0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TMP390AQDRLRQ1

TMP390AQDRLRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

  • 数据手册
  • 价格&库存
TMP390AQDRLRQ1 数据手册
TMP390-Q1 ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 TMP390-Q1 超小型、双通道(高低温跳变)、0.5µA 电阻器可编程温度开关 1 特性 3 说明 • 具有符合 AEC-Q100 标准的下列特性: – 温度等级 1:–40°C 至 +125°C 工作温度范围 – 扩展工作温度范围:-55°C 至 +130°C • 提供功能安全 – 有助于进行功能安全系统设计的文档 • 电阻器可编程的温度跳闸点和迟滞选项 – 电阻器容差可实现零误差 – 迟滞选项:5°C、10°C 和 20°C • 适用于过热或欠温检测的独立输出 – 通道 A(过热):+30°C 至 +124°C,阶跃为 2°C – 通道 B(欠温):–50°C 至 +25°C,阶跃为 5°C • 精度无需校准 – 0°C 至 +70°C 范围内为 ±1.5°C(最大值) – -55°C 至 +130°C 范围内为 ±3.0°C(最大值) • 超低功耗:25°C 时为 0.5µA(典型值) • 电源电压:1.62 至 5.5 V • 开漏输出 • 跳闸测试功能支持系统内测试 • 采用 SOT-563 (1.60mm × 1.20mm)、 6 引脚封装 TMP390-Q1 器件属于超低功耗、双通道、电阻可编程 温度开关系列,可在 –55°C 至 130°C 范围内对系统 过热事件进行保护和检测。TMP390-Q1 可提供独立的 过热(热)和欠温(冷)检测。跳闸温度 (TTRIP) 和热 迟滞 (THYST) 选项可由两个位于 SETA 和 SETB 引脚 上的 E96 系列电阻器(1% 容差)进行编程。通道 A 电阻器的阻值范围为 1.05KΩ 至 909KΩ,具有 48 个不 同 阻 值 。 通 道 B 电 阻 器 的 阻 值 范 围 为 10.5KΩ 至 909KΩ 器件型号 封装 2 应用 TMP390-Q1 SOT-563 (6) • 汽车信息娱乐系统 – USB 充电器 – 仪表组 – 媒体接口 • 摄像头 • 雷达/激光雷达 (1) SETA 输入的接地电阻器值可设置通道 A 的 TTRIP 阈 值。SETB 输入的接地电阻器值可设置通道 B 的 TTRIP 阈值,两个通道的 THYST 选项可设置为 5°C 或 10°C, 以防止发生不需要的数字输出切换。当 SETB 输入接 地,通道 A 运行时具有 20°C 的迟滞。电阻器精度对 TTRIP 精度没有影响。 为使客户能够进行电路板级制造, TMP390-Q1 可通过 发挥 SETA 或 SETB 引脚功能激活数字输出,从而支 持跳闸测试功能。 器件信息 (1) 封装尺寸(标称值) 1.60mm × 1.20mm 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 器件比较 器件型号 TMP390-Q1 RSETA and RSETB select trip thresholds and hysteresis options. 功能 热/冷 输出类型 开漏 VDD or VDDIO VDD RP SETA Optional Trip Test SETB RSETA RP OUTA TMP390-Q1 OUTB RSETB 简化版原理图 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SNIS218 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 内容 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 修订历史记录..................................................................... 2 5 引脚配置和功能................................................................. 3 6 规格................................................................................... 4 6.1 绝对最大额定值...........................................................4 6.2 ESD 等级.................................................................... 4 6.3 建议工作条件.............................................................. 4 6.4 热性能信息.................................................................. 4 6.5 电气特性......................................................................5 6.6 典型特性......................................................................6 7 详细说明............................................................................ 7 7.1 概述.............................................................................7 7.2 功能方框图.................................................................. 7 7.3 特性说明......................................................................7 7.4 器件功能模式............................................................ 10 8 应用和实现.......................................................................11 8.1 应用信息....................................................................11 8.2 典型应用....................................................................11 9 电源相关建议................................................................... 17 10 布局............................................................................... 18 10.1 布局指南..................................................................18 10.2 布局示例..................................................................18 11 器件和文档支持..............................................................19 11.1 接收文档更新通知................................................... 19 11.2 支持资源..................................................................19 11.3 商标......................................................................... 19 11.4 Electrostatic Discharge Caution.............................. 19 11.5 术语表..................................................................... 19 12 机械、封装和可订购信息............................................... 19 4 修订历史记录 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision A (April 2020) to Revision B (August 2019) Page • 更新了整个文档中的表格、图和交叉参考的编号格式......................................................................................... 1 • 向特性 部分添加了功能安全要点........................................................................................................................ 1 Changes from Revision * (September 2019) to Revision A (April 2020) • • • • • 2 Page 将数据表状态从“预告信息”更改为:量产数据................................................................................................ 1 添加了扩展工作温度范围:-55°C 至 +130°C......................................................................................................1 将无需校准精度的范围从 +125°C 更改为 +130°C.............................................................................................. 1 添加了通道 A 跳闸点精度与工作温度间的关系 图.............................................................................................. 6 添加了通道 B 跳闸点精度与工作温度间的关系 图.............................................................................................. 6 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 5 引脚配置和功能 SETA 1 6 OUTA SETB 2 5 VDD GND 3 4 OUTB Not to scale 图 5-1. DRL 封装 6 引脚 SOT-563 顶视图 表 5-1. 引脚功能 引脚 I/O 说明 编号 名称 1 SETA 输入 通道 A 温度设定点。在 SETA 和 GND 之间连接一个标准的 E96 电阻器(1% 容差)。 2 SETB 输入 通道 B 温度和迟滞设定点。在 SETB 和 GND 之间连接一个标准的 E96 电阻器(1% 容 差)。 3 GND 接地 器件接地。 4 OUTB 逻辑输出 5 VDD 电源 6 OUTA 逻辑输出 通道 B 逻辑开漏低电平有效输出。如果未使用,则输出既可以保持悬空状态,也可以连接到 GND。 电源电压(1.62V 至 5.5V)。 通道 A 逻辑开漏低电平有效输出。如果未使用,则输出既可以保持悬空状态,也可以连接到 GND。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 3 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 6 规格 6.1 绝对最大额定值 在自然通风条件下的工作温度范围内(除非另有说明)(1) (2) 电源电压 VDD 电压 OUTA、OUTB 电压 SETA、SETB 结温,TJ 贮存温度,Tstg (1) (2) 最小值 最大值 –0.3 6 单位 V -0.3 6 V –0.3 VDD + 0.3 V -55 150 °C –60 150 °C 应力超出绝对最大额定值 下所列的值可能会对器件造成永久损坏。这些列出的值仅仅是应力额定值,这并不表示器件在这些条件下以及 在建议运行条件 以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。 当工作结温超出建议运行条件 时,为器件供电可能会影响器件的正常运行。系统恢复到建议运行条件 下所示的条件后,必须对器件进行 下电上电。 6.2 ESD 等级 值 V(ESD) (1) 静电放电 单位 人体放电模型 (HBM),符合 AEC Q100-002(1) HBM ESD 分类等级 2 ±2000 充电器件模型 (CDM),符合 AEC Q100-011 CDM ESD 分类等级 C4A ±500 V AEC Q100-002 指示应当按照 ANSI/ESDA/JEDEC JS-001 规范执行 HBM 应力测试。 6.3 建议工作条件 VDD 电源电压 最小值 标称值 最大值 1.62 3.3 5.5 单位 V VDD + 0.3 V VOUTA 通道 A 输出上拉电压(开漏) VOUTB 通道 B 输出上拉电压(开漏) VDD + 0.3 V ISETA SETA 引脚电路漏电流 -20 20 nA ISETB SETB 引脚电路漏电流 -20 20 nA RPA 从 OUTA 连接到 VDDIO 的上拉电阻(1) RPB 从 OUTB 连接到 VDDIO 的上拉电阻(1) TA (1) 1 10 kΩ 自然通风工作温度范围(额定性能) -40 125 °C 自然通风工作温度范围(工作性能) –55 130 °C 其中 VDDIO 是 VDD 以外的独立电源,其电压不得超过 (VDD + 0.3)V。 6.4 热性能信息 TMP390-Q1 热指标(1) DRL (SOT) 单位 6 引脚 RθJA 结至环境热阻 210.3 °C/W RθJC(top) RθJB 结至外壳(顶部)热阻 105 °C/W 结至电路板热阻 87.5 °C/W ψJT 结至顶部特征参数 6.1 °C/W ψJB 结至电路板特征参数 MT 热质量 (1) 4 87 °C/W 1.83 mJ/°C 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标 应用报告 (SPRA953)。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 6.5 电气特性 最小值规格和最大值规格条件为:-55°C 至 130°C 的范围,且 VDD = 1.62V 至 5.5V(除非另有说明);典型值规格条件为: TA = 25°C 且 VDD = 3.3V。 参数 测试条件 最小值 典型值 最大值 VDD = 2.5V 至 5.5V –1.5 ±0.5 1.5 VDD = 1.62V 至 2.5V –2.0 ±0.5 2.0 -2.5 ±0.5 2.5 VDD = 1.62V 至 2.5V –3.0 ±0.5 3.0 VDD = 2.5V 至 5.5V -1.75 ±0.5 1.75 VDD = 1.62V 至 2.5V –2.0 ±0.5 2.0 -2.5 ±0.5 2.5 –3.0 ±0.5 3.0 单位 温度到数字转换器 温度测量 30°C 至 70°C 跳闸点精度(通道 A) 30°C 至 130°C 0°C 至 25°C 跳闸点精度(通道 B) -55°C 至 25°C THYST 跳变点迟滞 VDD = 2.5V 至 5.5V VDD = 2.5V 至 5.5V VDD = 1.62V 至 2.5V °C 表 7-2 选择列 2 5 °C 表 7-2 选择列 3 10 °C 通道 A(仅当 SETB 连接到 GND 时) 20 °C 跳变点电阻器编程 1.05 909 kΩ 10.5 909 kΩ -1.0 1.0 % SETA 和 SETB 电阻器温度系数 -100 100 ppm/°C SETA 和 SETB 电阻器寿命漂移 -0.2 0.2 % 50 pF SETA 电阻器范围 SETB 电阻器范围 SETA 和 SETB 电阻器容差 TA = 25°C 数字输入/输出 CIN SETA 和 SETB 的输入电容(包括 PCB) RPD 内部下拉电阻 SETA 和 SETB VOL 输出逻辑低电平 IOL = -3 mA ILKG 输出高电平漏电流 TCov 转换持续时间 TS 采样周期 125 kΩ 0 0.4 V -0.1 0.1 µA 0.65 ms 0.5 s 电源 IQ 平均静态电流 IStandby 待机电流 0.25 IConv 转换电流 135 μA ISU 启动(复位)峰值电流 仅复位时间间隔。 250 μA VPOR 上电复位阈值电压 电压升高 1.5 V 欠压检测 电压降低 1.1 V 电源复位时间 上电后器件复位所需的时间 10 ms VDD = 1.62V 至 3.3V 0.5 1 μA Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 5 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 6.6 典型特性 3 1.4 1.62 V 3.3 V 4.4 V 5.5 V 1.2 2 1.5 Trip Error (qC) I (uA) 1 2.5 0.8 0.6 0.4 1 0.5 0 -0.5 -1 -1.5 0.2 -2 0 -60 -2.5 -40 -20 0 20 40 60 80 Temperature (qC) -3 30 100 120 140 160 D002 (VS= 1.62V、3.3V、4.4V、5.5V) 6 2.5 5 2 4 1.5 3 1 2 Change (%) Trip Error (qC) 60 70 80 90 100 Temperature (qC) 110 120 130 D001 图 6-2. 通道 A 跳闸点精度与工作温度间的关系 3 0.5 0 -0.5 -55qC 25qC 130qC 1 0 -1 -2 -1 -3 -1.5 -4 -2 -5 -2.5 -3 -50 -40 -30 -20 -10 0 Temperature (qC) 10 20 -6 1.5 30 D002 2.5 3 3.5 4 4.5 Supply Voltage (V) 5 5.5 6 D001 图 6-4. 采样周期变化与电源电压间的关系 图 6-3. 通道 B 跳闸点精度与工作温度间的关系 200 190 180 180 160 170 140 VOUT (mV) 200 160 150 140 1.62 V 2.2 V 3.3 V 5.5 V 120 100 80 130 60 120 40 110 20 100 1.5 2 。 (VS = 3.3V) Current (uA) 50 (VS = 3.3V) 图 6-1. 平均电源电流与工作温度间的关系 0 2 2.5 3 3.5 4 4.5 Supply Voltage (V) 5 5.5 0 6 1 D005 。 图 6-5. 转换电流与电源电压间的关系 6 40 2 3 4 5 6 Load Current (mA) 7 8 9 10 D004 (TAMB = 25°C) 图 6-6. 输出电压与负载电流之间的关系 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 7 详细说明 7.1 概述 TMP390-Q1 超低功耗、双通道、电阻器可编程温度开关支持对宽温度范围内的系统过热事件进行检测和保护。 TMP390-Q1 可提供独立的过热(热)和欠温(冷)检测。跳闸温度和迟滞选项可由位于 SETA 和 SETB 引脚上 的两个 E96 系列 (1%) 十倍标准值电阻器进行编程。TMP390-Q1 可通过跳闸测试功能支持客户电路板级制造测 试,该功能可以强制 SETA 或 SETB 引脚处于逻辑高电平以激活数字输出。 7.2 功能方框图 RSETA and RSETB select trip thresholds and hysteresis options. VDD VDD or VDDIO RP SETA C SETB RSETA RP OUTA TMP390-Q1 OUTB RSETB 图 7-1. 简化版原理图 7.3 特性说明 根据表 7-1 和表 7-2,对于热通道和冷通道器件,TMP390-Q1 需要两个电阻来设置两个跳变点和迟滞。TMP390Q1 的输出为开漏,需要两个上拉电阻。TI 建议使用不超过 VDD + 0.3V 的上拉电压电源。OUTA 和 OUTB 引脚 与上拉电源之间使用的上拉电阻应大于 1kΩ。当电源电压超过 1.5V 时,器件上电,并开始对输入电阻器进行采 样,以设置上电后的两个跳变点和迟滞值。这些值将保持不变,直到器件经过下电上电。器件设置跳变点和迟滞 电平后,该器件将每半秒更新一次输出。根据跳变点检查温度并更新输出后,转换时间通常为 0.65ms。器件在转 换之间保持待机模式。如果不使用任一通道,则输出既可以接地,也可以保持悬空状态。 7.3.1 TMP390-Q1 编程表 可以使用两个外部 1% E96 标准电阻器对 TMP390-Q1 器件的温度阈值和迟滞选项进行编程。SETA 输入端接地 电阻的特定电阻值可设置通道 A 的温度阈值。SETB 输入端接地电阻的特定电阻值可设置通道 B 的温度阈值,以 及通道 A 和通道 B 的迟滞。 表 7-1. TMP390-Q1 通道 A 阈值设置 通道 A(热)跳闸温度 (°C) 通道 A 标称 1% 电阻器 (KΩ) 迟滞 = 5°C 时的通道 A(热)跳闸复位 温度 (°C) 迟滞 = 10°C 时的通道 A(热)跳闸复位 温度 (°C) 30 1.05 25 20 32 1.21 27 22 34 1.40 29 24 36 1.62 31 26 38 1.87 33 28 40 2.15 35 30 42 2.49 37 32 44 2.87 39 34 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 7 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 表 7-1. TMP390-Q1 通道 A 阈值设置 (continued) 8 通道 A(热)跳闸温度 (°C) 通道 A 标称 1% 电阻器 (KΩ) 迟滞 = 5°C 时的通道 A(热)跳闸复位 温度 (°C) 迟滞 = 10°C 时的通道 A(热)跳闸复位 温度 (°C) 46 3.32 41 36 48 3.83 43 38 50 4.42 45 40 52 5.11 47 42 54 5.90 49 44 56 6.81 51 46 58 7.87 53 48 60 9.09 55 50 62 10.5 57 52 64 12.1 59 54 66 14.0 61 56 68 16.2 63 58 70 18.7 65 60 72 21.5 67 62 74 24.9 69 64 76 28.7 71 66 78 33.2 73 68 80 38.3 75 70 82 44.2 77 72 84 51.1 79 74 86 59.0 81 76 88 68.1 83 78 90 78.7 85 80 92 90.9 87 82 94 105 89 84 96 121 91 86 98 140 93 88 100 162 95 90 102 187 97 92 104 215 99 94 106 249 101 96 108 287 103 98 110 332 105 100 112 383 107 102 114 442 109 104 116 511 111 106 118 590 113 108 120 681 115 110 122 787 117 112 124 909 119 114 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 备注 当 SETA 引脚在器件上电期间接地或保持悬空状态时,OUTA 引脚始终保持低电平。通道 B 功能不受 SETA 通道的影响。 表 7-2. TMP390-Q1 通道 B 阈值和迟滞设置 通道 B 标称 1% 电阻器 (KΩ) 通道 B(冷)跳闸复位温度 (°C) 通道 B(冷)跳闸温 度 (°C) 迟滞 = 5°C 迟滞 = 10°C 迟滞 = 5°C 迟滞 = 10°C -50 90.9 105 –45 -40 –45 78.7 121 -40 -35 -40 68.1 140 -35 –30 -35 59.0 162 –30 –25 –30 51.1 187 –25 -20 –25 44.2 215 -20 -15 -20 38.3 249 –15 -10 -15 33.2 287 -10 -5 -10 28.7 332 -5 0 –5 24.9 383 0 5 0 21.5 442 5 10 5 18.7 511 10 15 10 16.2 590 15 20 15 14.0 681 20 25 20 12.1 787 25 30 25 10.5 909 30 35 7.3.2 跳匣测试 跳闸测试目的是,在进行系统制造测试时,无需让 TMP390-Q1 经历成本高昂的 TMP390-Q1 组件和上拉电阻温 度验证。当 SETA 或 SETB 引脚设置为高逻辑电平时,相关输出变为低电平。当输入引脚电平变为低电平时,输 出会回到跳闸测试前的状态。跳闸测试不会影响器件的当前状态。逻辑高电平的跳闸测试信号应保持在 0.8 × VDD 以上,逻辑低电平的跳闸测试信号应保持在 0.2 × VDD 以下。 跳闸测试操作如图 7-2。当器件在不会导致相应输出跳闸的温度下运行时,必须用一个拨动开关来执行跳闸测试。 跳闸测试用于组装后的量产测试,不得用作功能特性。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 9 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 Measured Temperature (°C) (Channel A) Hot threshold Hysteresis: 5°C, or 10°C (Channel B) Cold threshold Time (s) OUTA OUTB Trip test asserts output SETA SETB Time (s) 图 7-2. TMP390-Q1 跳闸测试操作 7.3.3 20°C 滞后温度 20°C 迟滞功能仅适用于通道 A。要激活该功能,必须将 SETB 引脚接地,并将 SETA 引脚连接到电阻器,以便在 通道 A 上设置适当的跳变点。 7.4 器件功能模式 如上所述,该器件有一种运行模式,适用于在建议运行条件 下运行的情况。 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 8 应用和实现 备注 以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 8.1 应用信息 TMP390-Q1 器件属于超低功耗、双通道、电阻器可编程温度开关系列,支持对宽温度范围内的系统过热事件进行 检测和保护。跳闸温度 (TTRIP) 和迟滞选项可由两个位于 SETA 和 SETB 引脚上的 E96 系列 (1%) 十倍标准值电阻 器进行编程。热迟滞 (THYST) 功能可防止因微小的温度变化而发生不必要的数字输出开关行为。 8.2 典型应用 8.2.1 简化版应用原理图 图 8-1 展示了简化原理图,其中 RSETA 和 RSETB 用于设置通道 A 跳变点 (SETA) 以及通道 B 跳变点和两个通道的 迟滞 (SETB)。可以根据器件,在各种温度下对 SETA 和 SETB 进行编程,如表 7-1(关于通道 A 跳变点)和表 7-2(关于通道 B 跳变点和两个通道的迟滞)中所述。OUTA 和 OUTB 输出分别对应于 SETA 和 SETB 上的温度 阈值检测。 RSETA and RSETB select trip thresholds and hysteresis options. VDD or VDDIO VDD RP SETA Optional Trip Test SETB RSETA RP OUTA TMP390-Q1 OUTB RSETB 图 8-1. 简化版原理图 8.2.1.1 设计要求 TMP390-Q1 需要两个电阻来设置高低跳变点和迟滞,以及两个上拉电阻用于开漏器件。TI 还强烈建议在 VDD 电 源引脚附近放置一个 0.1µF 电源旁路电容器。为了尽可能降低内部功耗,请从 OUTA 和 OUTB 引脚到 VDD 引脚 使用两个大于 1kΩ 的上拉电阻。可以使用一个单独的电源 (VDDIO) 作为上拉电压,以将输出电压电平设置为 MCU 所需的电平,如图 8-1 所示。开漏输出可以灵活上拉至任何与 VDD 无关的电压(VDDIO 必须小于或等于 VDD + 0.3V)。这允许使用更长的电缆或不同的电源选项。如果不需要单独的电压电平,TI 建议将上拉电阻连接 到 TMP390-Q1 VDD。 如果连接 SETA 或 SETB 的电阻值超出规定范围,则相关输出将进入永久输出零级,因此无法使用该通道。另一 个通道仍将处于运行状态,可在单通道模式下使用器件。如果 SETB 输入端接地或保持悬空状态,则无法使用通 道 B,且通道 A 的迟滞将为 20°C。在 POR 期间测量连接 SETA 和 SETB 的电阻值。如果两个连续测量值彼此不 匹配,则器件会将相关通道输出设置为零,并重复测量电阻,直到测量值匹配为止。当测量值匹配时,将释放通 道输出。请注意,可以通过短接 OUTA 或 OUTB 线路将某些器件输出端连接在一起。 8.2.1.2 详细设计过程 SETA 输入的接地电阻器值可设置通道 A 的 TTRIP 阈值。SETB 输入的接地电阻器值可设置通道 B 的 TTRIP 阈 值,并设置 THYST 的 5°C 和 10°C 选项。TI 建议 SETA 和 SETB 上的电阻器在室温下具有 1% 的容差。每个电阻 器的取值范围为 1.05KΩ 至 909KΩ,可从 48 个唯一值中择一。表 7-1 和表 7-2 展示了确切的温度阈值和跳变 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 11 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 点。上拉电阻应至少为 1kΩ,尽可能地降低内部功耗。为了获得正确的电阻器值阈值,请注意尽可能减小 SETA 和 SETB 引脚上的板级电容和泄漏电流。 热/冷阈值下 TMP390-Q1 输出的波形如图 8-2 所示。迟滞可设置为 5°C、10°C 或 20°C。当温度超过热跳变点阈 值时,OUTA 将变为低电平,直到温度降至迟滞阈值以下。当温度降至冷跳变阈值以下时,OUTB 变为低电平, 并在温度升至迟滞阈值以上后返回高电平。如果开关已跳闸且温度处于滞环内,则 POR 事件将导致在电源恢复后 输出变为高电平。 8.2.1.3 应用曲线 Measured Temperature (°C) (Channel A) Hot threshold Hysteresis 5°C, or 10°C (Channel B) Cold threshold Time (s) OUTA OUTB Time (s) 图 8-2. 具有热/冷阈值和迟滞功能的 TMP390-Q1 输出 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 8.2.2 具有 10°C 迟滞的 TMP390-Q1 图 8-3 展示了使用 TMP390-Q1 进行过热和欠温保护的示例电路。在此示例中,跳变点设置为 –25°C 和 +90°C,迟滞为 10°C。 VDD = 3.0 V 0.1 µF 3.3 V 10 kŸ VDD VCC OUTA SETA 78.7 kŸ 10 kŸ TMP390-Q1 Channel A Trip Temp = +90°C and Hysteresis = 10°C SETB 215 kŸ Microprocessor OUTB GND GND Channel B Trip Temp = ±25°C and Hysteresis = 10°C 图 8-3. 阈值为 +90°C 和 –25°C 且迟滞为 10°C 的 TMP390-Q1 示例电路 8.2.2.1 设计要求 在本例中,VDD 可以 ≥ 3V。输出引脚可以连接到开关,以控制风扇或其他模拟电路。此示例在 OUTA 和 OUTB 输出端使用 10kΩ 上拉电阻。在 TMP390-Q1 器件附近放置一个 0.1µF 旁路电容器,以减少来自电源的耦合噪 声。如果需要,可以将多个器件的输出端连接在一起。 8.2.2.2 详细设计过程 SETA 使用 78.7kΩ 设置 +90°C 阈值。SETB 使用 215kΩ 设置 –25°C 跳变点和 10°C 迟滞。这些值是使用表 7-1 和表 7-2 确定的。这些电阻器的最大容差应为 1%,在所需温度范围内的最大容差应为 100ppm/°C 或更低。 本示例中使用的电阻器设置汇总如表 8-1 所示。有关其他跳变点和迟滞配置,请参阅表 7-1 和表 7-2。 可通过图 8-4 中显示的输出图,对 TMP390-Q1 的开关输出进行可视化。必须注意的是,从通道 A 阈值中减去迟 滞并将其添加到通道 B 阈值中。OUTA 保持高电平,直到传感器达到 +90°C,此时输出变为低电平,并在温度回 落至 +80°C 后返回高电平。当温度保持在 –25°C 以下时,OUTB 跳闸并变为低电平,直到温度升至 –15°C 以 上。 表 8-1. 电阻设置和跳变点示例 通道 电阻设置 (kΩ) SETA 78.7 SETB 215 迟滞 (°C) 10 跳闸温度 (°C) +90 –25 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 13 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 8.2.2.3 应用曲线 OUTA OUTB VCC VCC +80°C +90°C TTRIP TTRIP ±25°C ±15°C 图 8-4. 具有迟滞功能的 TMP390-Q1 输出响应 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 8.2.3 针对高达 124°C 的热跳变点的单通道运行 图 8-5 展示了配置用于单通道运行的 TMP390-Q1,其中使用单个电阻器来设置热跳变点和迟滞。表 8-2 展示了可 用于单通道应用的可能电阻值和迟滞值。 3.3 V 0.1 µF 10 NŸ VDD OUTA SETA 33.2 NŸ TMP390-Q1 SETB OUTB GND 图 8-5. 具有 78°C 跳变点和 5°C 迟滞的 TMP390-Q1 单通道(热)运行示例电路 表 8-2. 单电阻器单通道设置 标称 1% 电阻 (KΩ) 通道 A 跳闸温度 (°C) 迟滞 (°C) 10.5 62 5 12.1 64 5 14.0 66 5 16.2 68 5 18.7 70 5 21.5 72 5 24.9 74 5 28.7 76 5 33.2 78 5 38.3 80 5 44.2 82 5 51.1 84 5 59.0 86 5 68.1 88 5 78.7 90 5 90.0 92 5 105 94 10 121 96 10 140 98 10 162 100 10 187 102 10 215 104 10 249 106 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 15 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 表 8-2. 单电阻器单通道设置 (continued) 标称 1% 电阻 (KΩ) 通道 A 跳闸温度 (°C) 迟滞 (°C) 287 108 10 332 110 10 383 112 10 442 114 10 511 116 10 590 118 10 681 120 10 787 122 10 909 124 10 Measured Temperature (°C) 8.2.3.1 应用曲线 (Channel A) Hot threshold Hysteresis 5°C Time (s) OUTA VDD When VDD supply voltage is zero, the pullup output voltage is still present Time (s) 图 8-6. TMP390-Q1 单通道(热)运行阈值和迟滞 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 8.2.4 针对冷跳变点的单通道运行 图 8-7 展示了配置用于单通道运行的 TMP390-Q1,其中使用单个电阻器来设置温跳变点和迟滞。单通道温跳变点 的电阻值与表 7-2 中所述的值相同。 3.3 V 0.1 µF 10 kŸ VDD OUTA SETA TMP390-Q1 249 kŸ SETB OUTB GND 图 8-7. 具有 –20°C 跳变点和 10°C 迟滞的 TMP390-Q1 单通道(冷)运行示例电路 Measured Temperature (°C) 8.2.4.1 应用曲线 Hysteresis 10°C (Channel B) Cold threshold Time (s) OUTB Time (s) 图 8-8. TMP390-Q1 单通道(冷)运行阈值和迟滞 9 电源相关建议 TMP390-Q1 具有低电源电流和宽电源电压范围,因此可以从多个电源为器件供电。VDDIO 必须始终低于或等于 VDD + 0.3V。 强烈建议在 VDD 和 GND 之间添加一个 0.1μF 的电容器进行电源旁路处理。在嘈杂的环境中,TI 建议在外部电 源和 VDD 之间添加一个具有 0.1μF 电容器和 100Ω 电阻器的滤波器,以限制电源噪声。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 17 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 10 布局 10.1 布局指南 TMP390-Q1 的布局极其简单。将电源旁路电容器尽可能靠近该器件放置并按图 10-1 所示连接该电容器。将 RSETA 和 RSETB 电阻器尽可能靠近该器件放置。仔细考虑电阻器的放置,以避免额外的泄漏或寄生电容,因为这 可能会影响跳变阈值和迟滞的实际电阻器感应值。如果 SETA 和 SETB 电路上可能出现湿气冷凝(这可能会导致 额外的漏电流),则考虑在电路中添加保形涂层。 10.2 布局示例 VIA to ground plane VIA to power plane RSETA SETA OUTA 0.1 …F RSETB SETB VDD GND OUTB 图 10-1. TMP390-Q1 建议布局 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 TMP390-Q1 www.ti.com.cn ZHCSKA0B – SEPTEMBER 2019 – REVISED JUNE 2022 11 器件和文档支持 11.1 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.2 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 11.3 商标 TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.5 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 12 机械、封装和可订购信息 下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TMP390-Q1 19 PACKAGE OPTION ADDENDUM www.ti.com 13-Nov-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TMP390AQDRLRQ1 ACTIVE SOT-5X3 DRL 6 4000 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 130 1G1 TMP390AQDRLTQ1 LIFEBUY SOT-5X3 DRL 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 130 1G1 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TMP390AQDRLRQ1 价格&库存

很抱歉,暂时无法提供与“TMP390AQDRLRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TMP390AQDRLRQ1
  •  国内价格 香港价格
  • 4000+4.131974000+0.50078
  • 8000+3.680048000+0.44600
  • 12000+3.6154812000+0.43818
  • 20000+3.5509220000+0.43035

库存:0