0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STK14C88-L45I

STK14C88-L45I

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    LCC32_13.97X11.43MM

  • 描述:

    IC NVSRAM 256KBIT 45NS 32CLCC

  • 数据手册
  • 价格&库存
STK14C88-L45I 数据手册
STK14C88 32Kx8 AutoStore nvSRAM Features Description ■ 25, 35, 45 ns Read Access and R/W Cycle Time ■ Unlimited Read/Write Endurance The Cypress STK14C88 is a 256 Kb fast static RAM with a nonvolatile Quantum Trap storage element included with each memory cell. ■ Automatic Nonvolatile STORE on Power Loss ■ Nonvolatile STORE Under Hardware or Software Control ■ Automatic RECALL to SRAM on Power Up ■ Unlimited RECALL Cycles ■ 1 Million STORE Cycles ■ 100-Year Nonvolatile Data Retention ■ Single 5V+10% Power Supply ■ Commercial, Industrial, Military Temperatures ■ 32-Pin 300 mil SOIC (RoHS-Compliant) ■ 32-Pin CDIP and LCC Packages ig ns The SRAM provides the fast access and cycle times, ease of use, and unlimited read and write endurance of a normal SRAM. es Data automatically transfers to the nonvolatile storage cells when power loss is detected (the STORE operation). On power up, data is automatically restored to the SRAM (the RECALL operation). Both STORE and RECALL operations are also available under software control. fo rN ew D The Cypress nvSRAM is the first monolithic nonvolatile memory to offer unlimited writes and reads. It is the highest performance, most reliable nonvolatile memory available. de d Logic Block Diagram en m om STATIC RAM ARRAY 512 x 512 VCAP POWER CONTROL STORE STORE/ RECALL CONTROL RECALL SOFTWARE DETECT COLUMN I/O INPUT BUFFERS N ot R DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 ec A5 A6 A7 A8 A9 A11 A12 A13 A14 ROW DECODER Quantum Trap 512 x 512 VCCX HSB A0 - A13 COLUMN DEC A0 A1 A2 A3 A4 A10 G E W Cypress Semiconductor Corporation Document Number: 001-52038 Rev. *B • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised December 01, 2009 [+] Feedback STK14C88 Contents Features................................................................................ 1 Description........................................................................... 1 Logic Block Diagram........................................................... 1 Contents ............................................................................... 2 Pin Configurations .............................................................. 3 Pin Descriptions .................................................................. 3 Absolute Maximum Ratings ............................................... 4 DC Characteristics .............................................................. 4 AC Test Conditions ............................................................. 5 Capacitance ......................................................................... 5 SRAM Read Cycles #1 and #2 ............................................ 6 SRAM Write Cycle #1 and #2 .............................................. 7 Hardware Mode Selection................................................... 8 Hardware STORE Cycle ...................................................... 8 AutoStore/Power up RECALL ............................................ 9 nvSRAM Operation............................................................ 10 Noise Considerations........................................................ 10 SRAM Read ........................................................................ 10 10 10 10 10 10 11 11 12 12 12 12 14 14 15 19 19 19 19 N ot R ec om m en de d fo rN ew D es ig ns SRAM Write ........................................................................ Power Up RECALL ............................................................ Software Nonvolatile STORE............................................ Software Nonvolatile RECALL ......................................... AutoStore Mode................................................................. AutoStore INHIBIT Mode................................................... HSB Operation ................................................................... Best Practices.................................................................... Preventing STORES .......................................................... Hardware Protect............................................................... Low Average Active Power............................................... Software STORE/RECALL Mode Selection ..................... Software-Controlled STORE/RECALL Cycle................... Ordering Information......................................................... Document History Page .................................................... Sales, Solutions, and Legal Information ......................... Worldwide Sales and Design Support.......................... Products ....................................................................... Document Number: 001-52038 Rev. *B Page 2 of 19 [+] Feedback STK14C88 Pin Configurations 27 A9 7 26 A11 8 25 24 G NC (TOP) 9 10 23 A10 A1 A0 11 22 12 21 E DQ7 DQ0 13 20 DQ1 DQ2 14 19 DQ6 DQ5 15 18 DQ4 VSS 16 17 DQ3 W HSB VCap VCCx A11 NC A1 A0 DQ0 G (TOP) A2 NC A10 E DQ7 de d fo NC A2 A9 ig ns 6 DQ6 A5 A4 A3 A8 A4 A3 DQ5 5 A13 A5 es A6 A6 DQ4 W A13 A8 29 28 DQ3 4 A14 HSB 30 D 31 3 VSS 2 A12 A7 A7 A14 DQ2 VCC ew 32 DQ1 1 rN VCAP Figure 2. Pin Diagram - 32-Pin 450 Mil LCC A12 Figure 1. Pin Diagram - 32-Pin 300 Mil SOIC/CDIP en Pin Descriptions I/O A14-A0 Input DQ7-DQ0 I/O E Input Chip Enable: The active low E input selects the device. W Input Write Enable: The active low W enables data on the DQ pins to be written to the address location latched by the falling edge of E. G Input HSB Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array. R ec om Data: Bi-directional 8-bit data bus for accessing the nvSRAM. ot Output Enable: The active low G input enables the data output buffers during read cycles. De-asserting G high caused the DQ pins to tristate. Power Supply Power: 5.0V, +10%. N VCC Description m Pin Name I/O Hardware Store Busy: When low this output indicates a Store is in progress. When pulled low external to the chip, it initiates a nonvolatile STORE operation. A weak pull up resistor keeps this pin high if not connected. (optional connection). VCAP Power Supply AutoStore Capacitor: Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile storage elements. VSS Power Supply Ground. NC No Connect Unlabeled pins have no internal connections. Document Number: 001-52038 Rev. *B Page 3 of 19 [+] Feedback STK14C88 Absolute Maximum Ratings Note Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Voltage on Input Relative to Ground.................–0.5V to 7.0V Voltage on Input Relative to VSS ...........–0.6V to (VCC + 0.5V) Voltage on DQ0-7 or HSB ......................–0.5V to (VCC + 0.5V) Temperature under Bias ............................... –55°C to 125°C Storage Temperature .................................... –65°C to 150°C Power Dissipation............................................................. 1W ig ns DC Output Current (1 output at a time, 1s duration).... 15 mA DC Characteristics Min Max Average VCC Current during STORE 3 ICC3[1] Average VCC Current at tAVAV = 200 ns 5V, 25°C, Typical 10 ICC4[2] Average VCAP Current during AutoStore Cycle ISB1[3] Average VCC Current (Standby, Cycling TTL Input Levels) ISB2[3] Notes 100 85 70 mA mA mA tAVAV = 25 ns tAVAV = 35 ns tAVAV = 45 ns 3 mA All Inputs Don’t Care, VCC = max 10 mA W ≥ (V CC – 0.2V) All Others Cycling, CMOS Levels 2 2 mA All Inputs Don’t Care 30 25 22 31 26 23 mA mA mA tAVAV = 25 ns, E ≥ VIH tAVAV = 35 ns, E ≥ VIH tAVAV = 45 ns, E ≥ VIH VCC Standby Current (Standby, Stable CMOS Input Levels) 1.5 1.5 mA E ≥ (V CC – 0.2V) All Others VIN ≤ 0.2V or ≥ (VCC – 0.2V) IILK Input Leakage Current ±1 ±1 μA VCC = max VIN = VSS to VCC IOLK Off-State Output Leakage Current ±5 ±5 μA VCC = max VIN = VSS to VCC, E or G ≥ VIH VIH Input Logic “1” Voltage 2.2 VCC + 0.5 2.2 VCC +0.5 V All Inputs VIL Input Logic “0” Voltage VSS – .5 0.8 VSS – .5 0.8 V All Inputs V IOUT = – 4 mA except HSB VOH ew ICC2[2] Unit Max rN 97 80 70 Min ot R ec om m en de d fo Average VCC Current N ICC1 [1] Industrial/ Military Commercial Parameter D Symbol es Over the operating range (VCC = 5.0V ± 10%)[4] Output Logic “1” Voltage 2.4 2.4 VOL Output Logic “0” Voltage 0.4 0.4 V IOUT = 8 mA except HSB VBL Logic “0” Voltage on HSB Output 0.4 0.4 V IOUT = 3 mA TA Operating Temperature 85/125 °C 0 70 -40/-55 Notes 1. ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded. 2. ICC2 and ICC4 are the average currents required for the duration of the respective STORE cycles (tSTORE). 3. E ≥ VIH does not produce standby current levels until any nonvolatile cycle in progress has timed out. 4. VCC reference levels throughout this data sheet refer to VCC if that is where the power supply connection is made, or VCAP if VCC is connected to ground. Document Number: 001-52038 Rev. *B Page 4 of 19 [+] Feedback STK14C88 AC Test Conditions Input Pulse Levels .................................................... 0V to 3V Input Rise and Fall Times ............................................
STK14C88-L45I 价格&库存

很抱歉,暂时无法提供与“STK14C88-L45I”相匹配的价格&库存,您可以联系我们找货

免费人工找货