0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTT3018EJXUMA1

BTT3018EJXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    PG-TDSO8-31_150MIL_EP

  • 描述:

    BTT3018EJXUMA1

  • 数据手册
  • 价格&库存
BTT3018EJXUMA1 数据手册
H I T F E T TM+ 2 4 V BTT3018EJ Smart Low-Side Power Switch Features • Single channel device optimized for 24 V applications • Electrostatic discharge protection (ESD) • Over current, active clamping and over temperature protection • Over temperature latch shutdown • Supply pin undervoltage protection • Dedicated status signal • Slew-rate control to adjust switching speed • PWM switching capability of 20KHz (duty cycle 10%-90%) • Green Product (RoHS compliant) • AEC Qualified Potential applications • Suitable for resistive and inductive loads Product validation Qualified for automotive applications. Product validation according to AEC-Q100/101. Description The BTT3018EJ is a 16 mΩ single channel Smart Low-Side Power Switch within a PG-TDSO-8 package providing embedded protective functions. The power transistor is built by a N-channel vertical power MOSFET. The BTT3018EJ is monolithically integrated. The BTT3018EJ is automotive qualified and is optimized for 24 V automotive applications. Table 1 Product Summary Parameter Symbol Values Operating Voltage Range VOUT 0 … 36 V Maximum load voltage VBAT(OUT) 63 V ON-State Resistance RDS(ON)_25 16 mΩ Nominal Load Current IL(NOM) 7.0 A Minimum Current Limitation IL(LIM) 30 A Datasheet www.infineon.com 1 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Type Package Marking BTT3018EJ PG-TDSO-8 T3018EJ Datasheet 2 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Table of Contents 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 2.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 3.2 3.3 3.4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 4.1 4.2 4.3 4.3.1 4.3.2 4.4 4.5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adjustable switching speed / Slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 12 12 14 14 15 15 5 5.1 5.1.1 5.1.2 5.2 Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 16 16 17 6 6.1 6.2 6.3 6.4 6.5 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Voltage Clamping on Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Limitation / Short Circuit Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset latch condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 18 18 20 7 7.1 7.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Functional Description of the STATUS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8 8.1 8.2 8.3 8.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 25 26 28 9 9.1 9.2 9.3 Characterisation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30 34 35 10 10.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Layout recommendations/considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Datasheet 3 6 6 6 7 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ 10.2 Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Datasheet 4 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Block Diagram 1 Block Diagram Over-temperature Protection IN Latch Status Feedback ESD Protection Figure 1 Datasheet ESD Protection Supply Unit SRP ESD Protection Slewrate adjustment STATUS Logic Under-voltage Protection VDD ESD Protection Over-voltage Protection OUT Gate Driving Unit Over-current Protection GND Block Diagram of the BTT3018EJ 5 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Pin Configuration 2 Pin Configuration 2.1 Pin Assignment IN 1 8 GND VDD 2 7 GND STATUS 3 6 GND SRP 4 5 NC OUT Figure 2 Pin Configuration. PG-TDSO-8 2.2 Pin Definitions and Functions Pin Symbol I/O Function 1 IN I If IN is high, switches ON the Power DMOS If IN is low, switches OFF the Power DMOS 2 VDD I Logic supply voltage pin, 3.3V to 5.5V 3 STATUS I/O RESET thermal latch function by microcontroller and pull-up If STATUS is high, device is in normal operation If STATUS is low, device is in over temperature condition 4 SRP I Slewrate control with external resistor 5 NC 6, 7, 8 GND I/O GND; Source of power DMOS and logic1) Cooling Tab OUT I/O Load connection, Drain of power DMOS Pin internally not connected 1) All GND pins must be connected together Datasheet 6 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Pin Configuration 2.3 Voltage and Current Definition VBA T VBA T VDD VDD IDD RST ATUS ZL I ST ATUS VDD STATUS VST ATUS I IN I L, ID OUT IN VIN I SRP RSRP SRP GND VOUT, VDS VSRP GND Figure 3 Datasheet Naming definition of electrical parameters 7 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ General Product Characteristics 3 General Product Characteristics 3.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings1) Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. -0.3 – 63 V internally clamped P_3.1.1 -0.3 – 36 V VIN = 5V P_3.1.2 IL 0 – IL(LIM) A – P_3.1.3 IN Pin Voltage VIN -0.3 – 5.5 V – P_3.1.4 STATUS Pin Voltage VSTATUS -0.3 – 5.5 V – P_3.1.5 SRP Pin Voltage VSRP -0.3 – 5.5 V – P_3.1.6 VDD Pin Voltage VDD -0.3 – 6.5 V – P_3.1.7 Energy. Single pulse EAS – – 150 mJ IL(0) = IL(NOM) VBAT = 28 V TJ(0) = 150°C P_3.1.8 Energy. Repetitive pulse 1 M cycles EAR(1M) – – 80 mJ IL(0) = IL(NOM) VBAT = 28V TJ(0) = 105°C P_3.1.11 Junction Temperature TJ -40 – 150 °C – P_3.1.13 Storage Temperature TSTG -55 – 150 °C – P_3.1.14 ESD Susceptibility (all pins except OUT tab, to GND) VESD -2 – 2 kV HBM2) P_3.1.15 ESD Susceptibility (OUT tab to GND) VESD_OUT -4 – 4 kV HBM2) P_3.1.16 ESD Susceptibility (all pins) VESD_CDMA -500 – 500 V CDM3) P_3.1.17 ESD Susceptibility (corner pins) VESD_CDMC -750 – 750 V CDM3) P_3.1.18 Output Voltages Output Voltage VOUT Battery Voltage for short circuit VBAT(SC) protection (Extended Range) Power Stage Load current Logic Pins Energy capability Temperatures ESD Susceptibility 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF.) 3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101. Datasheet 8 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ General Product Characteristics Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as outside normal operating range. Protection functions are not designed for continuous repetitive operation. 3.2 Functional Range Table 3 Functional Range 1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Battery Voltage Range for Nominal Operation VBAT(NOR) 6 – 36 V – P_3.2.1 Supply Voltage Range for Nominal Operation VDD(NOR) 3.3 – 5.5 V – P_3.2.2 Supply Voltage Range for Extended_1 Operation VDD(EXT1) 3.0 – 5.5 V 1) P_3.2.6 Battery Voltage Range for Extended_2 Operation VDD(EXT2) 5.5 – Junction Temperature TJ -40 – 150 °C – P_3.2.4 2.2 – 160 kΩ – P_3.2.5 External Resistor Range for RSRP Adjustable Slewrate Operation Parameter deviations possible 6.5 V 1) P_3.2.7 VBAT < 46V; Parameter deviations possible 1) Not subject to production test, specified by design. Note: Datasheet Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. 9 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ General Product Characteristics 3.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4 Thermal Resistance Parameter Symbol Junction to Case Junction to Ambient 2s2p RthJC RthJA(2s2p) Values Min. Typ. Max. – 0.84 – – 30 – Unit Note or Test Condition Number K/W 1) 2) P_3.3.1 K/W 1) 3) P_3.3.2 1) Not subject to production test, specified by design. 2) Specified RthJC value is simulated at natural convection on a cold plate setup. Bottom of the package is fixed to ambient temperature. TAMB = 85°C. Device loaded with 1 W power 3) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product (Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). TAMB = 85°C. Device loaded with 1 W power 3.4 Transient Thermal Impedance Figure 4 Typical transient thermal impedance ZthJA = f(tp), Ta = 85°C Value is according to Jedec JESD51-2, at natural convection on FR4 boards. Where applicable a thermal via array under the ex posed pad contacted the first inner copper layer. Device is dissipating 1 W power. Datasheet 10 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Power Stage 4 Power Stage 4.1 Output On-state Resistance The on-state resistance depends on the supply voltage (VDD) and on the junction temperature (TJ). Figure 5 shows these dependencies. The behavior in reverse polarity is described in chapter“Reverse Current Capability” on Page 15. Figure 5 Datasheet Typical On-State Resistance, RDS(ON) = f(TJ); VDD = VIN = 5 V, 3 V 11 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Power Stage 4.2 Resistive Load Output Timing Figure 6 shows the typical timing when switching a resistive load. Both -(ΔV/Δt)ON and (ΔV/Δt)OFF can be calculated using the following formulas: Turn-on Slew rate: -(ΔV/Δt)ON= (0.6 x VBAT) / tF Turn-off Slew rate: (ΔV/Δt)OFF= (0.6 x VBAT) / tR NB: the coefficient 0.6 is based on 20% to 80% of VBAT, this is how the measurement of ΔV is defined. As shown in Figure 6 tON and tOFF can be calculated from delay time (tDON, tDOFF) and falling/rising time (tF, tR) using the following formulas: Turn-on time: tON = tDON + tF Turn-on time: tOFF = tDOFF + tR VIN VIN (TH)H VIN (TH)L t VOUT VBA T 80 % -(ΔV/Δt)ON (ΔV/Δt)OFF 20 % tDON tF tDOFF tR t tOFF tON Figure 6 Definition of Power Output Timing for Resistive Load 4.3 Adjustable switching speed / Slew rate SRP Driver RSRP(int) & R SRP ESD Logic GND Figure 7 Simplified SRP circuit Figure 7 shows the slew rate control circuit of the BTT3018EJ. The circuit includes an ESD protection mechanism via a zener structure. Datasheet 12 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Power Stage In order to optimize the switching speed of the MOSFET to a specific application, an external resistor can be connected between SRP pin and GND to select the desired slew rate (see switching timings in Chapter 8.1). The adjustment of the slew rate also allows to balance between electromagnetic emissions and power dissipation. To reduce the number of external components, the SRP pin can be connected directly to GND. This sets the slew rate at its largest value enabling fast switching timings. It is not recommanded to connected directly SRP pin to VDD or to leave it floating (open). The accuracy of the switching speed is dependent on the accuracy of the external resistor used. It is recommended to use short connections between the SRP pin and either RSRP, GND bias. Figure 8 show the typical relation between switching speed and the external SRP resistor (RSRP). Figure 8 Typical diagram representing the relation between RSRP and tON, tOFF; VDD= 3V, 5V Datasheet 13 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Power Stage 4.3.1 Output Clamping When switching off inductive loads with low side switches, the drain-source voltage VOUT rises above the battery potential due to the inductance tendency to continue driving the current. To prevent unwanted high voltages, the device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping operation mode the device heats up as it dissipates the energy from the inductance. Therefore the maximum allowed load inductance is limited. See Figure 9 and Figure 10 for more details. VBAT ZL IL OUT (DMOS Drain) V OUT GND ( DMOS Source) IGND Figure 9 Output Clamp Circuitry VIN t I OUT t VOUT VOUT(CLAMP) VBAT t Figure 10 Switching an Inductive Load Note: Repetitive switching of an inductive load by VDD instead of using the input pin is a not recommended operation and may affect the device reliability and reduce the lifetime. 4.3.2 Maximum Load Inductance During the demagnetization of inductive loads, energy has to be dissipated by the device. This energy can be calculated by the following equation: Datasheet 14 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Power Stage VBAT − VOUT ( CLAMP)    RL × I L  + IL  × L × ln 1 − E = VOUT ( CLAMP) ×   V −V  RL BAT OUT ( CLAMP )     RL (4.1) Following equation is simplified under the assumption of RL = 0 E=   VBAT 1 2  LI L × 1 −  V −V  2 BAT OUT ( CLAMP )   (4.2) Figure 11 shows the inductance for a given current the device BTT3018EJ can withstand. For maximum single avalanche energy please also refer to EAS parameter in Chapter 3.1 Figure 11 Maximum load inductance for single pulse IL= f(L); TJ(0) = 150 °C; VBAT = 28 V 4.4 Reverse Current Capability A reverse battery situation means that the device drain is pulled below GND potential to -VBAT. In this situation the load is driven by a current through the intrinsic body diode of the BTT3018EJ and all protections, such as current limitation, over temperature or over voltage clamping, are not active. In inverse or reverse operation via the reverse body diode, the device is dissipating a power loss which is defined by the driven current and the voltage drop on the body diode. 4.5 Characteristics Please see “Power Stage” on Page 23 for electrical characteristic table. Datasheet 15 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Supply and Input Stage 5 Supply and Input Stage VDD RDD Driver & ESD Logic IN RIN ESD GND Figure 12 Simplified supply and input circuit Figure 12 shows the supply and input circuit of the BTT3018EJ. Both terminals include an ESD protection mechanism via a zener structure. 5.1 Supply Circuit The device’s supply is not internally regulated but provided by an external supply. Therefore a reverse polarity protected and buffered (3.3V .. 5.5V) voltage supply is required at VDD pin. To achieve the best RDS(ON) and the fastest switching speed a 5V supply is required. 5.1.1 Undervoltage Shutdown In order to ensure a stable device behavior under all allowed conditions, the supply voltage VDD is monitored. The output switches off if the supply voltage VDD drops below the switch-off threshold VDD(TH)L. If the supply voltage VDD drops below the supply voltage reset threshold VDD(RESET), a reset of the STATUS signal and the latch-OFF state will occur. The device functions are only given for supply voltages above the supply voltage threshold VDD(TH)H. 5.1.2 Supply current consumption The supply current consumption is determined by the state of the IN pin, being low, with the IDD(OFF) and being high, with the IDD(ON). After a thermal shutdown, when the device is in OFF latch mode, the current consumption values matches the normal ON state IDD(ON) as long as input is high. However in PWM the consumption depends on the switching frequency. The higher the frequency, the higher the IDD(PWM). Figure 13 shows the typical relation between the supply current consumption and the switching frequency considering a duty-cycle of 50%. Datasheet 16 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Supply and Input Stage Figure 13 Typical IDD(PWM) vs switching frequency at 50% duty-cycle 5.2 Characteristics Please see “Supply and Input Stage” on Page 26 for electrical characteristic table. Datasheet 17 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Protection Functions 6 Protection Functions The BTT3018EJ provides embedded protection functions. They are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as “outside” normal operation. Protection functions are not to be used for continuous or repetitive operation. 6.1 Over Voltage Clamping on Output The BTT3018EJ is designed with a voltage clamp circuitry that limits the drain-source voltage VDS at a certain level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power dissipation has to be limited to not exceed the maximum allowed junction temperature. This function is also used in terms of inductive clamping. Please see also “Output Clamping” on Page 14 for more details. 6.2 Thermal Protection The device is protected against over temperature due to overload and/or bad cooling conditions by an integrated static temperature sensor. The thermal protection is available when the device is active. In the event of over temperature shutdown TJ(SD), the device will remain OFF until the device is reset via STATUS pin. Please see Figure 14 and Figure 15. 6.3 Overcurrent Limitation / Short Circuit Behavior This BTT3018EJ provides an overcurrent limitation intended to protect against short circuit or over current conditions. When the drain current reaches the current limitation level IL(LIM), the device will limit the current at that level. While doing so, the power dissipation will heat up the device. Once the device reaches the over temperature shutdown threshold TJ(SD), it will automatically shutdown and remain OFF until it is reset via STATUS pin. 6.4 Reset latch condition The reset of the latch OFF mode is done in two steps that need to be performed in the correct sequence. During the first step, the voltage at the STATUS pin must be below the VSTATUS(RESET)L threshold for a time t > tSTATUS(RESET)L. In the second step of the reset sequence, the STATUS pin voltage needs to be pulled-up above the VSTATUS(RESET)H threshold for a time t > tSTATUS(RESET)H. The total reset time is given by the sum of tSTATUS(RESET)L and tSTATUS(RESET)H. The following sub-chapters explain in more details the reset functionality in different conditions. Reset via STATUS pin If the temperature protection shutdowns the device, it will remain latched OFF independently of the input signal at IN pin. Simultaneously, the STATUS pin signal will be signalized low VSTATUS(LATCH). In order to reset the latch condition, the STATUS pin needs to remain below VSTATUS(RESET)L for a minimum time tSTATUS(RESET)L before being externally pulled-up to VSTATUS(RESET)H for a minimum time tSTATUS(RESET)H. Please refer to Figure 14 and the application diagram in Figure 33. This configuration allows the device to be driven with high frequency PWM signal via the IN pin without a risk of resetting the device in case it goes in protection shut-down mode (latch OFF). Datasheet 18 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Protection Functions Ext erna l pull-up STA TUS pin high Ov er c ur rent event Ther mal s hutdown No r es et vi a IN tS T AT US (RE S E T)L tS T AT US (RE S E T)H IN t VST ATU S VS T AT US (RE S E T)H VS T AT US (RE S E T)L VS T AT US (LA T CH ) t ID , IL Current l imitati on IL(LIM ) t Tj Tj(SD ) t VOU T t Tot al RESET time Figure 14 Mechanism to reset latch condition via STATUS pin Reset via STATUS pin and IN pin connected together If STATUS pin and IN pin are connected together (No RSTATUS pull-up external resistor), the voltage provided through the IN pin will prevent the STATUS low notification. To reset the device under this condition, the STATUS-IN connection needs to be pulled-down to VSTATUS(RESET)L for a minimum time tSTATUS(RESET)L before being pulled-up to VSTATUS(RESET)H for a minimum time tSTATUS(RESET)H. Please refer to Figure 15 and the application diagram in Figure 34. If no diagnosis of the device is required, this configuration avoids the need of a dedicated I/O from the microcontroller for the STATUS pin. The maximum frequency to not reset the device allowed in PWM mode is constrained by the tSTATUS(RESET)L and tSTATUS(RESET)H times. Datasheet 19 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Protection Functions Ext erna l pull-do wn IN p in low VIN , VST ATU S Ov er c ur rent event Ther mal s hutdown Ext erna l pull-up IN p in h ig h tS T AT US (RE S E T)L tS T AT US (RE S E T)H VS T AT US (RE S E T)H VS T AT US (RE S E T)L t ID , IL Current limitation IL(LIM ) t Tj Tj(SD ) t VOU T t Tot al RESET time Figure 15 Mechanism to reset latch condition with STATUS pin and IN pin connected together Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. 6.5 Characteristics Please see “Protection” on Page 25 for electrical characteristic table. Datasheet 20 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Diagnostics 7 Diagnostics The BTT3018EJ provides a latching digital fault feedback signal on the STATUS pin triggered by an over temperature shutdown. VDD RST ATU S(int) + RDI AG(int) = RST ATU S(LAT CH) RST ATU S 120 Ω STATUS Driver RST ATU S(int) 1 0KΩ ESD RDI AG(int) & Logic GND Figure 16 Simplified diagnosis circuit Figure 16 shows the diagnosis circuit of the BTT3018EJ. The circuit include an ESD protection mechanism via a zener structure. Note that RSTATUS(int) + RDIAG(int) = RSTATUS(LATCH) (cf. P_8.5.12). 7.1 Functional Description of the STATUS Pin The BTT3018EJ provides digital status information via the STATUS pin to give feedback to a connected microcontroller. The readout of the diagnosis signal is only possible if the STATUS pin has a dedicated connection to the microcontroller and the appropriate pull-up resistor RSTATUS is in place. See Figure 33 for recommended values of the external components. The device is able to operate with STATUS pin and IN pin connected together, however this condition will inhibit the readout of the diagnosis signal. Normal operation mode In normal operation (no thermal shutdown) the STATUS pin’s logic is set “high”. It is pulled-up via an external Resistor (RSTATUS) to VDD. Internally it is connected to an open drain MOSFET through an internal resistor. Fault operation mode In case of a thermal shutdown (fault) the internal MOSFET connected to the STATUS pin, pulls it’s voltage down to GND providing a “low” level signal to the microcontroller VSTATUS(LATCH). Fault mode operation remains active independent from the input pin state until it is reset. Reset latch fault signal (external pull up) To reset the latch fault signal of the BTT3018EJ, the STATUS pin has to be externally pulled-up. This behavior is shown in Figure 14 “Mechanism to reset latch condition via STATUS pin” on Page 19. For other configurations and how to reset the latch OFF of the DMOS, please see “Reset latch condition” on Page 18. Datasheet 21 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Diagnostics 7.2 Characteristics Please see “Diagnostics” on Page 28 for electrical characteristic table. Datasheet 22 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics 8 Electrical Characteristics Note: Characteristics show the deviation of parameter at given input voltage and junction temperature. Typical values show the typical parameters expected from manufacturing and in typical application condition. All voltages and currents naming and polarity in accordance to Figure 2.3 “Voltage and Current Definition” on Page 7. 8.1 Power Stage Please see Chapter “Power Stage” on Page 11 for parameter description and further details. Table 5 Electrical Characteristics: Power Stage Tj = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number P_8.1.1 Power Stage - Static Characteristics On-State resistance at 5 V supply and 25°C RDS(ON)_5_25 – On-State resistance at 5 V supply and 150°C RDS(ON)_5_150 – On-State resistance at 3 V supply and 25°C RDS(ON)_3_25 – 20 30 mΩ VDD = 3 V; TJ = 25°C P_8.1.3 On-State resistance at 3 V supply and 150°C RDS(ON)_3_150 – 39 50 mΩ VDD = 3 V; Tj = 150°C P_8.1.4 Nominal load current IL(NOM) – 7.0 – A 1) P_8.1.5 OFF state load current, Output leakage current IL(OFF)_85 – OFF state load current, Output leakage current at 150°C IL(OFF)_150 – 4 30 µA TJ = 150°C VBAT(NOR) P_8.1.7 -VDS – 0.6 1 V VIN = 0 V P_8.1.8 16 20 mΩ VDD = 5 V; TJ = 25°C 33 38 mΩ P_8.1.2 VDD = 5 V; TJ = 150°C TJ < 150°C; TA = 85°C; VDD = 5 V; 0 3.0 µA 2) P_8.1.6 TJ ≤ 85°C VBAT(NOR) Body Diode Reverse diode forward voltage Switching times. RSRP = short to GND; VBAT = 28 V; VDD = 5 V; RLoad = 4.7 Ω see Figure 6 for definition details Turn-on delay time tDON_5(0) 1.6 2.7 6.8 µs - P_8.1.11 Turn-off delay time tDOFF_5(0) 1.5 2.8 5.5 µs - P_8.1.12 Turn-on output fall time tF_5(0) 0.5 1.4 2.5 µs - P_8.1.13 Datasheet 23 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics Table 5 Electrical Characteristics: Power Stage (cont’d) Tj = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Turn-off output rise time tR_5(0) 0.3 0.8 1.7 µs - P_8.1.14 Switching times. RSRP = 5.8 KΩ;VBAT = 28 V; VDD = 5 V; RLoad = 4.7 Ω see Figure 6 for definition details Turn-on delay time tDON_5(5K8) 2.0 3.1 6.9 µs - P_8.1.33 Turn-off delay time tDOFF_5(5K8) 2.4 4.5 7.6 µs - P_8.1.34 Turn-on output fall time tF_5(5K8) 1.1 2.1 3.6 µs - P_8.1.35 Turn-off output rise time tR_5(5K8) 1.0 1.7 2.9 µs - P_8.1.36 Switching times. RSRP = 58 KΩ;VBAT = 28 V; VDD = 5 V; RLoad = 4.7 Ω see Figure 6 for definition details Turn-on delay time tDON_5(58K) 5.5 10.5 15.3 µs P_8.1.55 Turn-off delay time tDOFF_5(58K) 8 20.4 40.9 µs P_8.1.56 Turn-on output fall time tF_5(58K) 5.7 11.3 18.6 µs P_8.1.57 Turn-off output rise time tR_5(58K) 6.9 12.8 19.3 µs P_8.1.58 Switching times. RSRP = 1 MΩ;VBAT = 28 V; VDD = 5 V; RLoad = 4.7 Ω see Figure 6 for definition details Turn-on delay time tDON_5(1M) 9.3 17.0 42.2 µs - P_8.1.77 Turn-off delay time tDOFF_5(1M) 10.4 44.2 139 µs - P_8.1.78 Turn-on output fall time tF_5(1M) 8.9 26.7 64.7 µs - P_8.1.79 Turn-off output rise time tR_5(1M) 8.9 27.1 68.2 µs - P_8.1.80 1) Not subject to production test, calculated by RthJA and RDS(ON). 2) Not subject to production test, specified by design Datasheet 24 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics 8.2 Protection Please see Chapter “Protection Functions” on Page 18 for parameter description and further details. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation Table 6 Electrical characteristics: Protection Tj = -40°C to +150°C, VBAT = 28 V; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Static thermal shutdown junction temperature TJ(SD) 150 175 Overtemperature shutdown STATUS delay at 5 V tTJ(SD)5 – 4.5 Overtemperature shutdown STATUS delay at 3 V tTJ(SD)3 – Number Thermal shutdown 200 °C 1) P_8.2.1 µs 1) P_8.2.4 Delay time to trigger STATUS signal VDD = 5 V TAMB=25°C 4.2 µs 1) P_8.2.7 Delay time to trigger STATUS signal VDD = 3 V TAMB = 25°C Overvoltage Protection / Clamping Drain clamp voltage VOUT(CLAMP) 63 IL(LIM)_5 30 72 83 V P_8.2.8 ID > 50 mA Current limitation Current limitation level 45 60 A 2) P_8.2.9 VDD = 5 V; 1) Not subject to production test, specified by design. 2) Parameter tested at VBAT = 5 V; specified up to VBAT = 36 V. Datasheet 25 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics 8.3 Supply and Input Stage Please see Chapter “Supply and Input Stage” on Page 16 for description and further details. Table 7 Electrical Characteristics: Supply and Input Tj = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number VDD(TH)H 2.4 P_8.3.2 Supply Supply on threshold voltage high Supply off threshold voltage low 2.8 3.0 V 1) VDD(TH)L 2.3 Supply current, continuous ON operation IDD(ON) – 150 250 µA ON-state ; VIN = 5V; IL(0) = IL(NOM) P_8.3.5 Standby supply current IDD(OFF) – 0.3 3 µA VIN = 0 V VDD = 5.0 V P_8.3.11 Datasheet 2.7 2.9 V P_8.3.3 DMOS switches OFF below threshold 26 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics Table 7 Electrical Characteristics: Supply and Input (cont’d) Tj = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Input on threshold voltage; 5.5 V supply VIN(TH)H_5.5 1.9 2.4 2.8 V VDD = 5.5 V P_8.3.13 Input off threshold voltage; 5.5 V supply VIN(TH)L_5.5 1.2 1.5 1.8 V VDD = 5.5 V P_8.3.14 Input on threshold voltage; 3 V supply VIN(TH)H_3 1.2 1.5 1.8 V VDD = 3.0 V P_8.3.19 Input off threshold voltage; 3 V supply VIN(TH)L_3 0.7 1.0 1.2 V VDD = 3.0 V P_8.3.20 Input pull down current IIN 20 45 80 µA VIN ≤ 5.5 V; VDD ≤ 5.5 V P_8.3.22 Input 1) Undervoltage shutdown protection doesn’t reset the OFF Latch mode. Datasheet 27 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics 8.4 Diagnostics Please see Chapter “Diagnostics” on Page 21 for description and further details. Table 8 Electrical Characteristics: Diagnostics Tj = -40°C to +150°C, VBAT = 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number Min Typ Max . . . Diagnostics Status pin latch voltage VSTATUS(LATCH) – 1.0 Status pin reset threshold high VSTATUS(RESET)H_5 1.7 Status reset low time tSTATUS(RESET)L_5 1.0 tSTATUS(RESET)H_5 20 Status pin reset threshold low VSTATUS(RESET)L_3 0.7 Status pin reset threshold high VSTATUS(RESET)H_3 1.2 Status reset low time tSTATUS(RESET)L_3 0.5 tSTATUS(RESET)H_3 8 ISTATUS(NOLATCH) – Status reset high time Status pin leakage current; (No Latch) Status pin internal resistance, RSTATUS(LATCH) (Latch active) 1.0 V 1) 2) P_8.5.1 VDD = 5 V; RSTATUS = 100 kOhm; 3 V ≤ VIN ≤ 5 V; latched fault signal Status pin reset threshold low VSTATUS(RESET)L_5 Status reset high time – 1.4 1.7 V 3) P_8.5.2 VDD = 5 V 2.2 2.6 V 4) P_8.5.3 VDD = 5 V 1.6 2.4 ms 1)5) P_8.5.4 VDD = 5 V 35 50 µs 1)6) P_8.5.5 VDD = 5 V 1.0 1.2 V 3) P_8.5.6 VDD = 3 V 1.6 1.9 V 4) P_8.5.7 VDD = 3 V 1.0 2.3 ms 1)5) P_8.5.8 VDD = 3 V 15 50 µs 1)6) P_8.5.9 VDD = 3 V – 1 µA 1) P_8.5.10 3 V ≤ VDD ≤ 5.5 V VSTATUS ≤ 5.5 V; 0 V ≤ VIN ≤ 5.5 V 7 10 15 KΩ P_8.5.12 RSTATUS(LATCH) = RSTATUS(int) + RDIAG(int) 1) Not subject to production test. Specified by design. 2) Latch feedback signal voltage drop considering VDD = 5 V and RSTATUS = 100 kOhm. 3) Voltage threshold needed at the STATUS pin to initialize the reset sequence of the latch OFF mode. If STATUS pin and IN pin are connected together, same voltage threshold applies. 4) Voltage threshold needed at the STATUS pin to complete the reset sequence of the latch OFF mode. If STATUS pin and IN pin are connected together, same voltage range applies. 5) Time needed to remain below VSTATUS(RESET)L to initialize the reset sequence of the latch OFF mode. See Chapter 6.4 for more information Datasheet 28 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Electrical Characteristics 6) Time needed to remain above VSTATUS(RESET)H after VSTATUS(RESET)L is applied to conlude the reset sequence. See Chapter 6.4 for more information Datasheet 29 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results 9 Characterisation Results Typical performance characteristics 9.1 Power Stage Figure 17 Typical RDS(ON) vs. VDD; IL=IL(NOM); VIN= 3V; VBAT=28V; RSRP= 0Ω Figure 18 Typical IL(OFF) vs. TJ @ VIN = 0V; VDD= 0, 5V Datasheet 30 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 19 Typical destruction point EAS vs. IL @ TJ(0)=150°C; VBAT=28V; IL= IL(NOM), 2*IL(NOM) Figure 20 Typical EAR vs. IL @ TJ(0)=105°C, VBAT= 28V; Nr cycles = 10k, 100k, 1Mio cycles; IL = IL(NOM), 2*IL(NOM) Datasheet 31 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 21 Typical EON & EOFF vs. SRP @ TJ(0)=150°C, VDD=5.5V & VDD=3V; VBAT = 28V; IN= 5V; STATUS= pulled-up to VDD; IL =IL(NOM) Dynamic characteristics Figure 22 Datasheet Typical tR vs. RSRP @ VIN = 5V; VDD= 3V, 5V; VBAT= 28V; RL=4.7Ω; TJ=[-40 .. 150°C] 32 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 23 Typical tF vs. RSRP @ VIN = 5V; VDD= 3V, 5V; VBAT= 28V; RL=4.7Ω; TJ=[-40 .. 150°C] Figure 24 Typical tDON vs. RSRP @ VIN = 5V; VDD= 3V, 5V; VBAT= 28V; RL=4.7Ω; TJ=[-40 .. 150°C] Datasheet 33 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 25 Typical tDOFF vs. RSRP @ VIN = 5V; VDD= 3V, 5V; VBAT= 28V; RL=4.7Ω; TJ=[-40 .. 150°C] 9.2 Protection Figure 26 Typical IL(LIM) vs. VDD; VIN= 5V Datasheet 34 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 27 Typical time to shut down tTJ(SD) vs. IL; VBAT= 28V; VDD= 5V; VIN= 5V; RthJA(1s0p + 300mm2) 9.3 Supply and Input Stage Figure 28 Typical VDD(TH) vs. TJ; VDD(TH)H, VDD(TH)L; VIN = 3V;RSRP= GND; VBAT = 28V Datasheet 35 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 29 Typical IDD(ON) vs. RSRP; IL=IL(NOM); VIN = 3V; VDD= 5V; VBAT=28V Figure 30 Typical IDD(ON) vs. VDD; IL=IL(NOM); VIN = 3V; VBAT = 28V; RSRP = GND Datasheet 36 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Characterisation Results Figure 31 Typical IDD(LIM) vs. VDD; VIN = 3V; RSRP= GND; VBAT= 5V Figure 32 Typical VIN(TH) vs. VDD ; VIN(TH)H, VIN(TH)L; RLOAD = 150kΩ; RSRP =GND; VBAT = 28V Datasheet 37 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Application Information 10 Application Information 10.1 Layout recommendations/considerations As consequences of the fast switching times for high currents (INOM and above), special care has to be taken for the PCB layout. Stray inductances have to be minimized. BTT3018EJ has no separate pin for power ground and logic ground. It is recommended: - to ensure that the offset between the ground connection of the SRP resistor and ground pins of the device is minimized. RSRP should be placed next to the device and directly connected to the GND pins, to avoid any influence of GND shift to SRP functionality. - to ensure that the offset between the ground of the VDD suplly and the ground of the pins of the device is minimized. The maximum parasitic capacitance between the SRP line and GND (CSRP) has to be less than 10pF to avoid any influence on SRP functionality (e.g. switching times). 10.2 Application Diagrams Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Figure 33 Application Diagram to use IN pin and STATUS pin independently Recommended values for VIN = VDD = 5 V: RSTATUS = 100 kΩ Datasheet 38 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Application Information Table 9 RSRP switching modes1) RSRP min RSRP max Unit Behavior 0 2.2 kΩ Fast switching mode. SRP pin can be connected to GND 2.2 160 kΩ Adjustable switching mode 160 1000 kΩ Slow switching mode 1) For switching timings please refer to Chapter 8.1 Figure 34 Application Diagram to use IN pin and STATUS pin simultaneously with different supply and microcontroller voltage class Example given for VIN = 3.3V; VDD = 5V allows to mantain an optimal RDS(ON) while driving the input with a 3.3V microcontroller. This configuration makes not possible the readout of the fault signal and will reset the latch OFF via IN pin (see parameters in Chapter 8.4). For RSRP recommended values, please see Table 9 Note: Datasheet This are very simplified examples of an application circuit. The function must be verified in the real application. 39 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Package Outlines 11 Package Outlines Figure 35 PG-TDSO-8 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Datasheet 40 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Revision History 12 Datasheet Revision History 41 Rev. 1.0 2020-01-16 HITFETTM+ 24V BTT3018EJ Revision History Revision Date Changes Rev. 1.0 Initial release Datasheet 2020-01-17 42 Rev. 1.0 2020-01-16 Please read the Important Notice and Warnings at the end of this document Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™. Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2020-01-16 Published by Infineon Technologies AG 81726 Munich, Germany © 2020 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. Legal Disclaimer for Short-Circuit Capability Infineon disclaims any warranties and liabilities, whether expressed or implied, for any short-circuit failures below the threshold limit. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTT3018EJXUMA1 价格&库存

很抱歉,暂时无法提供与“BTT3018EJXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BTT3018EJXUMA1
    •  国内价格
    • 1+17.24760
    • 10+16.82640
    • 30+16.55640

    库存:13