification at any time. For systems that require highly stable output voltages over long periods of time, the designer should consider burning in the devices prior to use to minimize the amount of output drift exhibited by the reference over time. 10 Output Voltage Stability (ppm) 5 0 -5 -10 -15 -20 -25 -30 -35 -40 0 100 200 300 400 500 600 Hours 700 800 900 1000 D022 图 8-3. Long Term Stability - 1000 hours (VOUT) 8.3 Thermal Hysteresis Thermal hysteresis is measured with the REF34xx soldered to a PCB, similar to a real-world application. Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C, cycling the device through the specified temperature range, and returning to 25°C. The PCB was baked at 150°C for 30 minutes before thermal hysteresis was measured. Hysteresis can be expressed by 方程式 1: VHYST § | VPRE VPOST | · 6 ¨ ¸ u 10 ppm V NOM © ¹ (1) where • • • • VHYST = thermal hysteresis (in units of ppm) VNOM = the specified output voltage VPRE = output voltage measured at 25°C pre-temperature cycling VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature range of –40°C to +125°C and returns to 25°C. Typical thermal hysteresis distribution is as shown in 图 8-4. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 13 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 30% Population (%) 25% 20% 15% 10% Thermal Hysteresis - Cycle 1 (ppm) 80 60 40 20 0 -20 -40 -60 0 -80 5% D016 图 8-4. Thermal Hysteresis Distribution (VOUT) 8.4 Power Dissipation The REF34xx voltage references are capable of source and sink up to 10 mA of load current across the rated input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage and load current must be carefully monitored to ensure that the device does not exceeded its maximum power dissipation rating. The maximum power dissipation of the device can be calculated with 方程式 2: TJ TA PD u RTJA (2) where • • • • PD is the device power dissipation TJ is the device junction temperature TA is the ambient temperature RθJA is the package (junction-to-air) thermal resistance Because of this relationship, acceptable load current in high temperature conditions may be less than the maximum current-sourcing capability of the device. In no case should the device be operated outside of its maximum power rating because doing so can result in premature failure or permanent damage to the device. 14 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 8.5 Noise Performance 2µV/div Typical 0.1-Hz to 10-Hz voltage noise can be seen in 图 8-5 . Device noise increases with output voltage and operating temperature. Additional filtering can be used to improve output noise levels, although care must be taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise measurement setup is shown in 图 8-5. Time 1s/div D08_ 图 8-5. 0.1-Hz to 10-Hz Noise (VOUT) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 15 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 9 Detailed Description 9.1 Overview The REF34xx is family of low-noise, precision bandgap voltage references that are specifically designed for excellent initial voltage accuracy and drift. The 节 9.2 is a simplified block diagram of the REF34xx showing basic band-gap topology. 9.2 Functional Block Diagram GNDF Enable Blocks GNDS Digital EN Inrush Current Limit Vdd OUTF OUTS Bandgap core Buffer IN 9.3 Feature Description 9.3.1 Supply Voltage The REF34xx family of references features an extremely low dropout voltage. For loaded conditions, a typical dropout voltage versus load is shown on the front page. The REF34xx features a low quiescent current that is extremely stable over changes in both temperature and supply. The typical room temperature quiescent current is 72 μA, and the maximum quiescent current over temperature is just 95 μA. Supply voltages below the specified levels can cause the REF34xx to momentarily draw currents greater than the typical quiescent current. Use a power supply with a fast rising edge and low output impedance to easily prevent this issue. 9.3.2 Low Temperature Drift The REF34xx is designed for minimal drift error, which is defined as the change in output voltage over temperature. The drift is calculated using the box method, as described by 方程式 3. For this equation, VREF is VOUT which is the output voltage seen at the junction of OUT_F and OUT_S. VREF(MAX) VREF(MIN) · § 6 Drift = ¨ ¸ u 10 V Temperature Range u © REF ¹ (3) 9.3.3 Load Current The REF34xx family is specified to deliver a current load of ±10 mA per output. The device temperature increases according to 方程式 4: TJ TA PD u RTJA (4) where • • • • TJ = junction temperature (°C), TA = ambient temperature (°C), PD = power dissipated (W), and RθJA = junction-to-ambient thermal resistance (°C/W) The REF34xx maximum junction temperature must not exceed the absolute maximum rating of 150°C. 16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 9.4 Device Functional Modes 9.4.1 EN Pin When the EN pin of the REF34xx is pulled high, the device is in active mode. The device must be in active mode for normal operation. The REF34xx can be placed in a low-power mode by pulling the enable pin, EN, low. When in shutdown mode, the output of the device becomes high impedance and the quiescent current of the device reduces to 2 µA in shutdown mode. The EN pin must not be pulled higher than VIN supply voltage. See the 节 7.5 for logic high and logic low voltage levels. 9.4.2 Negative Reference Voltage For applications requiring a negative and positive reference voltage, the REF34xx and OPA735 can be used to provide a dual-supply reference from a 5-V supply. 图 9-1 shows the REF34xx used to provide a 2.5-V supply reference voltage. The low drift performance of the REF34xx complements the low offset voltage and zero drift of the OPA735 to provide an accurate solution for split-supply applications. Take care to match the temperature coefficients of R1 and R2. +5 V 3 4 5 REF3425 2 1 6 +2.5 V R1 10 kΩ R2 10 kΩ +5 V OPA735 -2.5 V -5 V Copyright © 2017, Texas Instruments Incorporated 图 9-1. REF34xx and OPA735 Create Positive and Negative Reference Voltages Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 17 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 10 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 10.1 Application Information As this device has many applications and setups, there are many situations that this datasheet can not characterize in detail. Basic applications includes positive/negative voltage reference and data acquisition systems. The table below shows the typical application of REF34xx and its companion ADC/DAC. 表 10-1. Typical Applications and Companion ADC/DAC Applications ADC/DAC PLC - DCS DAC8881, ADS8332, ADS8568, ADS8317, ADS8588S, ADS1287 Display Test Equipment ADS8332 Field Transmitters - Pressure ADUCM360 Video Surveillance - Thermal Cameras ADS7279 Medical Blood Glucose Meter ADS1112 10.2 Typical Application: Basic Voltage Reference Connection The circuit shown in 图 10-1 shows the basic configuration for the REF34xx references. Connect bypass capacitors according to the guidelines in 节 10.2.2.1. 10 10 - Input Signal + 124 ADS1287 1 nF REF VIN CIN 1µF REF34xx COUT 10 µF Copyright © 2017, Texas Instruments Incorporated 图 10-1. Basic Reference Connection 10.2.1 Design Requirements A detailed design procedure is described based on a design example. For this design example, use the parameters listed in 表 10-2 as the input parameters. 表 10-2. Design Example Parameters DESIGN PARAMETER Input voltage VIN 18 VALUE 5V Output voltage VOUT 2.5 V REF34xx input capacitor 1 µF REF34xx output capacitor 10 µF Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 10.2.2 Detailed Design Procedure 10.2.2.1 Input and Output Capacitors A 1-μF to 10-μF electrolytic or ceramic capacitor can be connected to the input to improve transient response in applications where the supply voltage may fluctuate. Connect an additional 0.1-μF ceramic capacitor in parallel to reduce high frequency supply noise. A ceramic capacitor of at least a 0.1 μF must be connected to the output to improve stability and help filter out high frequency noise. An additional 1-μF to 10-μF electrolytic or ceramic capacitor can be added in parallel to improve transient performance in response to sudden changes in load current; however, keep in mind that doing so increases the turnon time of the device. Best performance and stability is attained with low-ESR, low-inductance ceramic chip-type output capacitors (X5R, X7R, or similar). If using an electrolytic capacitor on the output, place a 0.1-μF ceramic capacitor in parallel to reduce overall ESR on the output. 10.2.2.2 4-Wire Kelvin Connections Current flowing through a PCB trace produces an IR voltage drop, and with longer traces, this drop can reach several millivolts or more, introducing a considerable error into the output voltage of the reference. A 1-inch long, 5-millimeter wide trace of 1-ounce copper has a resistance of approximately 100 mΩ at room temperature; at a load current of 10 mA, this can introduce a full millivolt of error. In an ideal board layout, the reference must be mounted as close as possible to the load to minimize the length of the output traces, and, therefore, the error introduced by voltage drop. However, in applications where this is not possible or convenient, force and sense connections (sometimes referred to as Kelvin sensing connections) are provided as a means of minimizing the IR drop and improving accuracy. Kelvin connections work by providing a set of high impedance voltage-sensing lines to the output and ground nodes. Because very little current flows through these connections, the IR drop across their traces is negligible, and the output and ground voltage information can be obtain with minimum IR drop error. It is always advantageous to use Kelvin connections whenever possible. However, in applications where the IR drop is negligible or an extra set of traces cannot be routed to the load, the force and sense pins for both VOUT and GND can simply be tied together, and the device can be used in the same fashion as a normal 3-terminal reference (as shown in 图 9-1). 10.2.2.3 VIN Slew Rate Considerations In applications with slow-rising input voltage signals, the reference exhibits overshoot or other transient anomalies that appear on the output. These phenomena also appear during shutdown as the internal circuitry loses power. To avoid such conditions, ensure that the input voltage wave-form has both a rising and falling slew rate close to 6 V/ms. 10.2.2.4 Shutdown/Enable Feature The REF34xx references can be switched to a low power shut-down mode when a voltage of 0.5 V or lower is input to the EN pin. Likewise, the reference becomes operational for EN voltages of 1.6 V or higher. During shutdown, the supply current drops to less than 2 μA, useful in applications that are sensitive to power consumption. If using the shutdown feature, ensure that the EN pin voltage does not fall between 0.5 V and 1.6 V because this causes a large increase in the supply current of the device and may keep the reference from starting up correctly. If not using the shutdown feature, however, the EN pin can simply be tied to the IN pin, and the reference remains operational continuously. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 19 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 10.2.3 Application Curves 2.6 75 Quiescent Current Off (µA) Quiescent Current (µA) 74.5 74 73.5 73 72.5 72 2.4 2.3 2.2 2.1 71.5 71 -50 2.5 -25 0 25 50 Temperature (°C) 75 100 125 图 10-2. Quiescent Current vs Temperature D004 2 -40 -15 10 35 60 Temperature (°C) 85 110 125 D013 图 10-3. Quiescent Current Shutdown Mode 11 Power Supply Recommendations The REF34xx family of references feature an extremely low-dropout voltage. These references can be operated with a supply of only 50 mV above the output voltage. TI recommends a supply bypass capacitor ranging between 0.1 µF to 10 µF. 20 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 12 Layout 12.1 Layout Guidelines 图 12-1 illustrates an example of a PCB layout for a data acquisition system using the REF34xx. Some key considerations are: • Connect low-ESR, 0.1-μF ceramic bypass capacitors at IN, OUT_F, VOUT of the REF34xx and REF34xxT. • Decouple other active devices in the system per the device specifications. • Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. • Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring. • Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary. 12.2 Layout Example C GND_F 1 6 OUT_F GND_S 2 EN REF34XX 3 5 OUT_S IN 4 图 12-1. REF34xx Layout Example C NC 1 GND 2 NC 3 REF34XXT 6 VOUT 5 NC 4 IN C 图 12-2. REF34xxT Layout Example Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 Submit Document Feedback 21 REF3425, REF3430, REF3433, REF3440, REF3450 www.ti.com.cn ZHCSGP2E – SEPTEMBER 2017 – REVISED APRIL 2021 13 Device and Documentation Support 13.1 Documentation Support 13.1.1 Related Documentation For related documentation see the following: • INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors • Low-Drift Bidirectional Single-Supply Low-Side Current Sensing Reference Design 13.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 13.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 13.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 13.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。 13.6 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 22 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: REF3425 REF3430 REF3433 REF3440 REF3450 PACKAGE OPTION ADDENDUM www.ti.com 7-Oct-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) PREF3450TQDBVR ACTIVE SOT-23 DBV 6 3000 TBD Call TI Call TI -40 to 125 REF3425IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-2-250C-1 YEAR -40 to 125 19ED REF3425TIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 2EVC REF3430IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1H6D REF3430TIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 2EUC REF3433IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1H5D REF3433TIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 2ETC REF3440IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1MJD REF3440TIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 2ESC REF3450IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1MKD REF3450TIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 2ERC (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
REF3440IDBVR 价格&库存

很抱歉,暂时无法提供与“REF3440IDBVR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
REF3440IDBVR
    •  国内价格
    • 1+7.66705
    • 10+7.33370

    库存:0

    REF3440IDBVR
    •  国内价格
    • 1+8.72640
    • 10+7.43040
    • 30+6.71760
    • 100+5.91840
    • 500+5.56200
    • 1000+5.40000

    库存:0