0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLC072QDRQ1

TLC072QDRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC-8

  • 描述:

    TLC072-Q1 AUTOMOTIVE DUAL WIDE-B

  • 数据手册
  • 价格&库存
TLC072QDRQ1 数据手册
TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE-SUPPLY OPERATIONAL AMPLIFIER FEATURES 1 • Qualified for Automotive Applications • Wide Bandwidth . . . 10 MHz • High-Output Drive – IOH . . . 57 mA at VDD – 1.5 V – IOL . . . 55 mA at 0.5 V • High Slew Rate – SR+ . . . 16 V/µs – SR– . . . 19 V/µs • Wide Supply Range . . . 4.5 V to 16 V • Supply Current . . . 1.9 mA/Channel • Ultralow Power Shutdown Mode IDD . . . 125 mA/Channel • Low Input Noise Voltage . . . 7 nV/Hz • Input Offset Voltage . . . 60 µV • Small 8-Pin SOIC Package TLC072 D PACKAGE (TOP VIEW) 23 1OUT 1IN− 1IN+ GND 1 8 2 7 3 6 4 5 VDD 2OUT 2IN− 2IN+ Operational Amplifier − + DESCRIPTION/ORDERING INFORMATION The first members of TI's new BiMOS general-purpose operational amplifier family are the TLC07x. The BiMOS family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to single-supply systems and demand higher AC and dc performance. With performance rated from 4.5 V to 16 V across commercial (0°C to 70°C) and an extended industrial temperature range (–40°C to 125°C), BiMOS suits a wide range of audio, automotive, industrial and instrumentation applications. Familiar features like offset nulling pins enable higher levels of performance in a variety of applications. Developed in TI's patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input impedance low-noise CMOS front end with a high-drive bipolar output stage, thus providing the optimum performance features of both. AC performance improvements over the TL07x BiFET predecessors include a bandwidth of 10 MHz (an increase of 300%) and voltage noise of 7 nV/√Hz (an improvement of 60%). DC improvements include a factor of 4 reduction in input offset voltage down to 1.5 mV (maximum) in the standard grade, and a power supply rejection improvement of greater than 40 dB to 130 dB. Added to this list of impressive features is the ability to drive ±50-mA loads comfortably from an ultrasmall-footprint MSOP PowerPAD™ package, which positions the TLC07x as the ideal high-performance general-purpose operational amplifier family. ORDERING INFORMATION (1) PACKAGE (2) TA –40°C to 125°C (1) (2) SOIC – D Reel of 2500 ORDERABLE PART NUMBER TLC072QDRQ1 TOP-SIDE MARKING TC072Q For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. 1 2 3 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008, Texas Instruments Incorporated TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) VDD Supply voltage (2) 17 V VID Differential input voltage range ±VDD Continuous total power dissipation See Dissipation Ratings Table TA Operating free-air temperature range TJ Maximum virtual-junction temperature Tstg Storage temperature range Tlead Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds (1) (2) –40°C to 125°C 150°C –65°C to 150°C 260°C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to GND . DISSIPATION RATINGS PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C POWER RATING D 38.3 176 710 mW RECOMMENDED OPERATING CONDITIONS VDD Supply voltage VICR Common-mode input voltage TA Operating free-air temperature 2 Single supply Split supply Submit Documentation Feedback MIN MAX 4.5 16 UNIT ±2.25 ±8 +0.5 VDD – 0.8 V –40 125 °C V Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 ELECTRICAL CHARACTERISTICS VDD = 5 V, at specified free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIO Input offset voltage VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω IIO Input offset current VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω IIB Input bias current VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω VICR Common-mode input voltage IOH = –20 mA High-level output voltage VIC = 2.5 V IOH = –35 mA IOH = –50 mA IOL = 1 mA IOL = 20 mA VOL Low-level output voltage VIC = 2.5 V IOL = 35 mA IOL = 50 mA MIN 25°C TYP MAX 390 1900 Full range 3000 25°C 1.2 25°C 0.7 Full range 25°C 1.5 0.5 to 4.2 Full range 0.5 to 4.2 25°C 4.1 Full range 3.9 25°C 3.7 Full range 3.5 25°C 3.4 Full range 3.2 25°C 3.2 Full range 50 50 700 25°C UNIT µV µV/°C 700 Full range RS = 50 Ω IOH = –1 mA VOH TA (1) pA pA V 4.3 4 V 3.8 3.6 3 25°C 0.18 Full range 0.25 0.35 25°C 0.35 Full range 0.39 0.45 25°C 0.43 Full range 0.55 V 0.7 25°C 0.48 Full range 0.63 0.7 Sourcing 25°C 100 Sinking 25°C 100 VOH = 1.5 V from positive rail 25°C 57 VOL = 0.5 V from negative rail 25°C 55 IOS Short-circuit output current IO Output current AVD Large-signal differential voltage amplification ri(d) Differential input resistance 25°C 1000 GΩ CIC Common-mode input capacitance f = 10 kHz 25°C 22.9 pF zO Closed-loop output impedance 25°C 0.25 Ω CMRR Common-mode rejection ratio VO(PP) = 3 V, RL = 10 kΩ f = 10 kHz, AV = 10 VIC = 1 to 3 V, RS = 50 Ω kSVR Supply voltage rejection ratio (ΔVDD/ΔVIO) VDD = 4.5 V to 16 V, VIC = VDD/2, No load IDD Supply current (per channel) VO = 2.5 V, No load (1) 25°C 100 Full range 100 25°C 80 Full range 80 25°C 80 Full range 80 25°C Full range mA mA 120 dB 95 dB 100 1.9 dB 2.5 3.5 mA Full range is –40°C to 125°C. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 3 TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com OPERATING CHARACTERISTICS VDD = 5 V, at specified free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS SR+ Positive slew rate at unity gain VO(PP) = 0.8 V, CL = 50 pF, RL = 10 kΩ SR– Negative slew rate at unity gain VO(PP) = 0.8 V, CL = 50 pF, RL = 10 kΩ Vn Equivalent input noise voltage In Equivalent input noise current f = 1 kHz THD + N Total harmonic distortion plus noise VO(PP) = 3 V, RL = 10 kΩ and 250 Ω, f = 1 kHz f = 100 Hz TA (1) MIN TYP 25°C 10 16 Full range 9.5 25°C 12.5 Full range 25°C f = 1 kHz 25°C AV = 1 AV = 10 ts Gain-bandwidth product f = 10 kHz, RL = 10 kΩ 25°C 0.1% V(STEP)PP = 1 V, AV = –1, CL = 47 pF, RL = 10 kΩ 0.1% Settling time φm Phase margin RL = 10 kΩ Gm Gain margin RL = 10 kΩ (1) 4 0.01% CL = 0 pF CL = 50 pF CL = 0 pF 0.6 V/µs nV/ √Hz fA/ √Hz 0.012 % 10 MHz 0.18 25°C 0.01% CL = 50 pF 7 V/µs 0.085 25°C V(STEP)PP = 1 V, AV = –1, CL = 10 pF, RL = 10 kΩ 12 UNIT 0.002 AV = 100 GBWP 19 10 MAX 0.39 0.18 µs 0.39 25°C 25°C 32 40 2.2 3.3 ° dB Full range is –40°C to 125°C. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 ELECTRICAL CHARACTERISTICS VDD = 12 V, at specified free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIO Input offset voltage VDD = 12 V, VIC = 6 V, VO = 6 V, RS = 50 Ω αVIO Temperature coefficient of input offset voltage VDD = 12 V, VIC = 6 V, VO = 6 V, RS = 50 Ω IIO Input offset current VDD = 12 V, VIC = 6 V, VO = 6 V, RS = 50 Ω IIB Input bias current VDD = 12 V, VIC = 6 V, VO = 6 V, RS = 50 Ω VICR Common-mode input voltage IOH = –20 mA High-level output voltage VIC = 6 V IOH = –35 mA IOH = –50 mA IOL = 1 mA IOL = 20 mA VOL Low-level output voltage VIC = 6 V IOL = 35 mA IOL = 50 mA MIN 25°C TYP MAX 390 1900 Full range 3000 25°C 1.2 25°C 0.7 Full range 25°C 1.5 0.5 to 11.2 Full range 0.5 to 11.2 25°C 11.1 Full range 50 50 700 25°C UNIT µV µV/°C 700 Full range RS = 50 Ω IOH = –1 mA VOH TA (1) pA pA V 11.2 11 25°C 10.8 Full range 10.7 25°C 10.6 Full range 10.3 25°C 10.4 Full range 10.3 25°C 109 V 10.7 10.5 0.17 Full range 0.25 0.35 25°C 0.35 0.45 0.4 0.52 Full range 0.5 25°C Full range V 0.6 25°C 0.45 Full range 0.6 0.65 Sourcing 25°C 150 Sinking 25°C 150 VOH = 1.5 V from positive rail 25°C 57 VOL = 0.5 V from negative rail 25°C 55 IOS Short-circuit output current IO Output current AVD Large-signal differential voltage amplification ri(d) Differential input resistance 25°C 1000 GΩ CIC Common-mode input capacitance f = 10 kHz 25°C 21.6 pF zO Closed-loop output impedance 25°C 0.25 Ω CMRR Common-mode rejection ratio VO(PP) = 8 V, RL = 10 kΩ f = 10 kHz, AV = 10 VIC = 1 to 10 V, RS = 50 Ω kSVR Supply voltage rejection ratio (ΔVDD/ΔVIO) VDD = 4.5 V to 16 V, VIC = VDD/2, No load IDD Supply current (per channel) VO = 7.5 V, No load (1) 25°C 120 Full range 120 25°C 80 Full range 80 25°C 80 Full range 80 25°C Full range mA mA 140 dB 100 dB 100 2.1 dB 2.9 3.5 mA Full range is –40°C to 125°C. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 5 TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com OPERATING CHARACTERISTICS VDD = 12 V, at specified free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS SR+ Positive slew rate at unity gain VO(PP) = 2 V, CL = 50 pF, RL = 10 kΩ SR– Negative slew rate at unity gain VO(PP) = 2 V, CL = 50 pF, RL = 10 kΩ Vn Equivalent input noise voltage In Equivalent input noise current f = 1 kHz THD + N Total harmonic distortion plus noise VO(PP) = 8 V, RL = 10 kΩ and 250 Ω, f = 1 kHz f = 100 Hz TA (1) MIN TYP 25°C 10 16 Full range 9.5 25°C 12.5 Full range 25°C f = 1 kHz 25°C AV = 1 AV = 10 ts Gain-bandwidth product f = 10 kHz, RL = 10 kΩ 25°C 0.1% V(STEP)PP = 1 V, AV = –1, CL = 47 pF, RL = 10 kΩ 0.1% Settling time φm Phase margin RL = 10 kΩ Gm Gain margin RL = 10 kΩ (1) 6 0.01% CL = 0 pF CL = 50 pF CL = 0 pF 0.6 V/µs nV/ √Hz fA/ √Hz 0.005 % 10 MHz 0.17 25°C 0.01% CL = 50 pF 7 V/µs 0.022 25°C V(STEP)PP = 1 V, AV = –1, CL = 10 pF, RL = 10 kΩ 12 UNIT 0.002 AV = 100 GBWP 19 10 MAX 0.22 0.17 µs 0.29 25°C 25°C 37 42 3.1 4 ° dB Full range is –40°C to 125°C. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 TYPICAL CHARACTERISTICS Table 1. Table of Graphs FIGURE VIO Input offset voltage vs Common-mode input voltage 1, 2 IIO Input offset current vs Free-air temperature 3, 4 IIB Input bias current vs Free-air temperature 3, 4 VOH High-level output voltage vs High-level output current 5, 7 VOL Low-level output voltage vs Low-level output current 6, 8 Zo Output impedance vs Frequency 9 IDD Supply current vs Supply voltage 10 PSRR Power supply rejection ratio vs Frequency 11 CMRR Common-mode rejection ratio vs Frequency 12 Vn Equivalent input noise voltage vs Frequency 13 VO(PP) Peak-to-peak output voltage vs Frequency 14, 15 Crosstalk vs Frequency 16 DIfferential voltage gain vs Frequency 17, 18 Phase vs Frequency 17, 18 Phase margin vs Load capacitance 19, 20 Gain margin vs Load capacitance 21, 22 Gain-bandwidth product vs Supply voltage 23 vs Supply voltage 24 φm SR THD + N Slew rate Total harmonic distortion plus noise vs Free-air temperature 25, 26 vs Frequency 27, 28 vs Peak-to-peak output voltage 29, 30 Large-signal follower pulse response 31, 32 Small-signal follower pulse response 33 Large-signal inverting pulse response 34, 35 Small-signal inverting pulse response 36 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 7 TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 0 225 −25 VDD = 5 V TA = 25° C 200 175 150 125 100 75 50 25 0 VDD = 12 V TA = 25° C −50 −75 −100 −125 −150 −175 −200 −225 −250 −25 0.0 0. 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5 − Common-Mode Input Voltage − V VICR −275 0 1 2 3 4 5 6 7 8 9 10 11 12 VICR − Common-Mode Input Voltage − V INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE I IB / I IO − Input Bias and Input Offset Current − pA 250 V IO − Input Offset Voltage − µ V V IO − Input Offset Voltage − µ V INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 20 0 IIO −20 −40 −60 −80 IIB VDD = 5V −100 −120 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 IIO −20 −40 −60 −80 −100 IIB −120 VDD = 12 V −140 5.0 1.0 VDD = 5 V 4.5 TA = 70°C TA = 25°C 4.0 TA = −40°C 3.5 TA = 125°C 3.0 2.5 2.0 −160 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 Figure 4. HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT TA = −40°C TA = 25°C 10.0 9.5 VDD = 12 V 9.0 5 10 15 20 25 30 35 40 45 50 IOH - High-Level Output Current - mA Figure 7. 0.6 TA = 125°C TA = 70°C TA = 25°C 0.5 0.4 0.3 TA = −40°C 0.2 0.1 10 15 20 25 30 35 40 45 50 IOH - High-Level Output Current - mA 0 5 10 15 20 25 30 35 40 45 50 IOL - Low-Level Output Current - mA Figure 6. OUTPUT IMPEDANCE vs FREQUENCY 1000 0.9 0.8 TA = 125°C 0.7 TA = 70°C 0.6 TA = 25°C 0.5 0.4 0.3 TA = −40°C 0.2 0.1 100 VDD = 5 V and 12 V TA = 25°C 10 AV = 100 1 AV = 1 0.10 AV = 10 VDD = 12 V 0.0 0 8 VOL − Low-Level Output Voltage − V V OH − High-Level Output Voltage − V 10.5 0.7 5 1.0 11.0 0.8 Figure 5. LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 12.0 11.5 VDD = 5 V 0.9 0.0 0 TA − Free-Air Temperature − °C TA = 125°C TA = 70°C VOL − Low-Level Output Voltage − V 0 Figure 3. LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT Z o − Output Impedance − Ω 20 Figure 2. HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH − High-Level Output Voltage − V I IB / I IO − Input Bias and Input Offset Current − pA TA − Free−Air Temperature − °C Figure 1. INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 0 5 10 15 20 25 30 35 40 45 50 IOL - Low-Level Output Current - mA Figure 8. Submit Documentation Feedback 0.01 100 1k 100k 1M 10k f - Frequency - Hz 10M Figure 9. Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 POWER SUPPLY REJECTION RATIO vs FREQUENCY I DD − Supply Current − mA TA = 25°C 2.5 TA = −40°C 2.0 TA = 125°C 1.5 TA = 70°C 1.0 AV = 1 SHDN = VDD Per Channel 0.5 0.0 4 5 6 140 120 VDD = 12 V 100 80 60 40 VDD = 5 V 20 0 0 7 8 9 10 11 12 13 14 15 16 VDD − Supply Voltage - V VDD = 12 V 30 25 20 15 10 VDD = 5 V 5 0 10 100 1k 10k 100k 1k 10k 100k 1M 10M 100 80 60 40 20 0 100 f − Frequency − Hz VDD = 12 V 8 6 VDD = 5 V 4 THD+N < = 5% RL = 600 Ω TA = 25°C 2 0 10k Figure 13. 100k 1M f - Frequency - Hz 1k 10k 100k 1M f - Frequency - Hz 10M Figure 12. PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 12 10 VDD = 5 V and 12 V TA = 25°C 120 Figure 11. PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY V O(PP) − Peak-to-Peak Output Voltage − V Hz V n − Equivalent Input Noise Voltage − nV/ 35 100 140 f − Frequency − Hz Figure 10. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 40 10 V O(PP) − Peak-to-Peak Output Voltage − V 3.0 COMMON-MODE REJECTION RATIO vs FREQUENCY CMRR − Common-Mode Rejection Ratio − dB PSRR − Power Supply Rejection Ratio − dB SUPPLY CURRENT vs SUPPLY VOLTAGE 10M Figure 14. CROSSTALK vs FREQUENCY 12 10 VDD = 12 V 8 6 VDD = 5 V 4 2 0 10k THD+N < = 5% RL = 10 kΩ TA = 25°C 100k 1M f - Frequency - Hz 10M Figure 15. 0 −20 Crosstalk − dB −40 VDD = 5 V and 12 V AV = 1 RL = 10 kΩ VI(PP) = 2 V For All Channels −60 −80 −100 −120 −140 −160 10 100 1k 10k 100k f − Frequency − Hz Figure 16. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 9 TLC072-Q1 DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 80 80 Gain A VD − Different Voltage Gain − dB 60 −45 50 Phase 40 −90 30 20 −135 10 0 −10 −20 1k VDD = ±2.5 V RL = 10 kΩ CL = 0 pF TA = 25°C 10k −180 100k 1M 10M 0 70 Gain 60 Phase 40 20 −135 10 VDD = ±6 V RL = 10 kΩ CL = 0 pF TA = 25°C 0 −10 45° Rnull = 20 Ω 5° VDD = 5 V RL = 10 kΩ TA = 25°C Rnull = 100 Ω 25° 20° Rnull = 20 Ω 15° VDD = 12 V RL = 10 kΩ TA = 25°C 10° 5° 0° 10 GBWP - Gain Bandwidth Product - MHz φ m − Phase Margin − dB Rnull = 100 Ω 3.5 3 1 0.5 Rnull = 50 Ω Rnull = 20 Ω VDD = 12 V RL = 10 kΩ TA = 25°C 0 10 1 VDD = 5 V RL = 10 kΩ TA = 25°C 100 Figure 22. Rnull = 20 Ω 100 Figure 21. SLEW RATE vs SUPPLY VOLTAGE 22 CL = 11 pF 9.9 9.8 20 9.7 RL = 10 kΩ 9.6 9.5 9.4 RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 21 TA = 25°C RL = 600 Ω 9.3 19 Slew Rate − 18 17 16 Slew Rate + 15 9.2 14 9.1 13 9.0 CL − Load Capacitance − pF 10 Rnull = 50 Ω 1.5 CL − Load Capacitance − pF 10.0 Rnull = 0 Ω 1.5 2 Figure 20. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 4.5 2 2.5 CL − Load Capacitance − pF Figure 19. GAIN MARGIN vs LOAD CAPACITANCE 2.5 Rnull = 100 Ω 3 0 10 100 CL − Load Capacitance − pF 4 Rnull = 0 Ω 0.5 0° 10 100 5 Rnull = 50 Ω SR − Slew Rate − V/ µ s 15° 30° G − Gain Margin − dB φ m − Phase Margin φ m − Phase Margin 20° −225 100M 3.5 35° 30° 10° 4 Rnull = 0 Ω 40° Rnull = 50 Ω 10M Figure 18. GAIN MARGIN vs LOAD CAPACITANCE PHASE MARGIN vs LOAD CAPACITANCE Rnull = 0 Ω Rnull = 100 Ω 25° 1M f − Frequency − Hz Figure 17. PHASE MARGIN vs LOAD CAPACITANCE 35° −180 100k 10k f − Frequency − Hz 40° −90 30 −20 1k −225 100M −45 50 Phase − ° 0 70 Phase − ° A VD − Different Voltage Gain − dB SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com 12 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 23. Submit Documentation Feedback 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 24. Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 25 25 VDD = 5 V RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 20 15 Slew Rate + 10 15 Slew Rate + 10 VDD = 12 V RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 5 5 0 −55 −35 −15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C 0 −55 −35 −15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C Total Harmonic Distortion + Noise − % 1 Slew Rate − SR − Slew Rate − V/ µ s Slew Rate − 20 SR − Slew Rate − V/ µ s TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY VDD = 5 V RL = 10 kΩ VO(PP) = 2 V AV = 100 0.1 AV = 10 0.01 AV = 1 0.001 100 1k 10k 100k f − Frequency − Hz VDD = 12 V RL = 10 kΩ VO(PP) = 12 V Total Harmonic Distortion + Noise − % AV = 100 0.01 AV = 10 AV = 1 0.001 100 10k 1k 100k Figure 27. TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK OUTPUT VOLTAGE 10 10 1 RL = 600 Ω 0.01 0.0001 0.25 1.25 1.75 2.25 2.75 3.25 3.75 RL = 250 Ω 0.1 RL = 600 Ω 0.01 0.001 VDD = 5 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 1.2 1.4 1.6 1.8 2 t − Time − µs Figure 31. 1 6.5 8.5 10.5 VI(100mV/Div) VDD = 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0.2 0.4 0.6 0.8 4.5 Figure 30. SMALL SIGNAL FOLLOWER PULSE RESPONSE VO (2 V/Div) 0 2.5 VO(PP) − Peak-to-Peak Output Voltage − V VI (5 V/Div) VO (500 mV/Div) RL = 10 kΩ 0.0001 0.5 Figure 29. LARGE SIGNAL FOLLOWER PULSE RESPONSE V O − Output Voltage − V V O − Output Voltage − V 0.75 VDD = 12 V AV = 1 f = 1 kHz 1 VO(PP) − Peak-to-Peak Output Voltage − V VI (1 V/Div) 1 RL = 10 kΩ 0.001 Figure 28. LARGE SIGNAL FOLLOWER PULSE RESPONSE 0.2 0.4 0.6 0.8 RL = 250 Ω 0.1 f − Frequency − Hz 0 VDD = 5 V AV = 1 f = 1 kHz V O − Output Voltage − V Total Harmonic Distortion + Noise − % 0.1 Figure 26. TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK OUTPUT VOLTAGE Total Harmonic Distortion + Noise − % Figure 25. TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 1.2 1.4 1.6 1.8 t − Time − µs Figure 32. 2 VO(50mV/Div) VDD = 5 V and 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10 t − Time − µs Figure 33. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 11 TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com LARGE SIGNAL INVERTING PULSE RESPONSE LARGE SIGNAL INVERTING PULSE RESPONSE VI (5 V/div) VDD = 5 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VI (100 mV/div) V O − Output Voltage − V V O − Output Voltage − V VI (2 V/div) V O − Output Voltage − V SMALL SIGNAL INVERTING PULSE RESPONSE VDD = 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VDD = 5 & 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VO (50 mV/Div) VO (2 V/Div) VO (500 mV/Div) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 t − Time − µs t − Time − µs Figure 34. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t − Time − µs Figure 35. Figure 36. PARAMETER MEASUREMENT INFORMATION _ Rnull + RL CL Figure 37. Input Offset Voltage Null Circuit 12 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 APPLICATION INFORMATION Driving a Capacitive Load When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device's phase margin, leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 38. A minimum value of 20 Ω should work well for most applications. RF RG _ Input RNULL Output + CLOAD Figure 38. Driving a Capacitive Load Offset Voltage The output offset voltage (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula (see Figure 39) can be used to calculate the output offset voltage: RF IIB− RG + VI RS − VO + IIB+ ǒ ǒ ǓǓ VOO + VIO 1 ) R F RG " IIB) RS ǒ ǒ ǓǓ 1) R F RG " IIB– RF Figure 39. Output Offset Voltage Model High-Speed CMOS Input Amplifiers The TLC072 is a high-speed low-noise CMOS input operational amplifier that has an input capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance. For example, a gain of –10, a source resistance of 1 kΩ, and a feedback resistance of 10 kΩ add an additional pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater input capacitance. This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their unity-gain bandwidth. However, the TLC07x with its 10-MHz bandwidth means that this pole normally occurs at frequencies where there is on the order of 5-dB gain left and the phase shift adds considerably. The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the feedback resistance is increased, the gain peaking increases at a lower frequency and the 180° phase shift crossover point also moves down in frequency, decreasing the phase margin. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 13 TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com For the TLC072, the maximum feedback resistor recommended is 5 kΩ; larger resistances can be used but a capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance pole. The TLC072 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when configured as a unity gain buffer and with a 10-kΩ feedback resistor. By adding a 10-pF capacitor in parallel with the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much faster settling time (see Figure 40). The 10-pF capacitor was chosen for convenience only. 2 VIN V O − Output Voltage − V 1 0 With CF = 10 pF 1.5 −1 V I − Input Voltage − V Load capacitance had little effect on these measurements due to the excellent output drive capability of the TLC072. 10 pF 10 kΩ _ 1 0.5 VOUT 0 + IN VDD = ±5 V AV = +1 RF = 10 kΩ RL = 600 Ω CL = 22 pF 600 Ω 50 Ω 22 pF −0.5 0 0.2 0.4 0.6 0.8 t - Time - µs 1 1.2 1.4 1.6 Figure 40. 1-V Step Response General Configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 41). RG RF − VI VO + R1 C1 f V O + V I ǒ R 1) R F G Ǔǒ –3dB + 1 2pR1C1 Ǔ 1 1 ) sR1C1 Figure 41. Single-Pole Low-Pass Filter 14 Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task (see Figure 42). For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF –3dB RG = + ( 1 2pRC RF 1 2− Q ) Figure 42. Two-Pole Low-Pass Sallen-Key Filter Circuit Layout Considerations To achieve the levels of high performance of the TLC072, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. • Ground planes A ground plane should be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. • Proper power supply decoupling Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inch between the device power terminals and the ceramic capacitors. • Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins often leads to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. • Short trace runs/compact part placements Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. • Surface-mount passive components Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 15 TLC072-Q1 SLOS583 – JUNE 2008 ...................................................................................................................................................................................................... www.ti.com Macromodel Information Macromodel information provided was derived using MicroSim Parts™, the model generation software used with MicroSim PSpice™. The Boyle macromodel (1) and subcircuit in Figure 43 are generated using the TLC07x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • Maximum positive output voltage swing • Maximum negative output voltage swing • Slew rate • Quiescent power dissipation • Input bias current • Open-loop voltage amplification • Unity-gain frequency • Common-mode rejection ratio • Phase margin • DC output resistance • AC output resistance • Short-circuit output current limit (1) 16 G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 TLC072-Q1 www.ti.com ...................................................................................................................................................................................................... SLOS583 – JUNE 2008 99 3 VDD + 9 RSS 10 J1 DP VC J2 IN + 11 VAD DC 12 C1 RD1 R2 − 53 − C2 6 − − + VLN + GA GCM VLIM 8 − RD2 RO1 DE 5 54 4 DLP 91 + VLP 7 60 + − + HLIM − + 90 RO2 VB IN − VDD − 92 FB − + ISS RP 2 1 DLN EGND + − + VE OUT *DEVICE=TLC07X_5V, OPAMP, PJF, INT * TLC07X − 5V operational amplifier ”macromodel” subcircuit * created using Parts release 8.0 on 12/16/99 at 08:38 * Parts is a MicroSim product. * * connections: non-inverting input * inverting input * positive power supply * negative power supply * output * .subckt TLC07X_5V 1 2 3 4 5 * c1 11 12 4.8697E−12 c2 6 7 8.0000E−12 css 10 99 4.0063E−12 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 6.9132E6 −1E3 1E3 6E6 −6E6 ga gcm iss ioff hlim j1 j2 r2 rd1 rd2 ro1 ro2 rp rss vb vc ve vlim vlp vln .model .model .model .model .ends 6 0 3 0 90 11 12 6 4 4 8 7 3 10 9 3 54 7 91 0 dx dy jx1 jx2 0 11 12 457.42E−6 6 10 99 1.1293E−6 10 dc 183.67E−6 6 dc .806E−6 0 vlim 1K 2 10 jx1 1 10 jx2 9 100.00E3 11 2.1862E3 12 2.1862E3 5 10 99 10 4 2.4728E3 99 1.0889E6 0 dc 0 53 dc 1.5410 4 dc .84403 8 dc 0 0 dc 119 92 dc 119 D(Is=800.00E−18) D(Is=800.00E−18 Rs=1m Cjo=10p) PJF(Is=117.50E−15 Beta=1.1391E−3 Vto=−1) PJF(Is=117.50E−15 Beta=1.1391E−3 Vto=−1) Figure 43. Boyle Macromodel and Subcircuit Submit Documentation Feedback Copyright © 2008, Texas Instruments Incorporated Product Folder Link(s): TLC072-Q1 17 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLC072QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TC072Q (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLC072QDRQ1 价格&库存

很抱歉,暂时无法提供与“TLC072QDRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货