0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV3012AQDCKRQ1

TLV3012AQDCKRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SC70-6

  • 描述:

    IC COMPARATOR 1.8V W/REF SC70-6

  • 数据手册
  • 价格&库存
TLV3012AQDCKRQ1 数据手册
TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 SBOS551C – MARCH 2011 – REVISED APRIL 2023 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1 and TLV3012B-Q1 Low-Power Comparators With Integrated 1.24 V Voltage Reference 1 Features 3 Description • • The TLV3011-Q1 is a low-power, open-drain output comparator; the TLV3012-Q1 is a push-pull output comparator. Both devices feature an uncommitted onchip voltage reference and have a 5 μA (maximum) quiescent current, an input common-mode range 200 mV beyond the supply rails, and single-supply operation from 1.8 V to 5.5 V. The integrated 1.242 V series voltage reference offers low 100 ppm/°C (maximum) drift, is stable with up to 10 nF capacitive load, and can provide up to 0.5 mA (typical) of output current. • • • • • • • • • • • Qualified for automotive applications AEC-Q100 qualified with the following results: – Device temperature grade 1: –40°C to +125°C ambient operating temperature range – Device HBM ESD classification level 2 – Device CDM ESD classification level C6 Low quiescent current: 3.1 μA (maximum, "B" version) Integrated voltage reference: 1.242 V Input common-mode range: 200 mV beyond rails Voltage reference initial accuracy: 1% Fail-safe inputs ("B" version) Power-on-reset ("B" version) Integrated hysteresis ("B" version) Open drain output option (TLV3011x-Q1) Push-pull output option (TLV3012x-Q1) Fast response time: 6 uS Low supply voltage = 1.65 V to 5.5 V ("B" version) 2 Applications Lane departure warning Cluster Toll tag Asset tracking Battery management systems The family is available in both the tiny SOT23-6 package for space-conservative designs, and in the SC-70 package for even greater board area savings. All versions are specified for the temperature range of –40°C to +125°C. Device Information PART NUMBER TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 (1) PACKAGE (1) BODY SIZE (NOM) SOT-23 (6) 2.90 mm × 1.60 mm SC-70 (6) 2.00 mm × 1.25 mm For all available packages, see the orderable addendum at the end of the data sheet. 3000 9860 Units VS = 5.5V No Load 2500 2000 Units • • • • • The TLV3011B-Q1 and TLV3012B-Q1 "B" versions add power-on-reset (POR), fail-safe inputs, built-in hysteresis, a lower minimum supply voltage of 1.65 V and a 3.1 μA maximum quiescent current. 1500 1000 500 0 1.230 1.235 1.240 1.245 Reference Voltage (V) 1.250 TLV3012B-Q1 Reference Voltage Distribution TLV3012B-Q1 Reference Voltage vs Temperature An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 4 6.1 Absolute Maximum Ratings TLV3012-Q1 DCK Package Only ............................................................... 4 6.2 Absolute Maximum Ratings - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 ................ 4 6.3 ESD Ratings............................................................... 4 6.4 Thermal Information - TLV3012-Q1 DCK Package Only................................................................ 5 6.5 Thermal Information- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 ................ 5 6.6 Recommended Operating Conditions.........................5 6.7 Electrical Characteristics - TLV3012-Q1 DCK Package Only ............................................................... 6 6.8 Switching Characteristics - TLV3012-Q1 DCK Package Only ............................................................... 7 6.9 Electrical Characteristics- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 ................ 8 6.10 Switching Characteristics- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 .............. 10 7 Typical Characteristics - TLV3012-Q1 DCK Package Only ................................................................11 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 ................ 15 9 Detailed Description......................................................21 9.1 Overview................................................................... 21 9.2 Functional Block Diagram......................................... 21 9.3 Feature Description...................................................21 9.4 Device Functional Modes..........................................21 10 Application and Implementation................................ 23 10.1 Application Information........................................... 23 10.2 Typical Application.................................................. 24 10.3 System Examples................................................... 26 10.4 Power Supply Recommendations...........................27 10.5 Layout..................................................................... 28 11 Device and Documentation Support..........................29 11.1 Receiving Notification of Documentation Updates.. 29 11.2 Support Resources................................................. 29 11.3 Trademarks............................................................. 29 11.4 Electrostatic Discharge Caution.............................. 29 11.5 Glossary.................................................................. 29 12 Mechanical, Packaging, and Orderable Information.................................................................... 29 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision B (August 2022) to Revision C (April 2023) Page • Added TLV3011B-Q1 and TLV3012B-Q1 to front page text and tables............................................................. 1 Changes from Revision A (June 2019) to Revision B (August 2022) Page • Added TLV3011-Q1 in both DBV and DCK Packages....................................................................................... 1 • Added TLV3012-Q1 in SOT-23 (DBV)................................................................................................................1 • Added new tables for DBV packages................................................................................................................. 1 • Updated the numbering format for tables, figures, and cross-references throughout the document................. 1 Changes from Revision * (March 2011) to Revision A (June 2019) Page • Added the HBM and CDM ESD ratings and classification levels. Also added the AEC-Q100 device temperature grade ............................................................................................................................................. 1 • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section................................................................................................................................................................ 1 • Deleted the TLV3011-Q1 device from the data sheet and removed A from the TLV3012-Q1 part number ...... 1 • Deleted the Package Ordering Information section............................................................................................ 3 • Moved the switching characteristics from the Electrical Characteristics table to the Switching Characteristics table.................................................................................................................................................................... 7 2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 5 Pin Configuration and Functions 1 6 V+ V- 2 5 REF IN+ 3 4 IN- + OUT Figure 5-1. DCK, DBV Package 6-Pin SC-70, SOT-23 Top View Table 5-1. Pin Functions PIN NO. 1 NAME I/O DESCRIPTION OUT O Comparator Output 2 V– - Negative (lowest) power supply 3 IN+ I Non-inverting comparator input 4 IN– I Inverting comparator input 5 REF O Reference Output 6 V+ - Positive (highest) power supply Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 3 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6 Specifications 6.1 Absolute Maximum Ratings TLV3012-Q1 DCK Package Only Over operating free-air temperature range (unless otherwise noted)(1). MIN MAX UNIT 7 V Supply voltage Voltage(2) Signal input pins –0.5 Output short circuit(3) TJ Junction temperature Tstg Storage temperature (2) (3) V ±10 mA Continuous Operating temperature (1) (V+) +0.5 Current(2) –40 –65 125 °C 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground pin. Short circuit to ground 6.2 Absolute Maximum Ratings - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 over operating free-air temperature range (unless otherwise noted)(1) MIN MAX Supply voltage: VS = (V+) – (V–) –0.5 7 V Input pins (IN+, IN–) from (V–)(2) –0.5 7 V Output (OUT) (Open-Drain) from (V–)(3) –0.5 7 V Output (OUT) (Push-Pull) from (V–) –0.5 (V+) + 0.5 V Output short circuit current(4) Junction temperature, TJ Storage temperature, Tstg (1) (2) (3) (4) –65 UNIT 10 mA 150 °C 150 °C Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. Input pins are diode-clamped to (V–). Inputs (IN+, IN–) can be greater than (V+) as long as within the –0.5 V to 7 V range. Inputs beyond –0.3 V must be current-limited to less than –10 mA, while inputs beyond 7 V must be externally voltage clamped. Output (OUT) for open drain can be greater than (V+) and inputs (IN+, IN–) as long as it is within the –0.5 V to 7 V range Short-circuit to (V–) or (V+). 6.3 ESD Ratings VALUE V(ESD) (1) 4 Electrostatic discharge Human-body model (HBM), per AEC Q100-002((1)) ±2000 Charged-device model (CDM), per AEC Q100-0111 ±1000 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6.4 Thermal Information - TLV3012-Q1 DCK Package Only TLV3012-Q1 THERMAL METRIC(1) UNIT DCK (SOT) 6 PINS RθJA Junction-to-ambient thermal resistance 179.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 141.3 °C/W RθJB Junction-to-board thermal resistance 71.2 °C/W ψJT Junction-to-top characterization parameter 53.6 °C/W ψJB Junction-to-board characterization parameter 71.0 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Thermal Information- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 TLV3011B-Q1, TLV3012B-Q1 THERMAL METRIC(1) DCK (SC-70) DBV (SOT-23) 6 PINS 6 PINS UNIT RθJA Junction-to-ambient thermal resistance 169.8 162.5 °C/W RθJC(top) Junction-to-case (top) thermal resistance 120.5 78.8 °C/W RθJB Junction-to-board thermal resistance 63.2 42.1 °C/W ψJT Junction-to-top characterization parameter 45.9 21.2 °C/W ψJB Junction-to-board characterization parameter 63.0 41.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance - - °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report. 6.6 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) Supply voltage: VS = (V+) – (V–) Supply voltage: VS = (V+) – (V–) B-Versions MIN MAX 1.8 5.5 UNIT V 1.65 5.5 V Input voltage range from (V–) –0.2 (V+) + 0.2 V Output voltage range from (V–) for open drain –0.2 (V+) V –0.2 5.5 V –40 125 °C Output voltage range from (V–) for open drain Ambient temperature, TA Copyright © 2023 Texas Instruments Incorporated B-Versions Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 5 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6.7 Electrical Characteristics - TLV3012-Q1 DCK Package Only VS = 1.8 V to 5.5 V, at TA = 25°C, VOUT = VS, unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP MAX 15 UNIT OFFSET VOLTAGE VOS Input offset voltage VCM = 0 V, IO = 0 V 0.5 dVOS/dT Input offset voltage vs temperature TA = –40°C to +125°C ±12 PSRR Power supply rejection ratio VS = 1.8 V to 5.5 V 100 mV μV/°C 1000 μV/V INPUT BIAS CURRENT IB Input bias current VCM = VS/2 ±10 pA IOS Input offset current VCM = VS/2 ±10 pA INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio (V–) – 0.2 (V+) + 0.2 VCM = –0.2 V to (V+) – 1.5 V 60 74 VCM = –0.2 V to (V+) + 0.2 V 54 62 V dB INPUT IMPEDANCE Common mode 1013 ∥ 2 Ω ∥ pF Differential 1013 ∥4 Ω ∥ pF OUTPUT VOL Voltage output low from rail VS = 5 V, IOUT = –5 mA 160 200 mV VOH Voltage output high from rail VS = 5 V, IOUT = 5 mA 90 200 mV See Typical Characteristics Short-circuit current VOLTAGE REFERENCE VOUT Output voltage 1.208 1.242 Initial accuracy 1.276 V ±1% dVOUT/dT Temperature drift –40°C ≤ TA ≤ 125°C dVOUT/ dILOAD Load regulation, sourcing 0 mA < ISOURCE ≤ 0.5 mA 40 100 0.36 1 Load regulation, sinking 0 mA < ISINK ≤ 0.5 mA ILOAD Output current dVOUT/dVIN Line regulation 1.8 V ≤ VIN ≤ 5.5 V 10 Reference voltage noise f = 0.1 Hz to 10 Hz 0.2 6.6 0.5 ppm/°C mV/mA mA 100 μV/V NOISE mVPP POWER SUPPLY VS IQ Specified voltage 1.8 5.5 Operating voltage range 1.8 5.5 V 5 μA Quiescent current VS = 5 V, VO = High 2.8 V TEMPERATURE 6 Operating range –40 125 °C Storage range –65 150 °C Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6.8 Switching Characteristics - TLV3012-Q1 DCK Package Only over operating free-air temperature range (unless otherwise noted) PARAMETER Propagation delay time, low to high Propagation delay time, high to low TEST CONDITIONS MIN TYP f = 10 kHz, VSTEP = 1 V, input overdrive = 10 mV 12 f = 10 kHz, VSTEP = 1 V, input overdrive = 100 mV 6 MAX UNIT μs f = 10 kHz, VSTEP = 1 V, input overdrive = 10 mV 13.5 f = 10 kHz, VSTEP = 1 V, input overdrive = 100 mV 6.5 μs tr Rise time CL = 10 pF 100 ns tf Fall time CL = 10 pF 100 ns Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 7 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6.9 Electrical Characteristics- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 For VS (TOTAL SUPPLY VOLTAGE) = (V+) – (V–) = 1.8V and 5.5V, VCM = VS /2 at TA = 25°C (Unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ±0.3 6 mV 9 mV OFFSET VOLTAGE VOS Input offset voltage VCM = (V–) –6 VOS Input offset voltage VCM = (V–) TA = –40°C to +125°C –9 dVIO/dT Input offset voltage drift VCM = (V–) TA = –40°C to +125°C ±12 PSRR power supply rejection ratio VCM = (V–) VS = 1.8 V to 5.5 V TA = –40°C to +125°C 100 1000 µV/V PSRR power supply rejection ratio (BVersions) VCM = (V–) VS = 1.65 V to 5.5 V TA = –40°C to +125°C 100 1000 µV/V VHYS Input hysteresis voltage TA = –40°C to +125°C 2 6 8 mV VCM = VS /2 –10((1)) ±4.5 10((1)) pA Input offset current VCM = VS /2 –10((1)) ±1 10((1)) pA (V+) + 0.2 V µV/°C INPUT BIAS CURRENT IB Input bias current IOS INPUT COMMON MODE RANGE VCM-Range Common-mode voltage range VS = 1.8 V to 5.5 V CMRR Common mode rejection ratio VCM = (V–) + 1.5V to (V+) + 0.2V VS = 5.5 V 60 74 dB CMRR Common mode rejection ratio VCM = (V–) - 0.2V to (V+) + 0.2V VS = 5.5 V 54 62 dB RCM Input Common Mode Resistance 1013 Ω CIC Input Common Mode Capacitance 2 pF 1013 Ω 4 pF (V–) – 0.2 INPUT IMPEDANCE RDM Input Differential Mode Resistance CID Input Differential Mode Capacitance OUTPUT VOL Voltage swing from (V–) VS = 5 V ISINK = 5 mA TA = –40°C to +125°C 160 200 mV VOH Voltage swing from (V+) (for Push-Pull only) VS = 5 V ISOURCE = 5 mA TA = –40°C to +125°C 90 200 mV VOLTAGE REFERENCE VOUT Reference Voltage 1.223 Accuracy dVOUT/dT Temperature Drift TA = –40°C to +125°C dVOUT/ dILOAD Load Regulation, Sourcing 0 mA < ISOURCE ≤ 0.5 mA Load Regulation, Sinking 0 mA < ISINK ≤ 0.5 mA ILOAD 8 Output Current Submit Document Feedback 1.242 1.260 ±0.25% ±1.5% V 40 100 ppm/℃ 0.36 1((1)) mV/mA 6.6 mV/mA 0.5 mA Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6.9 Electrical Characteristics- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 (continued) For VS (TOTAL SUPPLY VOLTAGE) = (V+) – (V–) = 1.8V and 5.5V, VCM = VS /2 at TA = 25°C (Unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT µV/V µV/V dVOUT/dVS Line Regulation 1.8 V ≤ VS ≤ 5.5 V 10 100((1)) dVOUT/dVS Line Regulation (BVersions) 1.65 V ≤ VS ≤ 5.5 V 10 100((1)) Vnoise Noise f = 0.1 Hz to 10 Hz 0.2 2.8 mVPP POWER SUPPLY IQ Quiescent current per comparator Output is logic high IQ Quiescent current per comparator Output is logic high TA = –40°C to +125°C IQ Quiescent current per comparator (B- Output is logic high Versions) IQ Quiescent current Output is logic high per comparator (BTA = –40°C to +125°C Versions) (1) 2.4 5 µA 7 µA 3.1 µA 3.6 µA Ensured by characterization Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 9 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 6.10 Switching Characteristics- TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 For VS (TOTAL SUPPLY VOLTAGE) = (V+) – (V–) = 1.8 V and 5.5 V, VCM = VS / 2 at TA = 25°C (Unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT OUTPUT TPD-LH Propagation delay time, low-to- f = 10 kHz, VSTEP = 1V, VOD = 10 mV, CL = high 10 pF 12 µs TPD-LH Propagation delay time, low-to- f = 10 kHz, VSTEP = 1V, VOD = 100 mV, CL high = 10 pF 6 µs TPD-LH Propagation delay time, lowto-high (push-pull output, BVersion) f = 10 kHz, VSTEP = 200mV, VOD = 100 mV, CL = 10 pF 2 TPD-HL Propagation delay time, highto-low f = 10 kHz, VSTEP = 1V, VOD = 10 mV, CL = 10 pF 13.5 µs TPD-HL Propagation delay time, highto-low f = 10 kHz, VSTEP = 1V, VOD = 100 mV, CL = 10 pF 6.5 µs TPD-HL Propagation delay time, highto-low (B-Versions) f = 10 kHz, VSTEP = 200mV, VOD = 100 mV, CL = 10 pF TRISE Output Rise Time, 20% to 80%, push-pull output CL = 10 pF 100 ns TRISE Output Rise Time, 20% to 80%, push-pull output (BVersions) CL = 10 pF 10 ns TRISE Output Rise Time, 20% to 80%, RL = 10 kΩ, CL = 10 pF open-drain output 200 ns TFALL Output Fall Time, 80% to 20% CL = 10 pF 100 ns TFALL Output Fall Time, 80% to 20% (B-Versions) CL = 10 pF 10 ns TFALL Output Fall Time, 80% to 20%, open-drain output RL = 10 kΩ, CL = 10 pF 200 ns TFALL Output Fall Time, 80% to 20%, open-drain output (B-Versions) RL = 10 kΩ, CL = 10 pF 10 ns tON Power on-time (B-Versions) 1.9 ms 10 Submit Document Feedback 2 4 4 µs µs Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 7 Typical Characteristics - TLV3012-Q1 DCK Package Only 3.8 14 3.6 12 TLV3012 Quiescent Current – µA Quiescent Current – µA At TA = 25°C, VS = 1.8 V to 5.5 V, and Input Overdrive = 100 mV, unless otherwise noted. 3.4 3.2 3 2.8 2.6 2.4 10 VS = 3 V 8 6 4 VS = 1.8 V 2 2.2 2 -50 VS = 5 V 0 -25 0 25 50 75 Temperature – °C 100 1 125 Figure 7-1. Quiescent Current vs Temperature 10 100 1k 10k Output Switching Frequency – Hz 100k Figure 7-2. Quiescent Current vs Output Switching Frequency 45 0.25 VOL – Output Low – V Input Bias Current – pA 40 35 30 25 20 15 10 5 0.20 VS = 1.8 V VS = 3 V 0.15 VS = 5 V 0.10 0.05 0 -5 0 -50 -25 0 25 50 75 Temperature – °C 100 0 125 Figure 7-3. Input Bias Current vs Temperature 4 6 8 Output Current – mA 10 12 Figure 7-4. Output Low vs Output Current 0.25 80 TLV3012 tPLH – Propagation Delay – µs VDD = 3 V 0.20 (VS – VOH) – V 2 VDD = 1.8 V 0.15 0.10 VDD = 5 V 0.05 0 0 2 4 6 8 Output Current – mA 10 Figure 7-5. Output High vs Output Current Copyright © 2023 Texas Instruments Incorporated 12 TLV3012 70 60 50 VS = 5 V 40 VS = 3 V 30 VS = 1.8 V 20 10 0 0.01 0.1 1 10 Capacitive Load – nF 100 1k Figure 7-6. Propagation Delay (tPLH) vs Capacitive Load Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 11 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 7 Typical Characteristics - TLV3012-Q1 DCK Package Only (continued) At TA = 25°C, VS = 1.8 V to 5.5 V, and Input Overdrive = 100 mV, unless otherwise noted. 20 70 60 50 VS = 3 V 40 VS = 5 V 30 20 10 VS = 1.8 V 0 0.01 0.1 1 10 Capacitive Load – nF 100 tPLH – Propagation Delay – µs tPHL – Propagation Delay – µs 80 18 16 12 VS = 1.8 V 8 6 4 0 10 20 30 40 50 60 70 Input Overdrive – mV 90 100 tPLH – Propagation Delay – µs 8 18 16 14 12 VS = 1.8 V 10 VS = 3 V 8 6 VS = 5 V 4 0 10 20 30 40 50 60 70 Input Overdrive – mV 80 7.5 7 6.5 VS = 1.8 V VS = 3 V 6 5.5 5 VS = 5 V 4.5 4 -50 90 100 Figure 7-9. Propagation Delay (tPHL) vs Input Overdrive -25 0 25 50 75 Temperature – °C 125 VS = 2.5 V 500 mV/div 7.5 VS = 1.8 V 7 VS = 3 V 6.5 VIN– VIN+ 6 TLV3012 5.5 2 V/div VS = 5 V 5 4.5 4 -50 100 Figure 7-10. Propagation Delay (tPLH) vs Temperature 8 tPHL – Propagation Delay – µs 80 Figure 7-8. Propagation Delay (tPLH) vs Input Overdrive 20 tPHL – Propagation Delay – µs VS = 3 V 10 1k Figure 7-7. Propagation Delay (tPHL) vs Capacitive Load VS = 5 V 14 -25 0 25 50 75 Temperature – °C 100 125 TLV3011 VOUT 2 µs/div Figure 7-12. Propagation Delay (tPLH) Figure 7-11. Propagation Delay (tPHL) vs Temperature 12 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 7 Typical Characteristics - TLV3012-Q1 DCK Package Only (continued) At TA = 25°C, VS = 1.8 V to 5.5 V, and Input Overdrive = 100 mV, unless otherwise noted. 500 mV/div VS = 0.9 V 500 mV/div VS = 2.5 V VIN+ VIN– VIN– VIN+ 2 V/div 2 V/div VOUT VOUT 2 µs/div 2 µs/div Figure 7-13. Propagation Delay (tPHL) 1.24205 VS = 0.9 V Reference Voltage – V 500 mV/div VIN+ Figure 7-14. Propagation Delay (tPLH) 2 V/div VIN– VOUT 1.24200 1.24195 1.24190 1.24185 1.24180 1.24175 1.24170 1.24165 1.24160 0 2 µs/div 1.2 Figure 7-16. Reference Voltage vs Output Load Current (Sourcing) 1.250 1.250 1.249 1.245 Reference Voltage – V Reference Voltage – V Figure 7-15. Propagation Delay (tPHL) 0.2 0.4 0.6 0.8 1 Output Load Current, Sourcing – mA 1.248 1.247 1.246 1.245 1.244 1.243 1.240 1.235 1.230 1.225 1.220 1.215 1.242 1.241 0 0.2 0.4 0.6 0.8 1 Output Load Current, Sinking – mA 1.2 Figure 7-17. Reference Voltage vs Output Load Current (Sinking) Copyright © 2023 Texas Instruments Incorporated 1.210 -100 -50 0 50 Temperature – °C 100 150 Figure 7-18. Reference Voltage vs Temperature Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 13 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 7 Typical Characteristics - TLV3012-Q1 DCK Package Only (continued) At TA = 25°C, VS = 1.8 V to 5.5 V, and Input Overdrive = 100 mV, unless otherwise noted. 500 140 450 120 400 100 350 Sink 80 Units 60 Source 40 250 200 150 100 20 Figure 7-19. Short-Circuit Current vs Supply Voltage Submit Document Feedback 1.252 1.254 1.250 1.246 1.248 1.242 5.5 1.244 5 1.238 3 3.5 4 4.5 Supply Voltage – V 1.240 2.5 1.236 2 1.232 0 1.5 1.234 50 0 14 300 1.230 Short-Circuit Current – mA TLV3012 Reference Voltage – V Figure 7-20. Reference Voltage Distribution Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 For VS (Total Supply Voltage) = (V+) – (V–) = +5V, VCM = VS /2 at TA = 25°C , RPULLUP = 1MΩ to V+, CL = 15pF, VOD = 100mV unless otherwise noted. 1000 5000 3000 2000 125°C 25°C -40°C Output Swing from V+ (mV) Output Swing from V- (mV) 5000 3000 2000 500 300 200 100 50 30 20 10 5 0.001 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Sinking Current (mA) 100 50 30 20 100 50 30 20 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Sourcing Current (mA) 50 100 Figure 8-2. Output Swing vs. Output Sourcing Current - 1.8V 5000 3000 2000 125°C 25°C -40°C 500 300 200 10 5 0.001 500 300 200 5 0.001 50 100 Output Swing from V+ (mV) Output Swing from V- (mV) 1000 Push-Pull Output Only No Load 10 Figure 8-1. Output Swing vs. Output Sinking Current - 1.8V 5000 3000 2000 1000 125°C 25°C -40°C 1000 125°C 25°C -55°C Push-Pull Output Only No Load 500 300 200 100 50 30 20 10 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Sinking Current (mA) 5 0.001 50 100 Figure 8-3. Output Swing vs. Output Sinking Current - 3.3V 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Sourcing Current (mA) 50 100 Figure 8-4. Output Swing vs. Output Sourcing Current - 3.3V Output Swing from V+ (mV) 5000 3000 2000 1000 125°C 25°C -40°C Push-Pull Output Only No Load 500 300 200 100 50 30 20 10 5 0.001 Figure 8-5. Output Swing vs. Output Sinking Current - 5V Copyright © 2023 Texas Instruments Incorporated 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Sourcing Current (mA) 50 100 Figure 8-6. Output Swing vs. Output Sourcing Current - 5V Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 15 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 (continued) For VS (Total Supply Voltage) = (V+) – (V–) = +5V, VCM = VS /2 at TA = 25°C , RPULLUP = 1MΩ to V+, CL = 15pF, VOD = 100mV unless otherwise noted. 3.50 3.50 1.8 V 3.3 V 5V 3.00 2.75 2.50 2.25 2.00 1.75 3.00 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 25°C 2.25 -20° 2.00 -40° 1.50 1.5 110 125 3 3.5 4 Supply Voltage (V) 4.5 5 5.5 Total Quiecent Current (A) 85°C 2.75 2.50 25°C 2.25 -20°C 2.00 -40°C 1.75 0.3 0.8 125°C 3.25 3.00 3.00 85°C 2.75 2.50 25°C 2.25 -20°C 2.00 -40°C 1.75 1.3 1.8 2.3 Input Voltage from V- (V) 2.8 1.50 -0.2 3.3 0.2 0.6 1 1.4 Input Voltage from V- (V) 1.8 2 Figure 8-10. Supply Current vs. Common Mode - 1.8V Figure 8-9. Supply Current vs. Common Mode - 3.3V 10 3.50 Propagation Delay, TPHL (s) 125°C 3.25 3.00 85°C 2.75 2.50 25°C 2.25 -20°C 2.00 -40°C 1.75 1.50 -0.2 2.5 3.50 125°C 3.25 1.50 -0.2 2 Figure 8-8. Supply Current vs. Supply Voltage 3.50 Total Quiecent Current (A) 55°C 2.50 Figure 8-7. Supply Current vs. Temperature Total Quiecent Current (A) 85°C 2.75 1.75 1.50 -40 0.4 1 1.6 2.2 2.8 3.4 Input Voltage from V- (V) 4 4.6 Figure 8-11. Supply Current vs. Common Mode - 5V 16 125°C 3.25 Total Quiecent Current (A) Total Quiecent Current (A) 3.25 Submit Document Feedback 5.2 1.8V 3.3V 5V 8 7 6 5 4 3 2 1 5 6 7 8 10 20 30 40 50 70 100 Overdrive (mV) 200 300 500 Figure 8-12. High to Low Propagation Delay vs. Overdrive Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 (continued) For VS (Total Supply Voltage) = (V+) – (V–) = +5V, VCM = VS /2 at TA = 25°C , RPULLUP = 1MΩ to V+, CL = 15pF, VOD = 100mV unless otherwise noted. 10 1.8V 3.3V 5V Propagation Delay, TPLH (s) 7 5 4 3 2 1 0.7 0.5 5 6 7 8 10 20 30 40 50 70 100 Overdrive (mV) 200 300 500 Figure 8-14. High to Low Propagation Delay vs. Temperature Figure 8-13. Low to High Propagation Delay vs. Overdrive 1.8 5V 3.3V 1.8V Propagation Dealy, TPLH (s) VOD = 100mV 1.6 1.4 1.2 1 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 8-16. Reference Voltage vs. Temperature 1.2400 1.2410 1.2399 1.2409 Reference Output Voltage (V) Reference Output Voltage (V) Figure 8-15. Low to High Propagation Delay vs. Temperature 1.2398 1.2397 1.2396 1.2395 1.2394 1.2393 1.2392 1.8 V 3.3 V 5V 1.2391 1.8 V 3.3 V 5V 1.2408 1.2407 1.2406 1.2405 1.2404 1.2403 1.2402 1.2401 1.2390 1.2400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Refernce Output Sourcing Current (mA) 0.9 1 Figure 8-17. Reference Voltage vs. Reference Output Sourcing Current Copyright © 2023 Texas Instruments Incorporated 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Refernce Output Sinking Current (mA) 0.9 1 Figure 8-18. Reference Voltage vs. Reference Output Sinking Current Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 17 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 (continued) For VS (Total Supply Voltage) = (V+) – (V–) = +5V, VCM = VS /2 at TA = 25°C , RPULLUP = 1MΩ to V+, CL = 15pF, VOD = 100mV unless otherwise noted. 10 5V 3.3V 1.8V 8 7 6 CL = 15pF RPULLUP = 1M Pullup current not included Total Supply Current (A) Total Supply Current (A) 10 5 4 3 2 1 CL = 15pF 5 4 3 2 1 1 2 3 45 710 20 50 100200 1000 Toggle Frequency (Hz) 10000 50000 Figure 8-19. Supply Current vs. Toggle Frequency - Open Drain Output 1 2 3 45 710 20 50 100200 1000 Toggle Frequency (Hz) 10000 50000 Figure 8-20. Supply Current vs. Toggle Frequency - Push-Pull Output 7 8.5 5V 3.3V 1.8V 6.5 125°C 85°C 25°C -40°C 8 Typical Hysteresis Voltage (V) Typical Hysteresis (mV) 5V 3.3V 1.8V 8 7 6 6 5.5 5 7.5 7 6.5 6 5.5 5 4.5 4.5 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 8-21. Hysteresis Voltage vs. Temperature 4 -0.2 0.2 0.6 1 1.4 Input Common Mode Voltage (V) 1.8 2 Figure 8-22. Hysteresis Voltage vs. Common Mode, 1.8V 8.5 125°C 85°C 25°C -40°C Typical Hysteresis Voltage (V) 8 7.5 7 6.5 6 5.5 5 4.5 4 -0.2 0.3 0.8 1.3 1.8 2.3 2.8 Input Common Mode Voltage (V) 3.3 Figure 8-23. Hysteresis Voltage vs. Common Mode, 3.3V 18 Submit Document Feedback Figure 8-24. Hysteresis Voltage vs. Common Mode, 5V Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 (continued) For VS (Total Supply Voltage) = (V+) – (V–) = +5V, VCM = VS /2 at TA = 25°C , RPULLUP = 1MΩ to V+, CL = 15pF, VOD = 100mV unless otherwise noted. 8 7 2 6.5 6 5.5 1.5 1 0.5 0 -0.5 -1 -1.5 -2 5 4.5 1.5 7 Individual Units VS = 1.8V 2.5 Offset Voltage (mV) Hysteresis Voltage (mV) 7.5 3 125°C 85°C 25°C -55°C -2.5 2 2.5 3 3.5 4 Supply Voltage (V) 4.5 5 5.5 -3 -55 -35 -15 5 25 45 65 Temperature (°C) 85 105 125 Figure 8-26. Offset Voltage vs. Temperature, 1.8 V Figure 8-25. Hysteresis Voltage vs. Supply Voltage 3 7 Individual Units VS = 3.3V 2.5 Offset Voltage (mV) 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 8-28. Offset Voltage vs. Temperature, 5 V Figure 8-27. Offset Voltage vs. Temperature, 3.3 V 3.00 VS = 5V, TA = 25°C 7 Individual Units 2.50 Offset Voltage (mV) 2.00 1.50 1.00 0.50 0.00 -0.50 -1.00 -1.50 -2.00 -2.50 -3.00 -0.2 0.2 0.6 1 1.4 Common Mode Voltage (V) 1.8 2 Figure 8-29. Offset Voltage vs. Common Mode Voltage, 1.8 V Copyright © 2023 Texas Instruments Incorporated Figure 8-30. Offset Voltage vs. Common Mode Voltage, 3.3 V Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 19 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 8 Typical Characteristics - TLV301x-Q1 DBV Package, TLV3011B-Q1 and TLV3012B-Q1 (continued) For VS (Total Supply Voltage) = (V+) – (V–) = +5V, VCM = VS /2 at TA = 25°C , RPULLUP = 1MΩ to V+, CL = 15pF, VOD = 100mV unless otherwise noted. 3.00 3.00 VS = 5V, TA = 25°C 7 Individual Units 2.50 2.50 2.00 1.50 Offset Voltage (mV) Offset Voltage (mV) 2.00 1.00 0.50 0.00 -0.50 -1.00 -1.50 0.50 0.00 -0.50 -1.00 -1.50 -2.00 -2.50 -2.50 0.4 1 1.6 2.2 2.8 3.4 Common Mode Voltage (V) 4 4.6 -3.00 1.5 5.2 3.00 2.50 2.50 2.00 2.00 1.50 1.50 Offset Voltage (mV) 3.00 1.00 0.50 0.00 -0.50 -1.00 -1.50 -2.00 -3.00 1.5 2.1 2.7 3.3 3.9 Supply Voltage (V) 4.5 5.1 Figure 8-33. Offset Voltage vs. Supply Voltage, 25°C Submit Document Feedback 2.1 2.7 3.3 3.9 Supply Voltage (V) 5.1 5.5 0.50 0.00 -0.50 -1.00 -1.50 TA = -40°C 7 Individual Units -2.50 5.5 4.5 1.00 -2.00 VS = 5V, TA = 25°C 7 Individual Units -2.50 VS = 5V, TA = 125°C 7 Individual Units Figure 8-32. Offset Voltage vs. Supply Voltage, 125°C Figure 8-31. Offset Voltage vs. Common Mode Voltage, 5 V Offset Voltage (mV) 1.00 -2.00 -3.00 -0.2 20 1.50 -3.00 1.5 2.1 2.7 3.3 3.9 Supply Voltage (V) 4.5 5.1 5.5 Figure 8-34. Offset Voltage vs. Supply Voltage, -40°C Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 9 Detailed Description 9.1 Overview The TLV301xB-Q1 is a MicroPower comparator with an integrated reference that is well suited for compact, low-current, precision voltage detection applications. With a high-accuracy, internal reference of 1.242 V and 3.1 uA of quiescent current, the TLV301xB-Q1 enables power conscious systems to monitor and respond quickly to fault conditions. 9.2 Functional Block Diagram V+ + IN+ OUT INREF + 1.242V Reference V- 9.3 Feature Description The TLV301x-Q1 is comprised of a rail-to-rail input comparator with open-drain or push-pull output options and a voltage reference that is externally available. 9.4 Device Functional Modes The TLV301x-Q1 requires an operating voltage between 1.8 V and 5.5 V for the comparator output to reflect the voltage applied to the inputs. Similarly, the reference output (REF) will also be valid over the same operating voltage range. The "B" versions add hysteresis, power on reset, fail-safe inputs and a 1.65 V minimum supply voltage. 9.4.1 Open Drain Output (TLV3011-Q1 and TLV3011B-Q1) The TLV3011-Q1 features an Open-Drain (sinking only) output that allows multiple devices to be driven by a single pull-up resistor to accomplish an OR function, making the TLV3011-Q1 useful for logic applications. The value of the pull-up resistor and supply voltage used will affect current consumption due to additional current drawn when the output is in a low state. This effect can be seen in the typical curve Quiescent Current vs Output Switching Frequency. For the TLV3011-Q1, the pull-up voltage must be less than, or equal to, the V+ supply voltage (VPULLUP ≤ V+). The TLV3011B-Q1 may be pulled-up to any voltage up to 5.5V, regardless of the supply voltage. 9.4.2 Push-Pull Output (TLV3012-Q1 and TLV3012B-Q1) The TLV3012-Q1 has a "Push-Pull" output capable of both sinking and sourcing current. The push-pull output stage is optimal for reduced power budget applications by eliminating the need for a pull-up resistor and features no shoot-through current. Do not tie push-pull outputs together. 9.4.3 Voltage Reference The integrated 1.242-V voltage reference offers low 100-ppm/°C (maximum) drift provided on a seporate output pin that allows use of external dividers or to provide a reference voltage for other external circuitry. The reference is stable with up to a 10-nF capacitive load and can sink or source up to 500µA (typical) of output current. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 21 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 9.4.4 TLV3011B-Q1 and TLV3012B-Q1 Fail-Safe inputs The TLV3011B-Q1 and TLV3012B-Q1 inputs are Fail-Safe up to 5.5V independent of V+ voltage. Fail-Safe is defined as maintaining the same high input impedance when V+ is unpowered or within the recommended operating ranges. The Fail-Safe inputs can be any value between 0 V and 5.5 V, even while V+ is zero or ramping up or down. This feature avoids power sequencing issues as long as the input voltage range and supply voltage are within the specified ranges. This is possible since the inputs are not clamped to V+ and the input current maintains its value even when a higher voltage is applied to the inputs. As long as one of the input pins remains within the valid input range, and the supply voltage is valid and not in POR, the output state will be correct. The following is a summary of the TLV3011B-Q1 and TLV3012B-Q1 device input voltage excursions and their outcomes: 1. When both IN- and IN+ are within the specified input voltage range: a. If IN- is higher than IN+ and the offset voltage, the output is low. b. If IN- is lower than IN+ and the offset voltage, the output is high. 2. When IN- is higher than the specified input voltage range and IN+ is within the specified voltage range, the output is low. 3. When IN+ is higher than the specified input voltage range and IN- is within the specified input voltage range, the output is high 4. When IN- and IN+ are both outside the specified input voltage range, the output state is indeterminate (random). Do not operate in this region. Because the inputs do not have upper ESD diode clamps to V+, input voltages must be externally clamped to below 5.5 V if the source could possibly exceed 5.5 V. A current limiting resistor in series with the input is also recommend in case of input transients. 9.4.5 TLV3011B-Q1 and TLV3012B-Q1 Power On Reset The TLV3011B-Q1 and TLV3012B-Q1 have an internal Power-on-Reset (POR) circuit for known start-up or power-down conditions. While the power supply (V+) is ramping up or ramping down, the POR circuitry will be activated for up to 1.9ms after the minimum supply voltage threshold is crossed, or immediately when the supply voltage drops below minimum supply. When the supply voltage is equal to or greater than the minimum supply voltage, and after the delay period, the comparator output reflects the state of the differential input (VID). This delay is long enough to allow the reference output to stabilize with up to a 10nF capacitive load. During the POR period (ton), the outputs will be the following: • • The open drain output TLV3011B-Q1 will be high (Hi-Z). The push-pull output TLV3012B-Q1 will be low (sinking). Power On Reset Time (tON) 0V +1.5V VS VOH / 2 OUT VOL Figure 9-1. Power-On Reset Example Timing Diagram for Push-Pull Output Note that it the nature of an open collector output that the output will rise with the pull-up voltage during the HI-Z POR period. 22 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 10 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 10.1 Application Information The TLV301x-Q1 and TLV301xB-Q1 comparator family with on-chip 1.242-V series reference with the choice of either open-drain or push-pull output stages. A typical supply current of 2.4 μA and small packaging combine with 1.65-V supply requirements to make the TLV301xB-Q1 devices optimal for battery and portable designs. Figure 10-1 shows the typical connections for the TLV3012-Q1 device. V+ 0.01 µF VIN– 4 6 TLV3012-Q1 VIN+ 10 µF 1 VOUT V– 3 2 5 REF Copyright © 2016, Texas Instruments Incorporated Figure 10-1. Basic Connections 10.1.1 External Hysteresis Comparator inputs have no noise immunity within the range of the specified offset voltage. For noisy input signals, the comparator output may display multiple switching as input signals move through the switching threshold. The typical comparator threshold of the TLV3012-Q1 device is ±0.5 mV. To prevent multiple switching within the comparator threshold of the TLV3012-Q1 device, external hysteresis may be added by connecting a small amount of feedback to the positive input. Figure 10-2 shows a typical topology used to introduce hysteresis, described by Equation 1. VHYST = V+ × R1 R1 + R2 (1) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 23 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 V+ 5V VIN – VOUT TLV3012-Q1 + REF R2 560 kΩ R1 39 kΩ VHYST = 0.38 V VREF Copyright © 2016, Texas Instruments Incorporated Figure 10-2. Adding Hysteresis The VHYST voltage sets the value of the transition voltage required to switch the comparator output by increasing the threshold region, thereby reducing sensitivity to noise. 10.1.2 TLV3011B-Q1 and TLV3012B-Q1 Hysteresis The TLV3011B-Q1 and TLV3012B-Q1 have typically 6mV of built-in hysteresis. External hysteresis can still be added as explained in the previous section. 10.2 Typical Application 10.2.1 Under-Voltage Detection Under-voltage detection is frequently required to alert the system that a battery voltage has dropped below the usable voltage level. Figure 23 shows a simple under-voltage detection circuit using the TLV3012-Q1 which is configured as a non-inverting comparator with the integrated 1.242 V reference is externally connected to the inverting input pin (IN-). VBAT R1 V+ + ALERT t 1.242V R2 TLV3012-Q1 Microcontroller Figure 10-3. Under-Voltage Detection 10.2.1.1 Design Requirements For this design, follow these design requirements: • • • 24 Operate from power supply that powers the microcontroller. Under-voltage alert is active low. Logic low output when VBAT is less than 2.0V. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 10.2.1.2 Detailed Design Procedure Configure the circuit as shown in Figure 10-3. Connect (V+) to VBAT which also powers the microcontroller. Resistors R1 and R2 create the under-voltage alert level of 2.0 V. When the battery voltage sags down to 2.0 V, the resistor divider voltage crosses VREF, the 1.242 V reference threshold of the TLV3012-Q1. This causes the comparator output to transition from a logic high to a logic low. The push-pull output of the TLV3012-Q1 is selected since the comparator operating voltage is shared with the microcontroller which is receiving the under-voltage alert signal. Equation 2 is derived from the analysis of Figure 10-3. (2) where • • • R1 and R2 are the resistor values for the resistor divider connected to IN+ VBAT is the voltage source that is being monitored for an undervoltage condition. VREF is the falling edge threshold where the comparator output changes state from high to low Rearranging Equation 2 and solving for R1 yields Equation 3. (3) For the specific undervoltage detection of 2.0 V using the TLV3012-Q1, the following results are calculated. (4) where • • • R2 is set to 1 MΩ VBAT is set to 2.0 V VREF is set to1.242 V Choose RTOTAL (R1 + R2) such that the current through the divider is at least 100 times higher than the input bias current (IBIAS). The resistors can have high values to minimize current consumption in the circuit without adding significant error to the resistive divider. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 25 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 10.2.1.3 Application Curve T 2.00 IN+ (V) IN 1.242 0.00 3.30 VVBAT BAT (V) 2.00 0.00 3.30 Vout OUT (V) 0.00 1.30 1.45 1.60 1.75 1.90 2.05 2.20 Time (s) Time (s) Figure 10-4. 10.3 System Examples 10.3.1 Power-On Reset The reset circuit shown in Figure 10-5 provides a time-delayed release of reset to the MSP430™ microcontroller. Operation of the circuit is based on a stabilization time constant of the supply voltage, rather than on a predetermined voltage value. The negative input is a reference voltage created by the internal voltage reference. The positive input is an RC circuit that provides a power-up delay. When power is applied, the output of the comparator is low, holding the processor in the reset condition. Only after allowing time for the supply voltage to stabilize does the positive input of the comparator become higher than the negative input, resulting in a high output state, releasing the processor for operation. The stabilization time required for the supply voltage is adjustable by the selection of the RC component values. Use of a lower-valued resistor in this portion of the circuit does not increase current consumption, because no current flows through the RC circuit after the supply has stabilized. 26 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 V+ R1 1 MΩ DI MSP430™ + C1 10 nF TLV3012-Q1 RESET 1.242 V – REF Copyright © 2016, Texas Instruments Incorporated Figure 10-5. TLV3012-Q1 Configured as Power-Up Reset Circuit for the MSP430™ Microcontroller The reset delay needed depends on the power-up characteristics of the system power supply. R1 and C1 are selected to allow enough time for the power supply to stabilize. D1 provides rapid reset if power is lost. In this example, the R1 × C1 time constant is 10 ms. 10.3.2 Relaxation Oscillator The TLV3012-Q1 device can be configured as a relaxation oscillator to provide a simple and inexpensive clock output (see Figure 10-6). The capacitor is charged at a rate of T = 0.69RC and discharges at a rate of 0.69RC. Therefore, the period is T = 1.38RC. R1 may be a different value than R2. VC 2/3 (V+) 1/3 (V+) V+ V+ C 1000 pF t T1 T2 R1 1 MΩ VOUT TLV3012-Q1 R2 t R2 1 MΩ 1 MΩ F = 724 Hz V+ R2 1 MΩ Copyright © 2016, Texas Instruments Incorporated Figure 10-6. TLV3012-Q1 Configured as Relaxation Oscillator 10.4 Power Supply Recommendations The TLV3012-Q1 has a recommended operating voltage range (VS) of 1.8 V to 5.5 V. VS is defined as (V+) – (V-). Therefore, the supply voltages used to create VS can be single-ended or bipolar. For example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and –2.5 V create comparable operating voltages for VS. However, when bipolar supply voltages are used, it is important to realize that the reference Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 27 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 (REF) and logic low level of the comparator output is referenced to (V-). Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent current in the EC Table. 10.5 Layout 10.5.1 Layout Guidelines To minimize supply noise, power supplies should be capacitively decoupled by a 0.1-μF ceramic capacitor. Comparators are sensitive to input noise and precautions such as proper grounding (use of ground plane), supply bypassing, and guarding of high-impedance nodes minimize the effects of noise and help to ensure specified performance. 10.5.2 Layout Example C1 GND OUT OUT GND VIN+ VIN V+ V S REF INSOT-23 GND R1 R2 Figure 10-7. Layout Example 28 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 TLV3011-Q1, TLV3012-Q1, TLV3011B-Q1, TLV3012B-Q1 www.ti.com SBOS551C – MARCH 2011 – REVISED APRIL 2023 11 Device and Documentation Support 11.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 11.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 11.3 Trademarks MSP430™ is a trademark of Texas Instruments. TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TLV3011-Q1 TLV3012-Q1 TLV3011B-Q1 TLV3012B-Q1 29 PACKAGE OPTION ADDENDUM www.ti.com 21-Apr-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV3011AQDBVRQ1 ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2Q7F Samples TLV3011AQDCKRQ1 ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1M6 Samples TLV3011BQDBVRQ1 ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 31IF Samples TLV3011BQDCKRQ1 ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1O6 Samples TLV3012AQDBVRQ1 ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2Q8F Samples TLV3012AQDCKRQ1 ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 BPF Samples TLV3012BQDBVRQ1 ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 31JF Samples TLV3012BQDCKRQ1 ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1O7 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV3012AQDCKRQ1 价格&库存

很抱歉,暂时无法提供与“TLV3012AQDCKRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV3012AQDCKRQ1
  •  国内价格
  • 1+13.82519
  • 10+11.99081
  • 30+10.90412

库存:8