0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF6718L2TR1PBF

IRF6718L2TR1PBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DirectFET™L6

  • 描述:

    MOSFET N-CH 25V 61A DIRECTFET L6

  • 数据手册
  • 价格&库存
IRF6718L2TR1PBF 数据手册
PD - 97395E IRF6718L2TRPbF IRF6718L2TR1PbF RoHS Compliant Containing No Lead and Bromide  l Dual Sided Cooling Compatible  l Ultra Low Package Inductance l Very Low R DS(ON) for Reduced Conduction Losses l Optimized for Active O-Ring / Efuse Applications l Compatible with existing Surface Mount Techniques  l DirectFET® Power MOSFET ‚ Typical values (unless otherwise specified) VDSS VGS S2 SB Qg tot 64nC Qgd Qgs2 Qrr Qoss Vgs(th) 20nC 9.4nC 67nC 50nC 1.9V DirectFET® ISOMETRIC L6 M2 RDS(on) 25V max ±20V max 0.50mΩ@10V 1.0mΩ@4.5V Applicable DirectFET Outline and Substrate Outline  S1 RDS(on) M4 L4 L6 L8 Description The IRF6718L2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has the footprint of a D-pak. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems. The IRF6718L2TRPbF has extremely low Si Rdson coupled with ultra low package resistance to minimize conduction losses. The IRF6718L2TRPbF has been optimized for parameters that are critical in reliable operation on Active O-Ring / Efuse / hot swap applications. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g g h VGS, Gate-to-Source Voltage (V) Typical RDS(on) (mΩ) 4 ID = 61A 3 2 T J = 125°C 1 T J = 25°C 0 2 4 6 8 e e f 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Max. Units 25 ±20 61 52 270 490 530 49 V A mJ A 14.0 ID= 49A 12.0 VDS= 20V VDS= 13V 10.0 8.0 6.0 4.0 2.0 0.0 0 20 40 60 80 100 120 140 160 180 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage Notes:  Click on this section to link to the appropriate technical paper. ‚ Click on this section to link to the DirectFET Website. ƒ Surface mounted on 1 in. square Cu board, steady state. www.irf.com „ TC measured with thermocouple mounted to top (Drain) of part. … Repetitive rating; pulse width limited by max. junction temperature. † Starting TJ = 25°C, L = 0.44mH, RG = 25Ω, IAS = 49A. 1 07/27/11 IRF6718L2TR/TR1PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS Min. Conditions Typ. Max. Units VGS = 0V, ID = 250μA Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 25 ––– ––– 11 Static Drain-to-Source On-Resistance ––– ––– 0.50 1.0 VGS(th) Gate Threshold Voltage 1.35 1.90 V mV/°C Reference to 25°C, ID = 1mA 0.70 mΩ VGS = 10V, ID = 61A VGS = 4.5V, ID = 49A 1.4 2.35 V VDS = VGS, ID = 150μA ΔVGS(th)/ΔTJ IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -7.6 ––– ––– 1.0 Gate-to-Source Forward Leakage ––– ––– ––– ––– 150 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 820 ––– ––– -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge ––– ––– 64 18 96 ––– Post-Vth Gate-to-Source Charge ––– 9.4 ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 20 16.6 ––– ––– Output Charge ––– ––– 29.4 50 ––– ––– Gate Resistance Turn-On Delay Time ––– ––– 0.90 67 ––– ––– ΔΒVDSS/ΔTJ RDS(on) IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss ––– ––– i i mV/°C μA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 13V, ID = 49A VDS = 13V nC VGS = 4.5V ID = 49A See Fig. 18 nC VDS = 16V, VGS = 0V Ω i VDD = 13V, VGS = 4.5V ns ID = 49A Rise Time ––– 140 ––– Turn-Off Delay Time Fall Time ––– ––– 47 53 ––– ––– RG= 6.8Ω Input Capacitance Output Capacitance ––– ––– 8910 2310 ––– ––– VGS = 0V Reverse Transfer Capacitance ––– 1115 ––– pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter Conditions Min. Typ. Max. Units IS Continuous Source Current (Body Diode) ––– ––– 61 ISM Pulsed Source Current (Body Diode) ––– ––– 490 VSD Diode Forward Voltage Reverse Recovery Time ––– ––– ––– 39 1.0 59 V ns TJ = 25°C, IF = 49A Reverse Recovery Charge ––– 67 100 nC di/dt = 200A/μs trr Qrr g A MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 49A, VGS = 0V i i Notes: … Repetitive rating; pulse width limited by max. junction temperature. ‡ Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF6718L2TR/TR1PbF Absolute Maximum Ratings Max. Units 4.3 3.0 83 270 -55 to + 175 W Parameter e e f Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance e j k fl RθJA RθJA RθJA RθJC RθJ-PCB Parameter Typ. Max. Units ––– 12.5 20 ––– 1.0 35 ––– ––– 1.8 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e 0.029 W/°C Thermal Response ( Z thJA ) 100 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 τJ 0.01 0.001 0.0001 1E-006 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ1 τ2 τ2 τ3 τ4 τ3 Ci= τi/Ri Ci= τi/Ri 0.0001 τ4 τA τi (sec) 12.2942 18.10679 14.4246 2.626824 2.07265 0.007811 6.20859 0.239314 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Ri (°C/W) R4 R4 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  (At lower pulse widths ZthJA & ZthJC are combined) Notes: ‰ Mounted on minimum footprint full size board with metalized ƒ Surface mounted on 1 in. square Cu board, steady state. „ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Š Rθ is measured at TJ of approximately 90°C. ˆ Used double sided cooling, mounting pad with large heatsink. ƒ Surface mounted on 1 in. square Cu board (still air). www.irf.com ‰ Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF6718L2TR/TR1PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 BOTTOM 100 1 2.5V ≤60μs PULSE WIDTH 0.1 1 10 100 1000 0.1 1 Fig 4. Typical Output Characteristics 100 1000 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 15V ≤60μs PULSE WIDTH Typical RDS(on) (Normalized) ID = 61A 100 10 T J = 175°C T J = 25°C T J = -40°C 1 10 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) ID, Drain-to-Source Current (A) Tj = 175°C 10 0.1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 0.90 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Top Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) ≤60μs PULSE WIDTH 2.5V Tj = 25°C Ciss 10000 Coss Crss 1000 0.80 Bottom T J = 25°C Vgs = 6.0V Vgs = 8.0V Vgs = 10V Vgs = 12V Vgs = 14V Vgs = 16V Vgs = 18V 0.70 0.60 0.50 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 50 100 150 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6718L2TR/TR1PbF 10000 T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 25°C T J = -40°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 1msec 100 10msec DC 10 T C = 25°C 1 T J = 175°C VGS = 0V Single Pulse 0 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 VSD, Source-to-Drain Voltage (V) ID, Drain Current (A) 250 200 150 100 50 0 50 75 100 125 150 10 100 Fig 11. Maximum Safe Operating Area Typical VGS(th) Gate threshold Voltage (V) 300 25 1 VDS, Drain-to-Source Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 3.0 2.5 2.0 1.5 ID = 150μA 1.0 ID = 250μA ID = 1.0mA ID = 1.0A 0.5 0.0 -75 -50 -25 0 175 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature 400 Fig 13. Typical Threshold Voltage vs. Junction Temperature 2400 EAS , Single Pulse Avalanche Energy (mJ) Gfs, Forward Transconductance (S) 100μsec ID 2.9A 4.6A BOTTOM 49A TOP 2000 300 TJ = 25°C 1600 200 1200 T J = 175°C 100 V DS = 10V 380μs PULSE WIDTH 2 0 800 400 0 0 20 40 60 80 ID,Drain-to-Source Current (A) 100 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 14. Typ. Forward Transconductance vs. Drain Current Fig 15. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6718L2TR/TR1PbF 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming DTj = 150°C and Tstart =25°C (Single Pulse) Duty Cycle = Single Pulse Avalanche Current (A) 100 10 0.01 1 0.05 0.10 0.1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Δ Tj = 25°C and Tstart = 150°C. 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 16. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 600 Single Pulse ID = 49A 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 17. Maximum Avalanche Energy vs. Temperature 6 175 Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 16, 17). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.irf.com IRF6718L2TR/TR1PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 18a. Gate Charge Test Circuit Qgs2 Qgs1 Qgd Fig 18b. Gate Charge Waveform V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + - VDD IAS 20V I AS 0.01Ω tp Fig 19a. Unclamped Inductive Test Circuit VDS VGS RG A RD Fig 19b. Unclamped Inductive Waveforms VGS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 20a. Switching Time Test Circuit www.irf.com 10% VDS td(off) tf td(on) tr Fig 20b. Switching Time Waveforms 7 IRF6718L2TR/TR1PbF D.U.T Driver Gate Drive + ƒ + ‚ - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET® Board Footprint, L6 (Large Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D D 8 D S S S S S S G D D www.irf.com IRF6718L2TR/TR1PbF DirectFET® Outline Dimension, L6 Outline (LargeSize Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS METRIC MAX CODE MIN 9.15 A 9.05 7.10 B 6.85 6.00 C 5.90 0.65 D 0.55 0.62 E 0.58 1.22 F 1.18 G 0.98 1.02 0.77 H 0.73 0.42 J 0.38 1.47 K 1.34 2.69 L 2.52 M 0.616 0.676 N 0.020 0.080 0.18 P 0.09 IMPERIAL MIN 0.356 0.270 0.232 0.022 0.023 0.046 0.015 0.029 0.015 0.053 0.099 0.0235 0.0008 0.003 MAX 0.360 0.280 0.236 0.026 0.024 0.048 0.017 0.030 0.017 0.058 0.106 0.0274 0.0031 0.007 DirectFET® Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" www.irf.com 9 IRF6718L2TR/TR1PbF DirectFET® Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF6718L2PBF). REEL DIMENSIONS STANDARD OPTION (QTY 4000) METRIC IMPERIAL MIN MAX CODE MAX MIN 12.992 N.C A 330.0 N.C 0.795 B N.C 20.2 N.C 0.504 C 0.520 12.8 13.2 0.059 D 1.5 N.C N.C 3.937 E 100.0 N.C N.C N.C F 0.889 N.C 22.4 G 0.646 0.724 16.4 18.4 H 0.626 0.724 15.9 18.4 016'%10641..+0) &+/'05+105+0// %1&' # $ % & ' ( ) * &+/'05+105 +/2'4+#. /'64+% /+0 /#: /+0 /#:     0%  0%                   0%  0%     Note: For the most current drawing please refer to IR website at http://www.irf.com/package Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Consumer market. Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR’s Web site. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2011 10 www.irf.com IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
IRF6718L2TR1PBF 价格&库存

很抱歉,暂时无法提供与“IRF6718L2TR1PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货