0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MB39A112PFT-G-BND-ERE1

MB39A112PFT-G-BND-ERE1

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    TSSOP20

  • 描述:

    IC REG CTRLR BUCK 20TSSOP

  • 数据手册
  • 价格&库存
MB39A112PFT-G-BND-ERE1 数据手册
THIS SPEC IS OBSOLETE Spec No: 002-08829 Spec Title: MB39A112 3-CH DC/DC CONVERTER IC Replaced by: NONE MB39A112 3-ch DC/DC Converter IC The MB39A112 is a 3-channel DC/DC converter IC using pulse width modulation (PWM) , and the MB39A112 is suitable for downconversion. 3-channel is built in TSSOP-20P package. Each channel can be controlled and soft-start. The MB39A112 contains a constant voltage bias circuit for output block, capable of implementing an efficient high-frequency DC/DC converter. It is ideal for built-in power supply such as ADSL modems. Features ■ Supports for down-conversion (CH1 to CH3) ■ Power supply voltage range : 7 V to 25 V ■ Error amplifier threshold voltage : 1.00 V ± 1% (CH1) : 1.23 V ± 1% (CH2, CH3) ■ Oscillation frequency range : 250 kHz to 2.6 MHz ■ Built-in soft-start circuit independent of loads ■ Built-in timer-latch short-circuit protection circuit ■ Built-in totem-pole type output for P-channel MOS FET devices ■ Built-in constant voltage (VCCO - 5 V) bias circuit for output block Package 20-pin plastic TSSOP (FPT-20P-M06) Cypress Semiconductor Corporation Document Number: 002-08829 Rev. *C • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised January 25, 2019 MB39A112 Contents Pin Assignment ................................................................ 3 Pin Description ................................................................. 4 Block Diagram .................................................................. 5 Absolute Maximum Ratings ............................................ 6 Recommended Operating Conditions ............................ 6 Electrical Characteristics ................................................. 7 Typical Characteristics .................................................... 9 Function .......................................................................... 12 DC/DC Converter Function ....................................... 12 Protective Function .................................................... 12 Setting The Output Voltage ........................................... 14 Setting The Triangular Oscillation Frequency............. 14 Setting The Soft-start And Discharge Times ............... 15 Treatment Without Using CS Terminal ......................... 16 Document Number: 002-08829 Rev. *C Setting Time Constant For Timer-latch Short-circuit Protection Circuit ..................................... 17 Treatment Without Using CSCP Terminal .................... 18 I/O Equivalent Circuit ..................................................... 19 Application Example ...................................................... 20 Parts List ......................................................................... 21 Selection Of Components .............................................. 22 Reference Data ............................................................... 32 Usage Precaution ........................................................... 35 Ordering Information ...................................................... 35 Package Dimension ....................................................... 36 Document History ........................................................... 37 Sales, Solutions, and Legal Information ...................... 38 Page 2 of 38 MB39A112 1. Pin Assignment (TOP VIEW) CS1 : 1 20 : VCCO −INE1 : 2 19 : OUT1 FB1 : 3 18 : OUT2 VCC : 4 17 : OUT3 RT : 5 16 : VH CT : 6 15 : GNDO GND : 7 14 : CSCP FB2 : 8 13 : FB3 −INE2 : 9 12 : −INE3 CS2 : 10 11 : CS3 (FPT-20P-M06) Document Number: 002-08829 Rev. *C Page 3 of 38 MB39A112 2. Pin Description Pin No. Symbol I/O Descriptions 1 CS1 ⎯ 2 - INE1 I CH1 error amplifer inverted input terminal. CH1 soft-start setting capacitor connection terminal. 3 FB1 O CH1 error amplifer output terminal. 4 VCC Control circuit power supply terminal. 5 RT 6 CT 7 GND ⎯ ⎯ ⎯ ⎯ 8 FB2 O CH2 error amplifier output terminal. 9 - INE2 I CH2 error amplifier inverted input terminal. 10 CS2 Triangular-wave oscillation frequency setting resistor connection terminal. Triangular-wave oscillation frequency setting capacitor connection terminal. Ground terminal. 11 CS3 ⎯ ⎯ 12 - INE3 I CH3 error amplifier inverted input terminal. 13 FB3 O CH3 error amplifier output terminal. 14 CSCP Timer-latch short-circuit protection capacitor connection terminal. 15 GNDO ⎯ ⎯ 16 VH O Power supply terminal for driving output circuit. (VH = VCCO - 5 V) . 17 OUT3 O CH3 external Pch MOS FET gate driving terminal. 18 OUT2 O CH2 external Pch MOS FET gate driving terminal. 19 OUT1 O CH1 external Pch MOS FET gate driving terminal. ⎯ Power supply terminal for driving output circuit. (Connect to same potential as VCC terminal). 20 VCCO Document Number: 002-08829 Rev. *C CH2 soft-start setting capacitor connection terminal. CH3 soft-start setting capacitor connection terminal. Ground terminal. Page 4 of 38 MB39A112 3. Block Diagram Threshold voltage 1.0 V ± 1% −INE1 2 CH1 VREF 10 μA − + + CS1 1 L priority Error Amp1 + 20 VCCO PWM Comp.1 Drive1 19 OUT1 Pch − 1.0 V FB1 3 IO = 150 mA Threshold voltage 1.23 V ± 1% −INE2 9 CH2 VREF 10 μA − + + CS2 10 L priority Error Amp2 + PWM Comp.2 Drive2 − 18 OUT2 Pch 1.23 V FB2 8 IO = 150 mA Threshold voltage 1.23 V ± 1% −INE3 12 CH3 VREF 10 μA − + + CS3 11 L priority Error Amp3 + PWM Comp.3 Drive3 17 OUT3 Pch − 1.23 V FB3 13 IO = 150 mA H priority SCP Comp. VCCO − 5 V + + + − 16 VH Bias Voltage VH 2.7 V 15 GNDO SCP Error Amp Power Supply SCP Comp. Power Supply H: at SCP CSCP 14 2.5 V 4 VCC H: UVLO 2.0 V ErrorAmp Reference 1.0 V/1.23 V bias 3.5 V OSC UVLO VREF VR Power ON/OFF CTL GND 5 RT 6 CT Document Number: 002-08829 Rev. *C 7 GND Page 5 of 38 MB39A112 4. Absolute Maximum Ratings Parameter Power supply voltage Symbol Vcc Rating Conditions VCC, VCCO terminal Unit Min Max — 28 V Output current Io OUT1, OUT2, OUT3 terminal — 20 mA Peak output current IOP Duty ≤ 5 % (t = 1/fosc × Duty) — 400 mA Power dissipation PD — 1280* mW - 55 + 125 °C Storage temperature Ta ≤ + 25 °C TSTG — * : The package is mounted on the dual-sided epoxy board (10 cm × 10 cm) . WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 5. Recommended Operating Conditions Parameter Symbol Conditions Value Min Typ Max Unit Power supply voltage Vcc VCC, VCCO terminal 7 12 25 V Input voltage VIN - INE terminal 0 Vcc - 1.8 V IO OUT1, OUT2, OUT3 terminal 15 mA IVH VH terminal 0 ⎯ ⎯ ⎯ 30 mA 250 1200 2600 kHz 22 100 1000 pF Output current Oscillation frequency Timing capacitor ⎯ ⎯ ⎯ fosc CT Timing resistor RT VH terminal capacitor CVH VH terminal Soft-start capacitor CS Short-circuit detection capacitor Operating ambient temperature WARNING: CSCP Ta - 15 4.7 10 22 kΩ 0.1 1.0 CS1, CS2, CS3 terminal ⎯ ⎯ 0.1 1.0 μF μF CSCP terminal ⎯ 0.01 1.0 μF - 30 + 25 + 85 °C ⎯ The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their Cypress representatives beforehand. Document Number: 002-08829 Rev. *C Page 6 of 38 MB39A112 6. Electrical Characteristics (VCC = VCCO = 12 V, Ta = + 25 °C) Parameter Undervoltage Lockout Protection Circuit Block [UVLO] Short-circuit Protection Circuit Block [SCP] Symbol Pin No. Threshold voltage VTH 4 Hysteresis width VHYS 4 Threshold voltage VTH 14 Input source current ICSCP 14 Reset voltage VRST 4 fosc 17 to 19 ICS 1, 10, 11 VTH 2 Input bias current IB 2 - INE1 = 0 V Voltage gain AV 3 DC BW 3 AV = 0dB VOH 3 Triangular Wave Oscillation Oscillator Block frequency [OSC] Soft-start Block [CS1, CS2, Charge current CS3] Threshold voltage Error Amp Block Frequency band width (CH1) [Error Amp1] Output voltage Conditions Value Unit Min Typ Max 6.35 6.55 6.75 V ⎯ ⎯ 0.15 ⎯ V ⎯ ⎯ 0.67 0.72 0.77 V - 1.4 - 1.0 - 0.6 μA 6.2 6.4 6.6 V CT = 100 pF, RT = 10 kΩ 1080 1200 1320 kHz ⎯ - 14 - 10 -6 μA FB1 = 2.25 V 0.99 1.00 1.01 V - 250 - 63 100 ⎯ 1.5* 3.2 3.4 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ nA 60 40 200 mV -2 -1 mA 150 250 ⎯ μA 1.218 1.230 1.242 V nA VCC = VCC = ⎯ ⎯ dB MHz V VOL 3 ISOURCE 3 Output sink current ISINK 3 Threshold voltage VTH 9, 12 Input bias current IB 9, 12 - INE2 = - INE3 = 0 V - 250 - 63 Voltage gain AV 8, 13 DC 60 100 BW 8, 13 AV = 0 dB ⎯ 1.5* VOH 8, 13 3.2 3.4 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 40 200 mV -2 -1 mA 150 250 ⎯ μA Output source current Error Amp Block Frequency band width (CH2, CH3) [Error Amp2, Output voltage Error Amp3] Output source current Output sink current VOL 8, 13 ISOURCE 8, 13 ISINK 8, 13 FB1 = 2.25 V FB1 = 2.25 V FB2 = FB3 = 2.25 V ⎯ ⎯ FB2 = FB3 = 2.25 V FB2 = FB3 = 2.25 V dB MHz V * : Standard design value (Continued) Document Number: 002-08829 Rev. *C Page 7 of 38 MB39A112 (Continued) (VCC = VCCO = 12 V, Ta = + 25 °C) Parameter Symbol Pin No. Conditions Value Unit Min Typ Max 17 to 19 Duty cycle = 0 % 1.9 2.0 ⎯ V 17 to 19 Duty cycle = 100 % ⎯ 2.5 2.6 V PWM Comparator Block [PWM Comp.] Threshold voltage Bias Voltage Block [VH] Output voltage VH Output source current ISOURCE Duty ≤ 5 % 17 to 19 OUT1 = OUT2 = OUT3 = 7V ⎯ - 150* ⎯ mA ISINK Duty ≤ 5 % 17 to 19 OUT1 = OUT2 = OUT3 = 12 V ⎯ 150* ⎯ mA ROH 17 to 19 OUT1 = OUT2 = OUT3 = - 15 mA ⎯ 13 19.5 Ω ROL 17 to 19 OUT1 = OUT2 = OUT3 = 15 mA ⎯ 10 15 Ω ICC 4 ⎯ ⎯ 6 9 mA Output Block [Drive] VT0 Output sink current VT100 16 Output ON resistor General Power supply current ⎯ VCCO - 5.5 VCCO - 5.0 VCCO - 4.5 V * : Standard design value Document Number: 002-08829 Rev. *C Page 8 of 38 MB39A112 7. Typical Characteristics Power supply current ICC (mA) Power Supply Current vs. Power Supply Voltage 10 Ta = +25 °C RT = OPEN 8 6 4 2 0 0 5 10 15 20 25 Power supply voltage VCC (V) Error Amp (ERR2, ERR3) Threshold Voltage vs. Ambient Temperature 2.0 2.0 VCC = 12 V FB1 = 0 mA 1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0 −40 −20 0 20 40 60 80 100 Threshold voltage ΔVTH (%) Threshold voltage ΔVTH (%) Error Amp (ERR1) Threshold Voltage vs. Ambient Temperature 1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0 −40 −20 CT = 22 pF CT = 100 pF CT = 1000 pF CT = 390 pF 100 10 10 100 Timing resistor RT (kΩ) 1000 Triangular wave oscillation frequency fosc (kHz) Triangular wave oscillation frequency fosc (kHz) Ta = +25 °C VCC = 12 V 1 20 40 60 80 100 Triangular Wave Oscillation Frequency vs. Timing Capacitor Triangular Wave Oscillation Frequency vs. Timing Resistor 1000 0 Ambient temperature Ta ( °C) Ambient temperature Ta ( °C) 10000 VCC = 12 V FB2(3) = 0 mA 1.5 10000 Ta = +25 °C VCC = 12 V 1000 RT = 4.7 kΩ RT = 22 kΩ 100 10 10 100 RT = 10 kΩ 1000 10000 Timing capacitor CT (pF) (Continued) Document Number: 002-08829 Rev. *C Page 9 of 38 MB39A112 2.8 Ta = +25 °C VCC = 12 V CT = 100 pF 2.6 Upper 2.4 2.2 Lower limit 2.0 1.8 0 500 1000 1500 2000 2500 3000 Triangular wave oscillation frequency fosc (kHz) Triangular Wave Upper/Lower Limit Voltage vs. Ambient Temperature Triangular wave upper/lower limit voltage VCT (V) Triangular wave upper/lower limit voltage VCT (V) Triangular Wave Upper/Lower Limit Voltage vs. Triangular Wave Oscillation Frequency 1300 1250 1200 1150 1100 1050 1000 −40 −20 0 20 40 60 80 Ambient temperature Ta ( °C) 100 Triangular wave oscillation frequency fosc (kHz) Triangular wave oscillation frequency fosc (kHz) VCC = 12 V RT = 10 kΩ CT = 100 pF 1350 2.6 VCC = 12 V RT = 10 kΩ CT = 100 pF Upper limit 2.4 2.2 Lower limit 2.0 1.8 −40 −20 0 20 40 60 80 100 Ambient temperature Ta ( °C) Triangular Wave Oscillation Frequency vs. Power Supply Voltage Triangular Wave Oscillation Frequency vs. Ambient Temperature 1400 2.8 1400 Ta = +25 °C RT = 10 kΩ CT = 100 pF 1350 1300 1250 1200 1150 1100 1050 1000 0 5 10 15 20 25 30 Power supply voltage VCC (V) (Continued) Document Number: 002-08829 Rev. *C Page 10 of 38 MB39A112 (Continued) Error Amp (CH1) Gain, Phase vs. Frequency Ta = +25 °C VCC = 12 V 40 AV 30 240 kΩ 90 10 0 0 −10 −90 −20 Phase ϕ (deg) ϕ 20 Gain AV (dB) 180 10 kΩ 1 μF + IN 2 − 1 + + 2.4 kΩ 10 kΩ 3.5 V 3 OUT Error Amp1 1.0 V −30 −180 −40 100 1k 10 k 100 k 1M 10 M Frequency f (Hz) Error Amp (CH2, CH3) Gain, Phase vs. Frequency 40 AV 30 Ta = +25 °C VCC = 12 V 240 kΩ ϕ 10 kΩ 1 μF + 10 0 0 −10 −90 −20 Phase ϕ (deg) 90 20 Gain AV (dB) 180 IN 2.4 k 10 kΩ 9 (12) 10 (11) 3.5 V − + + 1.23 V 8 OUT (13) Error Amp2 (Error Amp3) −30 −180 −40 100 1k 10 k 100 k 1M 10 M Frequency f (Hz) Maximum power dissipation PD (mW) Maximum Power Dissipation vs. Ambient Temperature 1400 1300 1280 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 −40 Document Number: 002-08829 Rev. *C −20 0 20 40 60 Ambient temperature Ta ( °C) 80 100 Page 11 of 38 MB39A112 8. Function 8.1 DC/DC Converter Function 8.1.1 Triangular Wave Oscillator Block (OSC) The triangular wave oscillator incorporates a timing capacitor and a timing resistor connected respectively to the CT terminl (pin 6) and RT terminl (pin 5) to generate triangular oscillation waveform amplitude of 2.0 V to 2.5 V. The triangular waveforms are input to the PWM comparator in the IC. 8.1.2 Error Amplifier Block (Error Amp1, Error Amp2, Error Amp3) The error amplifier detects the DC/DC converter output voltage and outputs PWM control signals. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output terminal to inverted input terminal of the error amplifier, enabling stable phase compensation to the system. Also, it is possible to prevent rush current at power supply start-up by connecting a soft-start capacitor with the CS1 terminl (pin 1) , CS2 terminl (pin10) and CS3 terminl (pin 11) which are the non-inverted input terminal for Error Amp. The use of error Amp for softstart detection makes it possible for a system to operate on a fixed soft-start time that is independent of the output load on the DC/ DC converter. 8.1.3 PWM Comparator Block (PWM Comp.) The PWM comparator is a voltage-to-pulse width modulator that controls the output duty depending on the input/output voltage. The comparator keeps output transistor on while the error amplifier output voltage remain higher than the triangular wave voltage. 8.1.4 Output Block The output blobk is in the totem pole configulation, capable of driving an external P-channel MOS FET. 8.1.5 Bias Voltage Block (VH) This bias voltage circuit outputs VCC - 5 V (Typ) as minimum potential of the output circuit. 8.2 Protective Function 8.2.1 Timer Latch Short-circuit Protection Circuit (SCP) Each channel has a short-circuit detection comparator (SCP Comp.) which constantly compares the error Amp. output level to the reference voltage. While DC/DC converter load conditions are stable on all channels, the short-circuit detection comparator output remains at “L”, and the CSCP terminal is held at “L” level. If the load condition on a channel changes rapidly due to a short-circuit of the load, causing the output voltage to drop, the output of the short-circuit detection comparator on that channel goes to “H” level. This causes the external short-circuit protection capacitor CSCP connected to the CSCP terminal (pin 14) to be charged. When the capacitor CSCP is charged to the threshold voltage (VTH ≈ 0.72 V) , the latch is set and the external FET is turned off (dead time is set to 100 %) . At this point, the latch input is closed and the CSCP terminal is held at “L” level. The latch applied by the timer-latch short-circuit protection circuit can be reset by recycling the power supply (VCC) (See “Setting Time Constant For Timer-latch Short-circuit Protection Circuit”) . Document Number: 002-08829 Rev. *C Page 12 of 38 MB39A112 8.2.2 Undervoltage Lockout Protection Circuit Block (UVLO) The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned on, may cause the IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, under voltage lockout protection circuit detects a decrease in internal reference voltage with respect to the power supply voltage, turns off the output transistor, and sets the dead time to 100% while holding the CSCP terminal (pin 14) at the “L” level. The circuit restores the output transistor to normal when the supply voltage reaches the threshold voltage of the undervoltage lockout protection circuit. 8.2.3 Protection Circuit Operating Function Table This table refers to output condition when each protection circuit is operating. Operating circuit CH1 CH2 CH3 OUT1 OUT2 OUT3 Short-circuit protection circuit H H H Under-voltage lockout circuit H H H The latch can be reset as follows after the short-circuit protection circuit is actuated. Recycling VCC resets the latch whenever the short-circuit protection circuit has been actuated. Document Number: 002-08829 Rev. *C Page 13 of 38 MB39A112 9. Setting The Output Voltage • CH1 VO R1 Error Amp − 2 −INE1 VO (V) = + + R2 1.00 R2 (R1 + R2) 1.00 V CS1 1 • CH2, CH3 VO R1 (−INE3) 12 9 −INE2 Error Amp − + + R2 VO (V) = 1.23 R2 (R1 + R2) 1.23 V (CS3) CS2 11 10 10. Setting The Triangular Oscillation Frequency The triangular oscillation frequency is determined by the timing capacitor (CT) connected to the CT terminal (pin 6) and the timing resistor (RT) connected to the RT terminal (pin 5) . Triangular oscillation frequency : fosc fosc (kHz) ≈ 1200000 CT (pF) • RT (kΩ) Document Number: 002-08829 Rev. *C Page 14 of 38 MB39A112 11. Setting The Soft-start And Discharge Times To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitors (CS1, CS2 and CS3) to the CS1 terminal (pin 1) for channel 1, CS2 terminal (pin 10) for channel 2 and CS3 terminal (pin 11) for channel 3 respectively. Setting each control terminal (CTLX) from “H” to “L” starts charging the external soft-start capacitors (CS1, CS2 and CS3) connected to the CS1, CS2 and CS3 terminal at about 10 μA. The DC/DC converter output voltage rises in proportion to the CS terminal voltage. Also, soft-start time is obtained by the following formulas. Soft-start time : ts (time to output 100%) CH1 : CH2 : CH3 : ts1[s] ≈ 0.100 × CS1[μF] ts2[s] ≈ 0.123 × CS2[μF] ts3[s] ≈ 0.123 × CS3[μF] • Soft-start circuit −INE1 (−INE2) (−INE3) L priority VO CS1 (CS2) (CS3) VREF 10 μA CH1 ON/OFF signal − + + Error Amp (L : ON, H : OFF) FB1 (FB2) (FB3) CTLX 1.23 V /1.0 V H : at SCP SCP UVLO H: UVLO release • Soft-start operation CS terminal voltage ≈ 3.4 V Error Amp. reference voltage ≈ 1.23 V/ 1.00 V ≈0V t Soft-start time ts H CTLX signal L t Document Number: 002-08829 Rev. *C Page 15 of 38 MB39A112 12. Treatment Without Using CS Terminal When not using the soft-start function, open the CS1 terminal (pin 1) , CS2 terminal (pin 10) and CS3 terminal (pin 11) . • Without setting soft-start tme “Open” 1 CS1 “Open” 10 CS2 “Open” 11 CS3 Document Number: 002-08829 Rev. *C Page 16 of 38 MB39A112 13. Setting Time Constant For Timer-latch Short-circuit Protection Circuit Each channel uses the short-circuit detection comparator (SCP Comp.) to always compare the error amplifier’s output level to the reference voltage. While DC/DC converter load conditions are stable on all channels, the short-circuit detection comparator output remains at “L” level, and the CSCP terminal (pin 14) is held at “L” level. If the load condition on a channel changes rapidly due to a short-circuit of the load, causing the output voltage to drop, the output of the short-circuit detection comparator goes to “H” level. This causes the extemal short-circuit protection capacitor CSCP connected to the CSCP terminal to be charged at 1 μA. Short-circuit detection time : tcscp tcscp[s] ≈ 0.72 × CSCP [μF] When the capacitor CSCP is charged to the threshold voltage (VTH ≈ 0.72 V) , the latch is set and the external FET is turned off (dead time is set to 100 %) . At this time, the latch input is closed and the CSCP terminal (pin 14) is held at “L” level. If any of CH1 to CH3 detects a short circuit, all the channels are stopped. • Timer-latch short-circuit protection circuit VO R1 −INE1 (−INE2) (−INE3) VREF 10 μA R2 − + + CS1 (CS2) (CS3) Error Amp 1.23 V /1.0 V FB1 (FB2) (FB3) SCP Comp. + + + − [SCP] 2.7 V 1 μA H: UVLO release CSCP 14 VCC S R Latch UVLO H: at SCP Document Number: 002-08829 Rev. *C Page 17 of 38 MB39A112 14. Treatment Without Using CSCP Terminal When not using the timer-latch short-circuit protection circuit, connect the CSCP terminal (pin 14) to GND with the shortest distance. • Treatment without using CSCP terminal 14 CSCP 7 GND Document Number: 002-08829 Rev. *C Page 18 of 38 MB39A112 15. I/O Equivalent Circuit VCC 4 VCC VREF (3.5 V) VCC VREF (3.5 V) ESD protection element ESD protection element 2 kΩ VREF (3.5 V) 1.2 V 14 CSCP ESD protection element GND 7 + CT 6 − 5 RT GND GND VCC VCC VREF (3.5 V) VREF (3.5 V) CSX −INE1 2 CS1 1.00 V 3 FB1 GND GND VCC VCC VREF (3.5 V) CSX 1.23 V FBX GND GND VCC CT FBX VCCO VCCO 20 OUTX 16 VH VH GND GNDO GNDO 15 X : Each channel No. Document Number: 002-08829 Rev. *C Page 19 of 38 MB39A112 16. Application Example R6 R7 2.2 kΩ 18 kΩ A −INE1 2 CH1 ON/OFF signal 10 μA CS1 (L : ON, H : OFF) C7 0.1 μF CTL1 C8 0.022 μF R11 R12 4.7 kΩ 56 kΩ B CH2 ON/OFF signal R9 820 Ω FB1 −INE2 C R15 R16 680 Ω 30 kΩ R17 CH3 10 kΩ ON/OFF signal CTL3 C14 0.01 μF C2 4.7 μF D1 ± 9 R14 820 Ω FB2 L priority L2 Q2 CH2 + PWM Comp.2 Drive2 − 18 Pch C3 2.2 μF OUT2 D2 C4 4.7 μF C Stepdown 1.23 V 8 IO = 150 mA −INE3 Threshold voltage 1% 1.23 V 12 ± VREF 10 μA CS3 − + + 11 R18 1 kΩ FB3 L priority L3 Q3 CH3 V O3 (5.0 V) IO3 = 0.15 ∼ 0.3 A 10 μH Error Amp3 + PWM Comp.3 Drive3 17 Pch − C5 2.2 μF OUT3 D3 C6 4.7 μF 1.23 V 13 H priority C16 0.1 μF IO = 150 mA VCCO − 5 V + + + − 16 15 H: at SCP H: UVLO release 2.0 V ErrorAmp Reference 1.0 V/1.23 V bias 3.5 V OSC GNDO Error Amp Power Supply SCP Comp. Power Supply 14 2.5 V VH Bias Voltage VH SCP CSCP VO2 (3.3 V) IO2 = 0.15 ∼ 1 A 3.3 μH Error Amp2 − + + 10 Stepdown B Threshold voltage 1.23 V 1% 2.7 V C15 1000 pF C1 2.2 μF OUT1 1.0 V SCP Comp. Charge current 1 μA 19 VO1 (1.2 V) IO1 = 0.8 ∼ 1.5 A 2 μH 3 10 μA (L : ON, H : OFF) C13 0.1 μF Drive1 Pch L1 Q1 VCCO C17 0.1 μF PWM Comp.1 − VREF CS2 C11 0.01 μF VIN (12 V) L priority + 20 IO = 150 mA (L : ON, H : OFF) CTL2 Error Amp1 − + + 1 R13 36 kΩ C12 0.1 μF CH1 VREF R8 100 kΩ Stepdown A Threshold voltage 1.0 V ± 1 % UVLO VREF VR 4 VCC C9 0.1 μF Power ON/OFF CTL GND 5 RT R10 5.1 kΩ Document Number: 002-08829 Rev. *C 6 7 CT GND C10 100 pF Page 20 of 38 MB39A112 17. Parts List COMPONENT ITEM SPECIFICATION VENDOR PARTS No. Q1, Q2, Q3 Pch FET Pch FET VDS = - 30 V, ID = - 2.0 A VDS = - 30 V, ID = - 1.0 A SANYO SANYO MCH3312 MCH3308 D1, D2 D3 Diode Diode SANYO SANYO SBE001 SBE005 L1 L2 L3 Inductor Inductor Inductor 3 A, 16 mΩ 2.57 A, 21.4 mΩ 1.49 A, 41.2 mΩ TOKO TOKO TOKO A916CY-2R0M A916CY-3R3M A916CY-100M C1, C3, C5 C2, C4, C6 C7, C9, C12 C8 C10 C11, C14 C13, C16, C17 C15 Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser 2.2 μF 4.7 μF 0.1 μF 0.022 μF 100 pF 0.01 μF 0.1 μF 1000 pF 25 V 10 V 50 V 50 V 50 V 50 V 50 V 50 V TDK TDK TDK TDK TDK TDK TDK TDK C3216JB1E225K C3216JB1A475M C1608JB1H104K C1608JB1H223K C1608CH1H101J C1608JB1H103K C1608JB1H104K C1608JB1H102K R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor 2.2 kΩ 18 kΩ 100 kΩ 820 Ω 5.1 kΩ 4.7 kΩ 56 kΩ 36 kΩ 820 Ω 680 Ω 30 kΩ 10 kΩ 1 kΩ 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm RR0816P-222-D RR0816P-183-D RR0816P-104-D RR0816P-821-D RR0816P-512-D RR0816P-472-D RR0816P-563-D RR0816P-363-D RR0816P-821-D RR0816P-681-D RR0816P-303-D RR0816P-103-D RR0816P-102-D VF = 0.55 V (Max) , at IF = 2 A VF = 0.4 V (Max) , at IF = 0.5 A 2 μH 3.3 μH 10 μH Note : SANYO : SANYO Electric Co., Ltd. TOKO : TOKO Inc. TDK : TDK Corporation ssm : SUSUMU Co., Ltd. Document Number: 002-08829 Rev. *C Page 21 of 38 MB39A112 18. Selection Of Components ■ Pch MOS FET The Pch MOS FET for switching use should be rated for at least 20 % or more than the maximum input voltage. To minimize continuity loss, use a FET with low RDS (ON) between the drain and source. For high input voltage and high frequency operation, on-cycle switching loss will be higher so that power dissipation must be considered. In this application, the SANYO MCH3312 and MCH3308 are used. Continuity loss, on/off-cycle switching loss and total loss are determined by the following formulas. The selection must ensure that peak drain current does not exceed rated values. Continuity loss : Pc PC = ID2 × RDS (ON) × Duty On-cycle switching loss : PS (ON) PS (ON) VD (Max) × ID × tr × fosc = 6 Off-cycle switching loss : PS (OFF) PS (OFF) VD (Max) × ID (Max) × tf × fosc = 6 Total loss : PT PT = PC + PS (ON) + PS (OFF) Example : Using the MCH3312 ■ CH1 Input voltage VIN = 12 V, output voltage VO = 1.2 V, drain current ID = 1.5 A, oscillation frequency fOSC = 2350 kHz, L = 2 μH, drainsource on resistance RDS(ON) ≈ 180 mΩ, tr ≈ 2.9 ns, tf ≈ 8.7 ns. Drain current (Max) : ID (Max) ID (Max) = Io + = 1.5 + ≈ VIN - Vo 2L tON 12 - 1.2 2 × 2.0 × 10 -6 × 1 2350 × 103 × 0.1 × 0.1 1.61 A Drain current (Min) : ID (Min) ID (Min) = = ≈ Io - 1.5 - VIN - Vo 2L tON 12 - 1.2 2 × 2.0 × 10 -6 × 1 2350 × 103 1.39 A Document Number: 002-08829 Rev. *C Page 22 of 38 MB39A112 PC = ID2 × RDS (ON) × Duty = 1.52 × 0.18 × 0.1 ≈ 0.04 W PS (ON) PS (OFF) = VD × ID × tr × fosc = 12 × 1.5 × 2.9 × 10 -9 × 2350 × 103 ≈ 0.02 W = = ≈ 6 6 VD × ID (Max) × tf × fosc 6 12 × 1.61 × 8.7 × 10 -9 × 2350 × 103 6 0.066 W PT = PC + PS (ON) + PS (OFF) ≈ 0.04 + 0.02 + 0.066 ≈ 0.126 W The above power dissipation figures for the MCH3312 are satisfied with ample margin at 1.0 W Ta = +25°C e ( ■ ) CH2 Input voltage VIN = 12 V, output voltage VO = 3.3 V, drain current ID = 1.0 A, oscillation frequency fOSC = 2350 kHz, L = 3.3 μH, drainsource on resistance RDS(ON) ≈ 180 mΩ, tr ≈ 2.9 ns, tf ≈ 8.7 ns. Drain current (Max) : ID (Max) ID (Max) = Io + = 1 + ≈ 1.15 A VIN - Vo 2L tON 12 - 3.3 2 × 3.3 × 10 -6 × 1 2350 × 103 × 0.275 × 0.275 Drain current (Min) : ID (Min) ID (Min) = Io - = 1 - ≈ 0.85 A VIN - Vo 2L tON 12 - 3.3 2 × 3.3 × 10 −6 Document Number: 002-08829 Rev. *C × 1 2350 × 103 Page 23 of 38 MB39A112 PC = ID2 × RDS (ON) × Duty = 12 × 0.18 × 0.275 ≈ 0.0495 W PS (ON) = = ≈ PS (OFF) = PT = VD × ID × tr × fosc 6 12 × 1 × 2.9 × 10 -9 × 2350 × 103 6 0.0136 W VD × ID (Max) × tf × fosc 6 = 12 × 1.15 × 8.7 × 10 -9 × 2350 × 103 ≈ 0.047 W 6 PC + PS (ON) + PS (OFF) ≈ 0.0495 + 0.0136 + 0.047 ≈ 0.11 W The above power dissipation figures for the MCH3312 are satisfied with ample margin at 1.0 W (Ta = +25°C) . Example : Using the MCH3308 ■ CH3 Input voltage VIN = 12 V, output voltage Vo = 5.0 V, drain current ID = 0.3 A, oscillation frequency fosc = 2350 kHz, L = 10 μH, drain-source on resistance RDS (ON) ≈ 600 mΩ, tr ≈ 4 ns, tf ≈ 4 ns. Drain current (Max) : ID (Max) ID (Max) = Io + = 0.3 + ≈ VIN - Vo 2L tON 12 - 5 2 × 10 × 10 -6 × 1 2350 × 103 × 0.417 0.36 (A) Document Number: 002-08829 Rev. *C Page 24 of 38 MB39A112 Drain current (Min) : ID (Min) VIN - Vo ID (Min) = Io - = 0.3 - ≈ 0.24 (A) tON 2L 12 - 5 2 × 10 × 10 -6 × 1 2350 × 103 × 0.417 PC = ID2 × RDS (ON) × Duty = 0.32 × 0.6 × 0.417 ≈ 0.023 W PS (ON) = = ≈ PS (OFF) = PT = VD × ID × tr × fosc 6 12 × 0.3 × 4 × 10 -9 × 2350 × 103 6 0.0056 W VD × ID (Max) × tf × fosc 6 = 12 × 0.36 × 4 × 10 -9 × 2350 × 103 ≈ 0.0068 W 6 PC + PS (ON) + PS (OFF) ≈ 0.023 + 0.0056 + 0.0068 ≈ 0.0354 W The above power dissipation figures for the MCH3308 are satisfied with ample margin at 0.8 W (Ta = +25°C) . Document Number: 002-08829 Rev. *C Page 25 of 38 MB39A112 ■ Inductors In selecting inductors, it is of course essential not to apply more current than the rated capacity of the inductor, but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous operation and a considerable drop in efficiency. This can be prevented by choosing a higher inductance value, which will enable continuous operation under light loads. Note that if the inductance value is too high, however, direct current resistance (DCR) is increased and this will also reduce efficiency. The inductance must be set at the point where efficiency is greatest. Note also that the DC superimposition characteristics become worse as the load current value approaches the rated current value of the inductor, so that the inductance value is reduced and ripple current increases, causing loss of efficiency. The selection of rated current value and inductance value will vary depending on where the point of peak efficiency lies with respect to load current. Inductance values are determined by the following formulas. The L value for all load current conditions is set so that the peak to peak value of the ripple current is 1/2 the load current or less. Inductance value : L 2 (VIN - Vo) L≥ Io tON Example ■ CH1 L≥ ≥ ≥ ■ Io 2 × (12 -1.2) 1.5 tON × 1 2350 × 103 × 0.1 × 0.275 × 0.417 0.61 μH CH2 L≥ ≥ ≥ ■ 2 (VIN - Vo1) 2 (VIN - Vo2) Io 2 × (12 -3.3) 1 tON × 1 2350 × 103 2.04 μH CH3 L≥ ≥ ≥ 2 (VIN - Vo3) Io 2 × (12 - 5) 0.3 tON × 1 2350 × 103 8.28 μH Inductance values derived from the above formulas are values that provide sufficient margin for continuous operation at maximum load current, but at which continuous operation is not possible at light loads. It is therefore necessary to determine the load level at which continuous operation becomes possible. In this application, the TOKO A916CY-2R0M, A916CY-3R3M and A916CY-100M are used. At 2 μH, 3.3 μH and 10 μH, the load current value under continuous operating conditions is determined by the following formula. Document Number: 002-08829 Rev. *C Page 26 of 38 MB39A112 Load current value under continuous operating conditions : Io Io ≥ Vo tOFF 2L Example : Using the A916CY-2R0M 2 μH (allowable tolerance ± 20 %), rated current = 3 A ■ CH1 Io ≥ ≥ ≥ Vo1 tOFF 2L 1.2 2 × 2 × 10 1 × -6 2350 × 103 × (1 - 0.1) 0.11 A Example : Using the A916CY-3R3M 3.3 μH (allowable tolerance ± 20 %) , rated current = 2.57 A ■ CH2 Io ≥ ≥ ≥ Vo2 tOFF 2L 3.3 2 × 3.3 × 10 -6 × 1 2350 × 103 × (1 - 0.275) 0.15 A Example : Using the A916CY-100M 10.0 μH (allowable tolerance ± 20 %) , rated current = 1.49 A ■ CH3 Io ≥ ≥ ≥ Vo3 2L tOFF 5 2 × 10 × 10 -6 × 1 2350 × 103 × (1 - 0.417) 62.0 mA To determine whether the current through the inductor is within rated values, it is necessary to determine the peak value of the ripple current as well as the peak-to-peak values of the ripple current that affect the output ripple voltage. The peak value and peak-to-peak value of the ripple current can be determined by the following formulas. Document Number: 002-08829 Rev. *C Page 27 of 38 MB39A112 Peak value : IL IL ≥ VIN - Vo Io + tON 2L Peak-to-peak value : ΔIL VIN - Vo ΔIL = tON L Example : Using the A916CY-2R0M 2.0 μH (allowable tolerance ± 20 %) , rated current = 3.0 A CH1 Peak value ■ IL ≥ ≥ ≥ VIN - Vo1 Io + 2L 1.5 + tON 12 - 1.2 × 2 × 2.0 × 10 -6 1 2350 × 103 × 0.1 1.61 A Peak-to-peak value ΔIL = = ≈ VIN - Vo1 L 12 - 1.2 2.0 × 10 -6 tON × 1 2350 × 103 × 0.1 0.23 A Document Number: 002-08829 Rev. *C Page 28 of 38 MB39A112 Example : Using the A916CY-3R3M 3.3 μH (allowable tolerance ± 20 %) , rated current = 2.57 A CH2 Peak value ■ IL ≥ ≥ ≥ VIN - Vo2 Io + tON 2L 12 - 3.3 1.0 + 2 × 3.3 × 10 × -6 1 2350 × 103 × 0.275 1.15 A Peak-to-peak value ΔIL = VIN - Vo2 = 12 - 3.3 ≈ tON L 3.3 × 10 × -6 1 2350 × 103 × 0.275 0.309 A Example : Using the A916CY-100M 10.0 μH (allowable tolerance ± 20 %) , rated current = 1.49 A CH3 Peak value ■ IL ≥ ≥ ≥ VIN - Vo3 Io + tON 2L 0.3 + 12 - 5 2 × 10 × 10 × -6 1 2350 × 103 × 0.417 0.36 A Peak-to-peak value ΔIL = = ≈ VIN - Vo3 L 12 - 5 10 × 10 -6 tON × 1 2350 × 103 × 0.417 0.124 A Document Number: 002-08829 Rev. *C Page 29 of 38 MB39A112 ■ Flyback diode The flyback diode is generally used as a Shottky barrier diode (SBD) when the reverse voltage to the diode is less than 40 V. The SBD has the characteristics of higher speed in terms of faster reverse recovery time, and lower forward voltage, and is ideal for archiving high efficiency. As long as the DC reverse voltage is sufficiently higher than the input voltage, the average current flowing through the diode is within the average output current level, and peak current is within peak surge current limits, there is no problem. In this application the SANYO SBE001, SBS005 are used. The diode average current and diode peak current can be calculated by the following formulas. Diode mean current : IDi IDi ≥ ( 1 - Io × Vo ) VIN Diode peak current : IDip IDip ≥ Vo (Io + 2L tOFF) Example : Using the SBE001 VR (DC reverse voltage) = 30 V, average output current = 2.0 A, peak surge current = 20 A, VF (forward voltage) = 0.55 V, at IF = 2.0 A CH1 Diode mean current ■ IDi ≥ ≥ 1.5 ≥ (1 - Io × × Vo1 VIN ) (1 - 0.1) 1.35 A Diode peak current IDip ≥ ≥ Vo1 (Io + 2L tOFF) 1.61 A CH2 Diode mean current ■ IDi ≥ Io × (1 - Vo2 VIN ) ≥ 1.0 × (1 - 0.275) ≥ 0.725 A Document Number: 002-08829 Rev. *C Page 30 of 38 MB39A112 Diode peak current IDip ≥ ≥ Vo2 (Io + 2L tOFF) 1.15 A Example : Using the SBS005 VR (DC reverse voltage) = 30 V, average output current = 1.0 A, peak surge current = 10 A, VF (forward voltage) = 0.4 V, at IF = 0.5 A CH3 Diode mean current ■ IDi ≥ ≥ 0.3 ≥ (1 - Io × × Vo3 VIN ) (1 - 0.417) 0.175 A Diode peak current IDip ≥ ≥ (Io + Vo3 2L tOFF) 0.36 A Document Number: 002-08829 Rev. *C Page 31 of 38 MB39A112 19. Reference Data Conversion Efficiency vs. Load Current Characteristics (CH1) Ta = + 25 °C 1.2 V output CTL1 = “L” CTL2 = “H” CTL3 = “H” RT = 5.1 kΩ CT = 100 pF Conversion efficiency η (%) 100 90 80 70 VIN = 7 V VIN = 10 V VIN = 12 V 60 50 40 30 10 m 100 m 1 10 Load current IL (A) Conversion Efficiency vs. Load Current Characteristics (CH2) Ta = + 25 °C 3.3 V output CTL1 = “H” CTL2 = “L” CTL3 = “H” RT = 5.1 kΩ CT = 100 pF Conversion efficiency η (%) 100 90 80 70 VIN = 7 V VIN = 10 V VIN = 12 V 60 50 40 30 10 m 100 m 1 10 Load current IL (A) Conversion Efficiency vs. Load Current Characteristics (CH3) Ta = + 25 °C 5.0 V output CTL1 = “H” CTL2 = “H” CTL3 = “L” RT = 5.1 kΩ CT = 100 pF 100 Conversion efficiency η (%) 90 80 70 60 VIN = 7 V VIN = 10 V VIN = 12 V 50 40 30 10 m 100 m 1 10 Load current IL (A) (Continued) Document Number: 002-08829 Rev. *C Page 32 of 38 MB39A112 Conversion Efficiency vs. Load Current Characteristics (CH1) = Conversion efficiency η (%) 100 Ta + 25 °C 1.2 V output CTL1 “L” CTL2 “H” CTL3 “H” RT 10 kΩ CT 100 pF 90 80 = = 70 = = = VIN = 7 V VIN = 10 V VIN = 12 V 60 50 40 30 10 m 100 m 1 10 Load current IL (A) Conversion Efficiency vs. Load Current Characteristics (CH2) Conversion efficiency η (%) 100 Ta = + 25 °C 3.3 V output CTL1 = “H” CTL2 = “L” CTL3 = “H” RT = 10 kΩ CT = 100 pF 90 80 70 VIN = 7 V VIN = 10 V VIN = 12 V 60 50 40 30 10 m 100 m 1 10 Load current IL (A) Conversion Efficiency vs. Load Current Characteristics (CH3) Ta = + 25 °C 5.0 V output CTL1 = “H” CTL2 = “H” CTL3 = “L” RT = 10 kΩ CT = 100 pF Conversion efficiency η (%) 100 90 80 70 60 VIN = 7 V VIN = 10 V VIN = 12 V 50 40 30 10m 100m 1 10 Load current IL (A) (Continued) Document Number: 002-08829 Rev. *C Page 33 of 38 MB39A112 (Continued) Conversion Efficiency vs. Load Current Characteristics (CH1) Ta = + 25 °C 1.2 V output CTL1 = “L” CTL2 = “H” CTL3 = “H” RT = 24 kΩ CT = 100 pF Conversion efficiency η (%) 100 90 80 70 60 VIN = 7 V VIN = 10 V VIN = 12 V 50 40 30 10 m 100 m 1 10 Load current IL (A) Conversion Efficiency vs. Load Current Characteristics (CH2) Ta = + 25 °C 3.3 V output CTL1 = “H” CTL2 = “L” CTL3 = “H” RT = 24 kΩ CT = 100 pF Conversion efficiency η (%) 100 90 80 70 VIN = 7 V VIN = 10 V VIN = 12 V 60 50 40 30 10 m 100 m 1 10 Load current IL (A) Cconversion Efficiency vs. Load Current Characteristics (CH3) Ta = + 25 °C 5.0 V output CTL1 = “H” CTL2 = “H” CTL3 = “L” RT = 24 kΩ CT = 100 pF Cconversion efficiency η (%) 100 90 80 70 VIN = 7 V VIN = 10 V VIN = 12 V 60 50 40 30 10m 100m 1 10 Load current IL (A) Document Number: 002-08829 Rev. *C Page 34 of 38 MB39A112 20. Usage Precaution ■ Printed circuit board ground lines should be set up with consideration for common impedance. ■ Take appropriate static electricity measures. ❐ Containers for semiconductor materials should have anti-static protection or be made of conductive material. ❐ After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. ❐ Work platforms, tools and instruments should be properly grounded. ❐ Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground. ■ Do not apply negative voltages. ❐ The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation. 21. Ordering Information Part number MB39A112PFT Document Number: 002-08829 Rev. *C Package Remarks 20-pin plastic TSSOP (FPT-20P-M06) Page 35 of 38 MB39A112 22. Package Dimension Note 1) Note 2) Note 3) Note 4) 20-pin plastic TSSOP (FPT-20P-M06) *1 : Resin protrusion. (Each side : +0.15 (.006) Max) . *2 : These dimensions do not include resin protrusion. Pins width and pins thickness include plating thickness. Pins width do not include tie bar cutting remainder. *1 6.50±0.10(.256±.004) 0.17±0.05 (.007±.002) 20 11 *2 4.40±0.10 6.40±0.20 (.173±.004) (.252±.008) INDEX Details of "A" part 1.05±0.05 (Mounting height) (.041±.002) LEAD No. 1 10 "A" 0.65(.026) 0.24±0.08 (.009±.003) 0.13(.005) M 0~8˚ +0.03 (0.50(.020)) 0.10(.004) C 0.60±0.15 (.024±.006) +.001 0.07 –0.07 .003 –.003 (Stand off) 0.25(.010) 2003 FUJITSU LIMITED F20026S-c-3-3 Dimensions in mm (inches) . Note : The values in parentheses are reference values. Document Number: 002-08829 Rev. *C Page 36 of 38 MB39A112 Document History Document Title: MB39A112 3-ch DC/DC Converter IC Document Number: 002-08829 Revision ECN Orig. of Change Submission Date ** — TAOA 11/25/2003 *A 5491406 TAOA 10/24/2016 Updated to Cypress template. *B 5904432 MASG 10/02/2017 Adapted Cypress new logo. *C 6459753 SSAS 01/25/2019 Obsoleted. Document Number: 002-08829 Rev. *C Description of Change Migrated to Cypress and assigned document number 002-08829. No change to document contents or format. Page 37 of 38 MB39A112 Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. Products PSoC® Solutions ARM® Cortex® Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Touch Sensing USB Controllers Wireless/RF PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 Cypress Developer Community Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation, 2003-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-08829 Rev. *C Revised January 25, 2019 Page 38 of 38
MB39A112PFT-G-BND-ERE1 价格&库存

很抱歉,暂时无法提供与“MB39A112PFT-G-BND-ERE1”相匹配的价格&库存,您可以联系我们找货

免费人工找货