0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG4BC20KPBF

IRG4BC20KPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT78

  • 描述:

    IGBT 600V 16A 60W TO220AB

  • 数据手册
  • 价格&库存
IRG4BC20KPBF 数据手册
PD - 95638 IRG4BC20KPbF Short Circuit Rated UltraFast IGBT INSULATED GATE BIPOLAR TRANSISTOR Features • High short circuit rating optimized for motor control, tsc =10µs, @360V VCE (start), TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Latest generation design provides tighter parameter distribution and higher efficiency than previous generations • Lead-Free C VCES = 600V VCE(on) typ. = 2.27V G @VGE = 15V, IC = 9.0A E n-channel Benefits • As a Freewheeling Diode we recommend our HEXFREDTM ultrafast, ultrasoft recovery diodes for minimum EMI / Noise and switching losses in the Diode and IGBT • Latest generation 4 IGBTs offer highest power density motor controls possible • This part replaces the IRGBC20K and IRGBC20M devices TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current  Clamped Inductive Load Current ‚ Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy ƒ Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 16 9.0 32 32 10 ±20 29 60 24 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.5 ––– 2.0 (0.07) 2.1 ––– 80 ––– Units °C/W g (oz) 1 07/23/04 IRG4BC20KPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage „ 18 — — V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage — 0.49 — V/°C VGE = 0V, IC = 1.0mA — 2.00 — IC = 6.0A VGE = 15V — 2.27 2.8 IC = 9.0A Collector-to-Emitter Saturation Voltage V — 3.01 — IC = 16A See Fig.2, 5 — 2.43 — IC = 9.0A , TJ = 150°C Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -10 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance … 2.9 4.3 — S VCE = 100 V, IC = 9.0A — — 250 VGE = 0V, VCE = 600V Zero Gate Voltage Collector Current — — 2.0 µA VGE = 0V, VCE = 10V, TJ = 25°C — — 1000 VGE = 0V, VCE = 600V, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc t d(on) tr td(off) tf Eon Eoff Ets t sc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time t d(on) tr td(off) tf E ts Eon E off E ts LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — 10 — — — — — — — — — — — — Typ. Max. Units Conditions 34 51 IC = 9.0A 4.9 7.4 nC VCC = 400V See Fig.8 14 21 VGE = 15V 28 — 27 — TJ = 25°C ns 150 220 IC = 9.0A, VCC = 480V 100 150 VGE = 15V, RG = 50Ω 0.15 — Energy losses include "tail" 0.25 — mJ See Fig. 9,10,14 0.40 0.6 — — µs VCC = 400V, TJ = 125°C VGE = 15V, RG = 50Ω , VCPK < 500V 28 — TJ = 150°C, 29 — IC = 9.0A, VCC = 480V ns 190 — VGE = 15V, RG = 50Ω 190 — Energy losses include "tail" 0.68 — mJ See Fig. 11,14 0.07 — TJ = 25°C, VGE = 15V, RG = 50Ω 0.13 — mJ IC = 6.0A, VCC = 480V 0.20 — Energy losses include "tail" 7.5 — nH Measured 5mm from package 450 — VGE = 0V 61 — pF VCC = 30V See Fig. 7 14 — ƒ = 1.0MHz Details of note  through … are on the last page 2 www.irf.com IRG4BC20KPbF 20 For both: 16 Load Current ( A ) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 13W I Clamp voltage: 80% of rated 12 Square wave: 60% of rated voltage 8 I 4 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 10 TJ = 150 o C TJ = 25 oC V CC = 50V 5µs PULSE WIDTH 1 5 10 15 20 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20KPbF 5.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 20 15 10 5 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH IC = 18 A 4.0 3.0 IC = 9.0A 9A IC = 4.5 A 2.0 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 0.01 0.00001 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20KPbF 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 800 600 Cies 400 200 Coes VCC = 400V I C = 9.0A 16 12 8 4 Cres 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 V CC = 480V V GE = 15V TJ = 25 ° C 9.0A I C = 9A 0.4 0.3 0.2 0 10 20 30 40 , GateResistance Resistance (Ohm) (Ω) RGRG, Gate Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 30 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 0.5 10 QG , Total Gate Charge (nC) 50 50Ω RG = Ohm VGE = 15V VCC = 480V IC = 18 A 1 IC = 9.0A 9A IC = 4.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20KPbF RG TJ VCC 4.0 VGE 100 = Ohm 50Ω = 150° C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 5.0 3.0 2.0 1.0 VGE = 20V T J = 125 oC 10 SAFE OPERATING AREA 1 0.0 0 8 16 24 32 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 40 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4BC20KPbF L D.U.T. RL = VC * 50V 0 - 480V 1000V 480V 4 X I C@25°C 480µF 960V c d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. Fig. 14a - Switching Loss Test Circuit VC 50V 1000V c d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4BC20KPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE Notes: DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C ƒ Repetitive rating; pulse width limited by maximum  Repetitive rating; VGE = 20V, pulse width limited by junction temperature. max. junction temperature. ( See fig. 13b ) ‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 50Ω, (See fig. 13a) PAR T NU MB E R „ Pulse width ≤ 80µs; duty factor ≤ 0.1%. … Pulse width 5.0µs, single shot. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRG4BC20KPBF 价格&库存

很抱歉,暂时无法提供与“IRG4BC20KPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货