0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS53647EVM-710

TPS53647EVM-710

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVALBOARDFORTPS53647

  • 数据手册
  • 价格&库存
TPS53647EVM-710 数据手册
User's Guide SLUUBA9A – June 2015 – Revised February 2017 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface The PWR710-EVM evaluation module (EVM) uses the TPS53647 controller. The controller is 4-phase, DCAP+™ synchronous buck driverless controller with PMBus™ interface. The device operates using a voltage supply between 4.5 V and 17 V. The controller allows programming and monitoring via the PMBus interface. This PWR710-EVM uses the CSD95372B, Synchronous Buck NexFET™ Smart Power Stage (SLPS499) device as the power stage. 1 2 3 4 5 6 7 8 9 10 1 Contents Description .................................................................................................................... 1 1.1 Typical Applications ................................................................................................ 1 1.2 Features .............................................................................................................. 2 Electrical Performance Specifications ..................................................................................... 2 Schematic ..................................................................................................................... 3 Test Setup .................................................................................................................... 8 4.1 Test and Configuration Software ................................................................................. 8 4.2 Test Equipment ..................................................................................................... 8 4.3 Recommended Test Setup ........................................................................................ 9 4.4 USB Interface Adapter and Cable .............................................................................. 10 4.5 List of Test Points and Connectors ............................................................................. 11 EVM Configuration Using the Fusion GUI .............................................................................. 13 5.1 Configuration Procedure ......................................................................................... 13 Test Procedure ............................................................................................................. 13 6.1 Line/Load Regulation and Efficiency Measurement Procedure ............................................. 13 6.2 Control Loop Gain and Phase Measurement Procedure .................................................... 14 6.3 Efficiency ........................................................................................................... 14 6.4 Equipment Turn-on and Shutdown.............................................................................. 15 Performance Data and Typical Characteristic Curves................................................................. 16 EVM Assembly Drawing and PCB Layout .............................................................................. 19 List of Materials ............................................................................................................. 22 Fusion GUI .................................................................................................................. 24 Description The PWR710-EVM operates as a single output converter. The nominal 12-V bus produced a regulated, 1.0-V output at up to 120 A of load current. The PWR710-EVM demonstrates the controller in a typical low-voltage high-current application while providing a number of test points to evaluate the performance of the controller. Refer to TPS53647 (SLUSC39) datasheet for more information on multi-phase configuration. 1.1 Typical Applications • • • • ASIC power in communications equipment High density power solutions Server power Smart power systems SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 1 Description 1.2 Features • • • • 2 www.ti.com Regulated 1.0-V output up to 120-A DC steady state output current Output can be marginable and trimmable via the PMBus interface Programmable through PMBus interface – UVLO protection threshold – Soft-start slew-rate – Device enable and disable – Overcurrent warning and fault limits – SW frequency – BOOT voltage Convenient test points for probing critical waveforms Electrical Performance Specifications Table 1. PWR710-EVM Electrical Performance Specifications PARAMETER TEST CONDITIONS MIN TYP MAX 8 12 14 UNITS INPUT CHARACTERISTICS VIN Voltage range V IIN(max) Maximum input current VIN = 8 V, IOUT = 120 A 17 A No load input current VIN = 14 V, IOUT = 0 A 120 mA OUTPUT CHARACTERISTICS VOUT Output voltage IOUT Output load current VRIPPLE 1.0 0 Output voltage line regulation 8 V ≤ VIN ≤ 14 V 0.03% Output voltage load regulation 0 A ≤ IOUT ≤ 120 A 0.03% Output voltage ripple VIN = 12 V, IOUT = 120 A Output overcurrent protection (OCP) V 120 A 3.8 mVpp 150 A 500 kHz SYSTEMS CHARACTERISTICS fSW TJ 2 Switching frequency VIN = 12 V Peak efficiency VIN = 12 V, IOUT = 74 A 91% Full-load efficiency VIN = 12 V, IOUT = 120 A 90% Operating temperature 25 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface ºC SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Schematic www.ti.com 3 Schematic TP1 Vin: 8-14Vdc J1 L1 VIN VIN VIN_C TP3 IMON IMON J2 J3 1 3 SKIP#_NVM R2 150k 2 4 C2 22µF GND R1 49.9k C3 2200pF C1 22µF TP2 NVM R3 20.0k Pinstraps VIN_C C4 22µF TP4 TSEN R4 TAO TSEN C12 270µF 0 R5 121k C5 22µF C6 22µF C7 22µF C8 22µF C9 22µF C10 3300pF C11 3300pF C13 270µF C20 1000pF C15 22µF C14 22µF C16 22µF C17 22µF C18 22µF C19 22µF C21 3300pF 3300pF C22 TP5 AGND C26 1µF C23 1µF C25 4.7µF U1 1_8V_LDO TP6 V3R3 5V_CON R6 1.00 VIN_C V3R3 R8 2.00k TP10 ENABLE RESET# J5 C29 1µF VSP VSN VREF R15 33.2k R10 26.7k R11 9.31k 5V_CON V12 V3R3 ENABLE RESET# PMB_CLK PMB_ALERT# PMB_DIO TSEN R14 4.32k C24 0.33µF TP7 TP8 5V_CON R13 16.5k R12 16.5k ADDR_TRISE SLEW-MODE O-USR VBOOT F-IMAX OCP-R CSP1 CSP2 CSP3 CSP4 15 16 14 23 21 PMB_CLK PMB_ALERT# PMB_DIO 24 25 26 TSEN 40 VSP VSN 9 10 CSP1 CSP2 CSP3 CSP4 3 4 5 6 ADDR_TRISE SLEW-MODE O-USR VBOOT F-IMAX 28 29 30 31 32 OCP-R 1 TPS53647RHA V5 V12 V3R3 VREF ISUM ENABLE IMON RESET COMP PMB_CLK PMB_ALERT PMB_DIO PWM1 PWM2 PWM3 PWM4 J4 13 VREF VREF 12 ISUM ISUM TP9 2 IMON 11 COMP 38 37 36 35 PWM1 PWM2 PWM3 PWM4 1 3 5 7 9 VREF R7 2.55k IMON TP11 COMP 2 4 6 8 10 PMB_ALERT# PMB_DIO C27 R9 PMB_CLK 8.06k PWM1 PWM2 PWM3 PWM4 1000pF C28 J6 12pF 1_8V_LDO TSEN VSP VSN VR_RDY VR_FAULT VR_HOT CSP1 CSP2 CSP3 CSP4 SKIP_NVM ADDR_TRISE SLEW-MODE O-USR VBOOT F-IMAX OCP-R NC NC NC NC GND GND GND PAD 18 27 19 VR_RDY VR_FAULT# VR_HOT# 39 SKIP#_NVM VR_RDY 1 2 3 3_3V_LDO VR_FAULT# VR_HOT# SKIP#_NVM 7 8 33 34 R17 10.0k TP12 PMB_CLK 17 20 22 41 R16 10.0k R18 10.0k C30 0.1µF P_CLK TP13 PMB_ALERT# P_ALERT# TP14 V3R3 P_DIO PMB_DIO R20 20.0k R27 30.1k R24 39.2k R25 150k R19 24.3k R21 24.3k AGND R28 PWRGND R26 10.0k R23 10.0k R22 10.0k 0 TP16 TP15 VR_RDY AGND PWRGND VR_RDY TP17 VR_FAULT# VR_FAULT# VR_HOT# VR_HOT# Figure 1. PWR710-EVM Schematic Controller SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 3 Schematic www.ti.com U2 C31 TP18 7 VIN_C PWM1 12 PWM1 R39 SKIP#_NVM 10 VIN PWM 5 1.00 R31 3 V3R3 VDD R35 CSP1 1 0 ENABLE REFIN 2 IOUT PGND PGND 4 13 VREF C47 0.1µF CSD95372BQ5M C35 1000pF R37 DNP C41 DNP VOUT L2 6 VSW 10.0k C33 2.2µF C37 1000pF 11 TAO/FAULT R29 TAO 0.1µF R33 0 8 BOOT_R FCCM 0 5V_DRV 9 BOOT C43 DNP C39 1000pF C44 470µF R43 1.00 VREF Figure 2. Phase 1 U5 C50 TP21 7 VIN_C PWM4 12 PWM4 R56 10 SKIP#_NVM VIN BOOT PWM BOOT_R FCCM 0 TAO/FAULT R46 5V_DRV 1.00 R48 V3R3 5 VDD 3 C52 2.2µF R52 1 TAO 0.1µF R50 0 8 C56 1000pF VOUT 11 VSW 6 ENABLE REFIN 2 IOUT PGND PGND 4 13 10.0k CSP4 9 L5 VREF C64 0.1µF C58 1000pF 0 C60 DNP CSD95372BQ5M C54 1000pF R54 DNP R60 1.00 VREF Figure 3. Phase 2 U4 TP20 C49 7 VIN_C PWM3 12 PWM3 R55 10 SKIP#_NVM VIN BOOT PWM BOOT_R FCCM 0 5V_DRV TAO/FAULT R45 1.00 R47 V3R3 5 VDD 3 R51 CSP3 1 TAO 0.1µF R49 0 8 C55 1000pF VOUT 11 VSW 6 ENABLE REFIN 2 IOUT PGND PGND 4 13 10.0k C51 2.2µF 9 L4 PA2607.151NLT VREF C63 0.1µF C57 1000pF C61 470µF C62 DNP 0 C59 DNP R53 DNP CSD95372BQ5M C53 1000pF R59 1.00 VREF Figure 4. Phase 3 4 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Schematic www.ti.com U5 C50 TP21 7 VIN_C PWM4 12 PWM4 R56 10 SKIP#_NVM VIN PWM BOOT_R FCCM 0 5V_DRV TAO/FAULT R46 1.00 BOOT R48 V3R3 5 VDD 3 C52 2.2µF R52 1 8 TAO 0.1µF R50 0 C56 1000pF VOUT 11 VSW 6 ENABLE REFIN 2 IOUT PGND PGND 4 13 10.0k CSP4 9 L5 VREF C64 0.1µF C58 1000pF 0 C60 DNP CSD95372BQ5M C54 1000pF R54 DNP R60 1.00 VREF Figure 5. Phase 4 SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 5 6 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated PWRGND C81 DNP C67 DNP C82 100µF C68 100µF C83 100µF C69 100µF C80 100µF CSP4 TP25 CSP3 TP24 CSP2 TP23 CSP1 TP22 C70 100µF CSP4 CSP3 CSP2 C84 100µF DNP R70 DNP R65 DNP R62 DNP R61 CSP1 C65 100µF C85 100µF C71 100µF Disable Phase 4 when R70 = 0 C86 100µF Disable Phase 3 4 when R65 = 0 Disable Phase 2 3 4 when R62 = 0 Disable Phase 1 2 3 4 when R61= 0 V3R3 C72 100µF C87 100µF C66 DNP C88 DNP C73 100µF J7 C89 DNP C74 100µF C90 DNP PWRGND R69 0 R63 0 C75 100µF 0 R66 0 R64 VOUT C91 DNP R67 DNP C76 100µF C92 DNP AGND R68 DNP J8 C77 100µF C93 DNP VSN VSP C78 100µF VSN VSP C94 DNP C79 100µF J9 VOUT GND TP27 VOUT TP26 Vout: 1.0Vdc Iout: 120A J13 J12 J11 J10 Schematic www.ti.com Figure 6. Output Filter SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback ENABLE 5VIN SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback 0 R41 ENABLE TP28 R71 1.00k C97 0.1µF C95 0.01µF 3 1 R74 100k C98 10µF 3_3V_LDO PGD_1 EG1218 S1 Copyright © 2015–2017, Texas Instruments Incorporated 1 11 20 6 7 9 10 2 3 1-2 OFF 2-3 ON EP GND RESET MR1 MR2 PG1 FB2 VOUT2 VOUT2 FB1 VOUT1 VOUT1 TPS70102PWP NC NC NC EN SEQ VIN2 VIN2 VIN1 VIN1 U6 2 21 8 15 4 5 16 14 12 13 17 18 19 J14 GND TP30 5VIN PGD_1 5VIN R58 51.1k R75 15.0k 30.1k R57 R42 30.1k 5VIN TP29 5V_CON C99 10µF 3_3V_LDO TP32 1_8V_LDO TP31 R73 1.0 C96 10µF R76 2.00k 5V_DRV R72 1.0 RESET 3_3V_LDO 1_8V_LDO www.ti.com Schematic Figure 7. Auxiliary Circuitry Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface 7 Test Setup www.ti.com 4 Test Setup 4.1 Test and Configuration Software Use the TI Fusion Digital Power Designer software to change any of the default configuration parameters on the EVM. To download this software, visit the Digital Power Software page. 4.1.1 Description Fusion Digital Power Designer is the graphic user interface (GUI) used to configure and monitor controller on the EVM. The software uses the PMBus protocol to communicate with the controller over serial bus by way of a TI USB adapter (see Figure 9). 4.1.2 TI Fusion Digital Power Designer Features The software offers these features: • Turn on or off the power supply output, either through the hardware control line or the PMBus operation command. • Monitor real-time data. Items such as input voltage, output voltage, output current, temperature, warnings and faults are continuously monitored and displayed by the GUI. • Configure common operating characteristics such as output voltage trim and margin, VIN UVLO, softstart slew rate, switching frequency, and warning and fault thresholds. 4.2 4.2.1 Test Equipment Voltage Sources Two DC input voltage sources are needed (VIN and 5VIN). Use an input voltage source VIN between 0 V and 14 V variable DC source capable of supplying 20 Adc. Use another input voltage source 5VIN a 5-V DC source capable of supplying 1Adc. Connect VIN to J1, J2 and connect 5VIN to J14 as shown in Figure 8. 4.2.2 Multimeters It is recommended to use two separate multimeters as shown in Figure 8. One meter is to measure VIN, the other one is to measure VOUT. 4.2.3 Output Load The electronic load is recommended for the test setup as shown in Figure 8. The load should be capable of 120 A. 4.2.4 Oscilloscope Use an oscilloscope to measure output noise and ripple. Use a coaxial cable to measure output ripple across the output ceramic capacitor, C76. 4.2.5 Fan During prolonged operation at high load, it may be necessary to provide forced air cooling with a small fan aimed at the EVM. Maintain the temperature of the devices on the EVM under 105°C. 4.2.6 USB-to-GPIO Interface Adapter A communications adapter is required between the EVM and the host computer. This EVM is designed to use the Texas Instruments USB-to-GPIO adapter, see Figure 9. To purchase this adapter visit the TI usbto-gpio tool page. 4.2.7 8 Recommended Wire Gauge Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Test Setup www.ti.com Table 2. Recommended Wire Gauge Voltage (V) (1) 4.3 CONNECT RECOMMENDED WIRE SIZE 12 VIN to J1 AWG #10 5 5VIN to J14 AWG #18 1 Load to J10 and J11 4 × AWG #10 MAXIMUM TOTAL WIRE LENGTH (FEET) RETURN 2 (1) INPUT OUTPUT 2 n/a 2 n/a n/a 2 Total length of wire less than 4 feet (2 feet input or output, 2 feet return). Recommended Test Setup Figure 8 shows the recommended test setup, which includes VIN and 5VIN input voltage sources, output load, and USB-to-GPIO adapter. Figure 8. PWR710-EVM Recommended Test Setup SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 9 Test Setup 4.4 www.ti.com USB Interface Adapter and Cable Figure 9 shows the USB interface adapter and cable. Figure 9. Texas Instruments USB-to-GPIO Adapter and Connections 10 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Test Setup www.ti.com 4.5 List of Test Points and Connectors Table 3 lists the test point functions. Table 3. Test Point Functions TEST POINT NAME DESCRIPTION TP1 VIN VIN+ measurement point TP2 GND VIN– measurement point TP3 IMON IMON signal TP4 TSEN TSEN signal TP5 AGND Analog Ground TP6 V3R3 Internal 3.3-V LDO output measurement point TP7 VREF Internal reference voltage measurement point TP8 5V_CON 5-V controller power input measurement point TP9 ISUM ISUM signal TP10 RESET# RESET signal TP11 COMP COMP signal TP12 P_CLK PMBus clock signal TP13 P_ALERT# PMBus alert signal TP14 P_DIO PMBus digital I/O signal TP15 VR_RDY VR_RDY signal TP16 VR_FAULT# VR_FAULT signal TP17 VR_HOT# VR_HOT signal TP18 PWM1 PWM signal of Phase 1 TP19 PWM2 PWM signal of Phase 2 TP20 PWM3 PWM signal of Phase 3 TP21 PWM4 PWM signal of Phase 4 TP22 CSP1 Current sense signal of Phase 1 TP23 CSP2 Current sense signal of Phase 2 TP24 CSP3 Current sense signal of Phase 3 TP25 CSP4 Current sense signal of Phase 4 TP26 VOUT VOUT+ measurement point TP27 GND VOUT– measurement point TP28 ENABLE ENABLE signal TP29 5VIN 5VIN+ measurement point TP30 GND 5VIN– measurement point TP31 1_8V_LDO 1.8-V external LDO output measurement point TP32 3_3V_LDO 3.3-V external LDO output measurement point Table 4 lists the EVM connector functions. Table 4. Connector Functions Connector TYPE DESCRIPTION J1 CB35-36-CY VIN+ connector J2 CB35-36-CY VIN– connector J3 TSW-102-07G-D Choose NVM or pin strap J4 TSW-105-07G-D PMBus connector J5 TSW-102-07G-S Reset SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 11 Test Setup www.ti.com Table 4. Connector Functions (continued) 12 Connector TYPE DESCRIPTION J6 TSW-103-07G-S Choose PMBus pull up voltage(1.8V or 3.3V) J7 TSW-102-07G-S VOUT connector for bode plot measurement J8 TSW-102-07G-S VOUT connector for bode plot measurement J9 TSW-102-07G-S VOUT measurement connector J10 CB35-36-CY VOUT+ connector J11 CB35-36-CY VOUT+ connector J12 CB35-36-CY VOUT- connector J13 CB35-36-CY VOUT- connector J14 ED555/2DS 5VIN connector Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated EVM Configuration Using the Fusion GUI www.ti.com 5 EVM Configuration Using the Fusion GUI The controller on this EVM leaves the factory pre-configured. Table 5 lists some key factory configuration parameters from the configuration file. Table 5. Key Factory Configuration Parameters CMD NAME CMDCODEHEX ENCODEDHEX DECODED COMMENTS VIN UVLO 0xE0 0x01 7.25 V Input voltage turn on threshold IOUT_OC_FAULT_LIMIT 0x46 0x0096 150.00 A OC fault level IOUT_OC_WARN_LIMIT 0x4A 0x0078 120.0 A OC warning level ON_OFF_CONFIG 0x02 0x17 Control Pin only Power is converted when the control pin is active OT_FAULT_LIMIT 0x4F 0x007D 125 °C OT fault level OT_WARN_LIMIT 0x51 0x005F 95 °C OT warn level Max Num Phases 0xE4 0x03 4 Phase phase numbers SWITCHING FREQUENCY 0xDC 0x20 500kHz switching frequency VBOOT 0xDB 0x97 1.000V VBOOT voltage To configure the EVM with other than the factory settings shown in Table 5, use the TI Fusion Digital Power Designer software for reconfiguration. Be sure to apply the 5VIN input voltage to the EVM prior to launching the software. This sequence ensures that the controller and GUI recognize each other. 5.1 Configuration Procedure 1. Adjust the input supply 5VIN to provide 5 VDC, current limited to 1 A. 2. Apply the input power source VIN to the EVM. Refer to Figure 8 and Figure 9 for connections and test setup. 3. Launch the Fusion GUI software. Refer to the screenshots in Section 10 for more information. 4. Configure the EVM operating parameters as desired. 6 Test Procedure 6.1 Line/Load Regulation and Efficiency Measurement Procedure 1. Set up EVM as described in Figure 8. 2. Ensure the electronic load is set to draw 0 Adc. 3. Increase 5VIN from 0 V to 5 V. 4. Increase VIN from 0 V to 12 V. 5. Put switch S1 to ON position. 6. Turn on the external fan if necessary. 7. Vary the load from 0 Adc to 120 Adc. Ensure VOUT remains in regulation as defined in Table 1. 8. Vary VIN from 8 V to 14 V. Ensure VOUT remains in regulation as defined in Table 1. 9. Decrease the load to 0 A. 10. Put switch S1 to OFF position. 11. Decrease VIN to 0 V. 12. Decrease 5VIN to 0 V. 13. Shut down the external fan if in use. SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 13 Test Procedure 6.2 www.ti.com Control Loop Gain and Phase Measurement Procedure The PWR710 EVM includes a 0-Ω series resistor R64 in the feedback loop. This resistor value can be changed to 10 Ω and then be used for loop response analysis, which is accessible at the connector J7 and J8. These two connectors should be used during loop response measurements as the injection points for the loop perturbation. See short description below in Table 6. Table 6. Test Points for Loop Response Measurements TEST POINT 6.2.1 1. 2. 3. 4. 5. 6. 7. 6.3 NODE DESCRIPTION COMMENT J8+ INPUT Input to feedback of VOUT The amplitude of the perturbation at this node should be limited to less than 100 mV. J7+ OUTPUT Resulting output of VOUT Bode can be measured by a network analyzer as J7+ / J8+. Procedure Set up EVM as described in Figure 8. Connect the network analyzer isolation transformer from J8+ to J7+. Connect the input signal measurement probe to J8+. Connect output signal measurement probe to J7+. Connect the ground leads of both probe channels to J7– or J8–. On the network analyzer, measure the Bode as J7+ / J8+ (Out / In). Disconnect the isolation transformer from the bode plot test points and change the resistor R64 back to 0 Ω before making other measurements, because the signal injection into the feedback loop may interfere with the accuracy of other measurements. Efficiency In order to measure the efficiency of the power train on the EVM, it is important to measure the voltages at the correct location. This is necessary because otherwise the measurements will include losses that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and in the input and output connectors are not related to the efficiency of the power train, and they should not be included in efficiency measurements. Input current can be measured at any point in the input wires, and output current can be measured anywhere in the output wires of the output being measured. Figure 10 shows the measurement points for input voltage and output voltage. Using these measurement points results in efficiency measurements that do not include losses due to the connectors and PCB traces. 14 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Test Procedure www.ti.com Figure 10. Test Setup for Efficiency Measurement 6.4 Equipment Turn-on and Shutdown 6.4.1 1. 2. 3. 4. 5. Turn-on Sequence Turn on input power supply 5VIN. Turn on input power supply VIN and increase VIN above 8 V. Switch S1 to ‘ON’ position. Adjust load current as desired. Turn on the external fan if necessary. 1. 2. 3. 4. 5. Shutdown Sequence Reduce the load current to 0 A. Switch S1 to ‘OFF’ position. Reduce input voltage to 0 V and shut down input power supply VIN. Shut down input power supply 5VIN. Shut down the external FAN if in use. 6.4.2 SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 15 Performance Data and Typical Characteristic Curves 7 www.ti.com Performance Data and Typical Characteristic Curves Figure 11 through Figure 13 show the typical performance curves for the PWR710-EVM. 1 100 VIN = 8 V VIN = 12 V VIN = 14 V 95 0.99975 Output Voltage (V) 90 Efficiency (%) 85 80 75 70 0.9995 0.99925 0.999 65 0.99875 VIN = 8 V VIN = 12 V VIN = 14 V 55 0.9985 0 50 0 10 20 30 40 50 60 70 80 Output Current (A) 10 20 90 100 110 120 40 50 60 70 80 Output Current (A) D001 Figure 12. Load Regulation (VOUT = 1.0 V) 100 80 200 Gain Phase 160 60 120 40 80 20 40 0 0 -20 -40 -40 -80 -60 -120 -80 -160 -100 1000 90 100 110 120 D001 Figure 11. Efficiency of Output vs Line and Load (VOUT = 1.0 V) Gain (dB) 30 Phase (°) 60 -200 1000000 10000 100000 Frequency (Hz) D002 D008 D001 Figure 13. Bode Plot (VIN= 12 V, VOUT = 1.0 V, IOUT = 120A) 16 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Performance Data and Typical Characteristic Curves www.ti.com Figure 14 through Figure 19 show the waveforms for the PWR710-EVM. VIN = 12 V, VOUT = 1.0 V VIN = 12 V, VOUT = 1.0 V Figure 14. Transient Response (Load Step 0 A to 40 A, 5A/us Slew Rate) VIN = 12 V, VOUT = 1.0 V Figure 15. Transient Response (Load Step 40 A to 0 A, 5A/us Slew Rate) VIN = 12 V, VOUT = 1.0 V, IOUT = 120 A Figure 16. Transient Response (Load Step 0 A to 40 A to 0A, 5A/us Slew Rate) SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Figure 17. Output Ripple Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 17 Performance Data and Typical Characteristic Curves VIN = 12 V, VOUT = 1.0 V, IOUT = 0 A www.ti.com VIN = 12 V, VOUT = 1 V, IOUT = 6 A Figure 18. Enable Startup 18 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Figure 19. Enable Shutdown SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated EVM Assembly Drawing and PCB Layout www.ti.com 8 EVM Assembly Drawing and PCB Layout Figure 20 through Figure 29 show the design of the PWR710 EVM printed circuit board. Figure 20. Top Layer Assembly Drawing (Top View) Figure 21. Bottom Layer Assembly Drawing (Bottom View) Figure 22. Top Copper (Top View) Figure 23. Internal Layer 1 (Top View) SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 19 EVM Assembly Drawing and PCB Layout 20 www.ti.com Figure 24. Internal Layer 2 (Top View) Figure 25. Internal Layer 3 (Top View) Figure 26. Internal Layer 4 (Top View) Figure 27. Internal Layer 5 (Top View) Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated EVM Assembly Drawing and PCB Layout www.ti.com Figure 28. Internal Layer 6 (Top View) SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Figure 29. Bottom Copper (Top View) Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 21 List of Materials 9 www.ti.com List of Materials Table 7. List of Materials QTY (1) (1) 22 REF DES DESCRIPTION PART NUMBER MANUF 1 PCB Printed Circuit Board PWR710 Any 14 C1, C2, C4, C5, C6, C7, C8, C9, C14, C15, C16, C17, C18, C19 Capacitor, ceramic 22 µF, 25 V, ±20%, X5R, 1206_190 C3216X5R1E226M160AB TDK 1 C3 Capacitor, ceramic 2200 pF, 50 V, ±10%, X7R, 0603 C0603C222K5RAC Kemet 4 C10, C11, C21, C22 Capacitor, ceramic 3300 pF, 50 V, ±10%, X7R, 0402 C1005X7R1H332K TDK 2 C12, C13 Capacitor, aluminum, 270 µF, 16 V, ±20%, 0.01 Ω, TH 16SEPC270MX Panasonic 1 C20 Capacitor, ceramic 1000 pF, 16 V, ±10%, X7R, 0603 GRM188R71C102KA01D MuRata 2 C23, C29 Capacitor, ceramic 1 µF, 10 V, ±10%, X7R, 0603 GRM188R71A105KA61D MuRata 1 C24 Capacitor, ceramic 0.33 µF, 10 V, ±10%, X7R, 0603 GRM188R71A334KA61D MuRata 1 C25 Capacitor, ceramic 4.7 µF, 16 V, ±10%, X5R, 0603 GRM188R61C475KAAJ MuRata 1 C26 Capacitor, ceramic 1 µF, 25 V, ±10%, X7R, 0603 GRM188R71E105KA12D MuRata 1 C27 Capacitor, ceramic 1000 pF, 25 V, ±5%, C0G/NP0, 0603 GRM1885C1E102JA01D MuRata 1 C28 Capacitor, ceramic 12 pF, 50 V, ±5%, C0G/NP0, 0603 GRM1885C1H120JA01D MuRata 10 C30, C31, C32, C47, C48, C49, C50, C63, C64, C97 Capacitor, ceramic 0.1 µF, 25 V, ±10%, X7R, 0603 GRM188R71E104KA01D MuRata 4 C33, C34, C51, C52 Capacitor, ceramic 2.2 µF, 10 V, ±10%, X7R, 0603 GRM188R71A225KE15D MuRata 8 C35, C36, C37, C38, C53, C54, C55, C56 Capacitor, ceramic 1000 pF, 25 V, ±10%, X7R, 0603 GRM188R71E102KA01D MuRata 4 C39, C40, C57, C58 Capacitor, ceramic 1000 pF, 50 V, ±10%, X7R, 0402 GRM155R71H102KA01D MuRata 4 C44, C45, C46, C61 Capacitor, aluminum polymer, 470 µF, 2.5 V, ±20%, 0.003 Ω, SMD 7.3 x 1.9 x 4.3mm SMD EEF-GX0E471R Panasonic 20 C65, C70, C73, C76, C79, C83, C86, Capacitor, ceramic 100 µF, 4 V, ±20%, X5R, 1206 GRM31CR60G107ME39L MuRata 1 C95 Capacitor, ceramic 0.01 µF, 25 V, ±10%, X7R, 0603 GRM188R71E103KA01D MuRata 3 C96, C98, C99 Capacitor, ceramic 10 µF, 10 V, ±20%, X5R, 0805 GRM219R61A106ME47 MuRata 6 H1, H2, H3, H4, H5, H6 Machine screw nut, Hex, 3/8', Stn, Steel, 10-32 HNSS 102 6 H7, H8, H9, H10, H11, H12 Machine screw pan Slotted 10-32 PMS 102 0050 SL B&F Fastener Supply 6 H13, H14, H15, H16, H17, H18 Washer, split lock, #10 1477 Keystone 6 J1, J2, J10, J11, J12, J13 Terminal, 50-A Lug CB35-36-CY Panduit C68, C71, C74, C77, C80, C84, C87 C69, C72, C75, C78, C82, C85, component of quantity 0 indicates not populated. Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated List of Materials www.ti.com Table 7. List of Materials (continued) QTY (1) REF DES DESCRIPTION PART NUMBER MANUF 1 J3 Header, 100 mil, 2 x 2, Gold, TH TSW-102-07-G-D Samtec 1 J4 Header, 100 mil, 5 x 2, Gold, TH TSW-105-07-G-D Samtec 4 J5, J7, J8, J9 Header, 100 mil, 2 x 1, Gold, TH TSW-102-07-G-S Samtec 1 J6 Header, 100mil, 3 x 1, Gold, TH TSW-103-07-G-S Samtec 1 J14 Terminal block, 6 A, 3.5-mm Pitch, 2-Pos, TH ED555/2DS On-Shore Technology 1 L1 Inductor, 65 nH, 24 A, 0.00032 ohm, SMD 59PR65-650 Vitec Corporation 4 L2, L3, L4, L5 Inductor, Ferrite, 150 nH, 41 A, 0.00029 ohm, SMD PA2607.151NLT Pulse Engineering 1 R1 RES, 49.9 kΩ, 1%, 0.1 W, 0603 CRCW060349K9FKEA Vishay-Dale 2 R2, R25 RES, 150 kΩ, 1%, 0.1 W, 0603 CRCW0603150KFKEA Vishay-Dale 2 R3, R20 RES, 20.0 kΩ, 1%, 0.1 W, 0603 CRCW060320K0FKEA Vishay-Dale 19 R4, R28, R33, R34, R35, R36, R39, R40, R41, R49, R50, R51, R52, R55, R56, R63, R64, R66, R69 Resistor, 0 Ω, 5%, 0.1 W, 0603 MCR03EZPJ000 Rohm 1 R5 Resistor, 121 kΩ, 1%, 0.1 W, 0603 CRCW0603121KFKEA Vishay-Dale 9 R6, R29, R30, R43, R44, R45, R46, R59, R60 Resistor, 1.00 Ω, 1%, 0.1 W, 0603 CRCW06031R00FKEA Vishay-Dale 1 R7 Resistor, 2.55 kΩ, 1%, 0.1 W, 0603 CRCW06032K55FKEA Vishay-Dale 2 R8, R76 Resistor, 2.00 kΩ, 1%, 0.1 W, 0603 CRCW06032K00FKEA Vishay-Dale 1 R9 Resistor, 8.06 kΩ, 1%, 0.1 W, 0603 CRCW06038K06FKEA Vishay-Dale 1 R10 Resistor, 26.7 kΩ, 1%, 0.1 W, 0603 CRCW060326K7FKEA Vishay-Dale 1 R11 Resistor, 9.31 kΩ, 1%, 0.1 W, 0603 CRCW06039K31FKEA Vishay-Dale 2 R12, R13 Resistor, 16.5 kΩ, 1%, 0.1 W, 0603 CRCW060316K5FKEA Vishay-Dale 1 R14 Resistor, 4.32 kΩ, 1%, 0.1 W, 0603 CRCW06034K32FKEA Vishay-Dale 1 R15 Resistor, 33.2 kΩ, 1%, 0.1 W, 0603 CRCW060333K2FKEA Vishay-Dale 10 R16, R17, R18, R22, R23, R26, R31, R32, R47, R48 Resistor, 10.0 kΩ, 1%, 0.1 W, 0603 CRCW060310K0FKEA Vishay-Dale 2 R19, R21 Resistor, 24.3 kΩ, 1%, 0.1 W, 0603 CRCW060324K3FKEA Vishay-Dale 1 R24 Resistor, 39.2 kΩ, 1%, 0.1 W, 0603 CRCW060339K2FKEA Vishay-Dale 3 R27, R42, R57 Resistor, 30.1 kΩ, 1%, 0.1 W, 0603 CRCW060330K1FKEA Vishay-Dale 1 R58 Resistor, 51.1 kΩ, 1%, 0.1 W, 0603 CRCW060351K1FKEA Vishay-Dale 1 R71 Resistor, 1.00 kΩ, 1%, 0.1 W, 0603 CRCW06031K00FKEA Vishay-Dale 2 R72, R73 Resistor, 1.0 Ω, 5%, 0.125 W, 0805 CRCW08051R00JNEA Vishay-Dale 1 R74 Resistor, 100 kΩ, 1%, 0.1 W, 0603 CRCW0603100KFKEA Vishay-Dale 1 R75 Resistor, 15.0 kΩ, 1%, 0.1 W, 0603 CRCW060315K0FKEA Vishay-Dale 1 S1 Switch, SPDT, Slide, On-On, 2 Pos, TH EG1218 E-Switch 1 SH-J3 Shunt, 100 mil, Gold plated, Black 969102-0000-DA 3M 5 TP1, TP26, TP29, Test point, Miniature, Red, TH TP31, TP32 5000 Keystone 3 TP2, TP27, TP30 Test point, Miniature, Black, TH 5001 Keystone 7 TP6, TP7, TP15, TP18, TP19, TP20, TP21 Test point, Miniature, White, TH 5002 Keystone 1 TP29 5VIN, Test Point, Miniature, Red, TH Red Miniature Testpoint Keystone SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 23 Fusion GUI www.ti.com Table 7. List of Materials (continued) QTY 10 (1) REF DES DESCRIPTION PART NUMBER MANUF 1 TP31 1_8V_LDO, Test Point, Miniature, Red, TH Red Miniature Testpoint Keystone 1 TP32 3_3V_LDO, Test Point, Miniature, Red, TH Red Miniature Testpoint Keystone 1 U1 4-Phase, D-CAP+ step-down buck controller with TPS53647RHA NVM and PMBus Interface, RHA0040B TI 4 U2, U3, U4, U5 Synchronous buck NexFET power stage, DQP0012A TI 1 U6 Dual output LDO, 500 mA, 2.7 V to 6 V Input, 20TPS70102PWP pin HTSSOP (PWP) TI 0 C41, C42, C59, C60 Capacitor, ceramic 1000 pF, 50 V, ±5%, C0G/NP0, 0603 GRM1885C1H102JA01D MuRata 0 C43, C62 Capacitor, aluminum polymer, 470 µF, 2.5 V, ±20%, 0.003 Ω, SMD 7.3 x 1.9 x 4.3mm SMD EEF-GX0E471R Panasonic 0 C66, C67, C81, C88, C89, C90, C91, C92, C93, C94 Capacitor, ceramic 100 µF, 4 V, ±20%, X5R, 1206 GRM31CR60G107ME39L MuRata 0 FID1, FID2, FID3, FID4, FID5, FID6 Fiducial mark. There is nothing to buy or mount. N/A N/A 0 R37, R38, R53, R54, R67, R68 Resistor, 10.0 kΩ, 1%, 0.1 W, 0603 CRCW060310K0FKEA Vishay-Dale 0 R61, R62, R65, R70 Resistor, 0 Ω, 5%, 0.1 W, 0603 MCR03EZPJ000 Rohm 0 TP5 Test point, Miniature, Black, TH 5001 Keystone 0 TP3, TP4, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP16, Test point, Miniature, White, TH TP17, TP22, TP23, TP24, TP25, TP28 5002 Keystone CSD95372BQ5M Fusion GUI When the Fusion GUI launches, it restores user preferences and data. Figure 30. Launch Fusion GUI Use the [General] configure screen as shown in Figure 31 to configure these specifications: • VBOOT • VOUT Command • VIN UVLO • IIN OC Fault and OC Warn Limits • IOUT OC Fault and OC Warn Limits 24 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Fusion GUI www.ti.com • • • • • OT Fault and Warn Limits IMAX On/Off Config Margin High and Margin Low voltages Phase numbers Figure 31. General Configure SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 25 Fusion GUI www.ti.com Use the [Advanced] configure screen as shown in Figure 32 to configure these specifications: • USR and OSR • Switching Frequency • RAMP • OCL • Mode • Phase Interleaving • Dynamic Phase Shedding • Slew Rate • Load-line Figure 32. Advanced Configure 26 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Fusion GUI www.ti.com Use the [All Configure ] screen as shown in Figure 33 to configure all of the configurable parameters. This screen shows other details such as Hexadecimal encoding. Figure 33. All Configure SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 27 Fusion GUI www.ti.com After the user selects a change, the GUI displays an orange “U” icon, offering an [Undo Change] option as shown in Figure 34. The software does not retain a change until the user selects either [Write to Hardware] or [Store Config to NVM]. When [Write to Hardware] is selected, the change is committed to volatile memory and defaults back to previous setting upon input power cycle. When the user selects [Store Config to NVM], the software commits the change to non-volatile memory and it becomes the new default. Figure 34. General Configure Pop-Up 28 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Fusion GUI www.ti.com When user selects the [Monitor] screen (shown in Figure 35) the screen changes to display real-time data of the parameters that are measured by the controller. This screen provides access to the following parameters: • Graphs of – VIN – VOUT – IOUT – Temperature • Start/Stop Polling controls ON or OFF the real-time display of data • Quick access to ON or OFF configuration • Control pin activation, and OPERATION command • Margin control • Clear Fault clears any prior fault flags Figure 35. Monitor Screen SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 29 Fusion GUI www.ti.com Selecting [System Dashboard] from mid-left screen adds a new window which displays system level information Figure 36. Figure 36. System Dashboard 30 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Fusion GUI www.ti.com Selecting [Status] from lower left corner shows the status of the controller Figure 37. Figure 37. Status Screen SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface Copyright © 2015–2017, Texas Instruments Incorporated 31 Fusion GUI www.ti.com Selecting the pull down menu [File] → [Import Project] from the upper left menu bar can be used to configure all parameters in the device at once with a desired configuration, or even revert back to a “known-good” configuration (as shown in Figure 38) . This action results in a browse-type sequence to allow the user to locate and lock the desired configure file. Figure 38. Import Configuration File 32 Using the TPS53647: PWR710-EVM, 4-Phase, D-CAP+ Step-Down, DC-DC Analog with PMBus Interface SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Revision History www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Original (June 2015) to A Revision ......................................................................................................... Page • • • • • • • • Updated Figure Updated Figure Updated Figure Updated Figure Updated Figure Updated Figure Updated Figure Updated Figure 1 .......................................................................................................................... 4 5 .......................................................................................................................... 5 6 .......................................................................................................................... 6 7 .......................................................................................................................... 7 8 .......................................................................................................................... 9 9 ........................................................................................................................ 10 10 ....................................................................................................................... 15 38 ....................................................................................................................... 32 SLUUBA9A – June 2015 – Revised February 2017 Submit Documentation Feedback Copyright © 2015–2017, Texas Instruments Incorporated Revision History 33 IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm). Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated
TPS53647EVM-710 价格&库存

很抱歉,暂时无法提供与“TPS53647EVM-710”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TPS53647EVM-710
    •  国内价格
    • 1+1622.41200

    库存:10